Projekt FlexiS
Flexibler Skizzengebrauch - 'Darstellen' als Prozessbezogene Kompetenz in Mathematik
Prof. Dr. Barbara Ott, Prof. Dr. Anna Susanne Steinweg
01.01.2012 - 04.05.2016
Inhalte und Ziele
Die Bildungsstandards Mathematik führen verschiedene mathematische Kompetenz als Prozessziele an (KMK 2004). Am Beispiel der Kompetenz Darstellen werden Entwicklungsverläufe und Fördermöglichkeiten erforscht.
Neben symbolischen, schriftlichen und mündlichen Darstellungsformen sind Skizzen im Mathematikunterricht von großer Bedeutung. Sie ermöglichen es, die Struktur mathematischer Aufgaben, die Lösungen oder die dazu angestellten Überlegungen festzuhalten und zu verdeutlichen. Sie spielen somit sowohl im Lösungsprozess als auch bei der Präsentation von Aufgaben oder Lösungen eine wichtige Rolle.
Methode
Eine Pilotuntersuchung, widmet sich der Frage, inwieweit die inhärenten mathematischen Strukturen paradigmatischer Aufgaben in spontanen Kinderzeichnungen (Skizzen, Darstellungen) zu den entsprechenden Aufgaben wiedererkennbar sind. Das Projekt arbeitet im Weiteren mit einer Interventionsstudie, die im Pre-Post-Testdesign (Quasi-Längsschnitt) die Förderung des flexiblen Skizzen- und Tabellengebrauchs thematisiert.
Der Ansatz dieser Arbeit verwendet von Kindern selbst erstellte grafische Darstellungen zu in Textform dargebotenen Aufgaben als Dokumente für eine potentielle Öffentlichkeit und nutzt sie in zweierlei Hinsicht: Zum einen wird ein Analyseinstrument für derartige Zeichnungen und Skizzen theoriegeleitet entwickelt und evaluiert, zum anderen wird eine auf Reflexionsgesprächen über ausgewählte Kinderdokumente basierende Interventionsmaßnahme erprobt, die die Kompetenz des Darstellens fördern kann.
Bamberger Kompetenzen
Das an der Professur für Didaktik der Mathematik & Informatik entwickelte Konzept der bewussten Entwicklung flexibler Rechenkompetenz in der Arithmetik (Steinweg, 2002) fundiert als Hintergrundfolie die Intervention und Evaluation der flexiblen Nutzung von grafischen Darstellungen.
Steinweg, A. S. (2002). Ich freu' mich so, dass ich 1.-Schuljahr-Aufgaben rechnen darf - Entscheidungen treffen über die Attraktivität der schriftlichen Rechenverfahren und die Bedeutung der halbschriftlichen Zugänge, Grundschulunterricht, 10: 17 - 20.
Publikationen
Ott, Barbara (2016). Textaufgaben grafisch darstellen – Entwicklung eines Analyseinstruments und Evaluation einer Interventionsmaßnahme. Münster: Waxmann. www.waxmann.com/buch3517
Ott, Barbara (2015). Textaufgaben grafisch darstellen – eine qualitative Analyse von Eigenproduktionen (Bericht aus der AG Sachrechnen). In Steinweg, A. (Hrsg.) Mathematikdidaktik Grundschule - Band 5. Entwicklung mathematischer Fähigkeiten von Kindern im Grundschulalter - Tagungsband des Arbeitskreises Grundschule in der GDM 2015 (S. 99-102). Bamberg: upb.
Ott, Barbara (2015). Qualitative Analyse grafischer Darstellungen zu Textaufgaben – eine Untersuchung von Kinderzeichnungen in der Primarstufe. In Kadunz, G. (Hrsg.) Semiotische Perspektiven auf das Lernen von Mathematik. (S. 163 - 182). Heidelberg, Springe.
Ott, Barbara (2014). Kinder zeichnen zu Textaufgaben – Vorstellung eines Instruments zur Analyse graphischer Darstellungen. In Roth, J. & J. Ames (Hrsg.) Beiträge zum Mathematikunterricht 2014 (S. 879-882). Münster: WTM Verlag. (online verfügbar)
Ott, Barbara (2014) "'Aber 11 Meter passen doch nicht aufs Papier!' Kinder zeichnen zu Sachaufgaben" In GrundschulunterrichtMathematik, 61 (3): 12-15
Ott, Barbara (2013). "Grafische Darstellungen zu Textaufgaben in der Grundschule". In Greefrath, Gilbert; Käpnick, Friedhelm und Martin Stein (Hrsg.) Beiträge zum Mathematikunterricht 2013 (S. 732-735). Münster: WTM Verlag.
(online verfügbar)