Bachelor/Masterseminar (WS 2017/2018)
General Information
- This seminar is open for bachelor- and master students.
- You find administrative information at UnivIS.
- Participants should sign up for the course in the virtual campus.
- The course is usually offered in the winter term.
Topic: Künstliche Intelligenz - gestern, heute, morgen.
Gemeinsames Seminar mit Smart Environments (für BA und MA offen).
Künstliche Intelligenz (KI) ist der Teil der Informatik, in dem Algorithmen für solche Bereiche entwickelt und erforscht werden, in denen Menschen noch besser sind als Standard-Programme. Lange Zeit galt dies beispielsweise für Schach -- bis zum Durchbruch 1996, als Deep Blue den damaligen Großmeister Kasparov besiegte. Künstliche Intelligenz Forschung verfolgt einerseits ein ingenieurswissenschaftliches Ziel -- das heisst, die Entwicklung von funktionalen und effizienten Algorithmen. Zum anderen wird ein erkenntnistheoretisches Ziel verfolgt: Wer KI Programme entwickelt, hat häufig den Anspruch, dass diese Programme auf der menschlichen Kognition verwandten Prinzipien basieren. Im Seminar werden wir uns anhand von Originalarbeiten mit den zentralen Ansätzen der KI auseinandersetzen. Dabei werden wir uns für jedes Thema sowohl mit den ersten Grundlagenarbeiten als auch mit aktuellen Weiterentwicklungen auseinandersetzen und diskutieren, wie sich diese Themengebiete in zukünftigen Anwendungen einsetzen lassen.
Recommended Reading / Links
Wissensrepräsentation
- Palmer, S. (1978). Fundamental aspects of cognitive representation.
- Brachman, R. J., & Schmolze, J. G. (1985). An Overview of the KL‐ONE Knowledge Representation System*. Cognitive science, 9(2), 171-216.
- Krzysztof Janowicz, Frank van Harmelen, James A. Hendler, Pascal Hitzler: Why the Data Train Needs Semantic Rails.AI Magazine 36(1): 5-14 (2015)
Problemlösen und Planen
- Newell, A., Shaw, J. C., & Simon, H. A. (1959, January). Report on a general problem-solving program. In IFIP Congress (pp. 256-264).
- Green, C. (1969). Application of theorem proving to problem solving (No. SRI-TR-4). SRI INTERNATIONAL MENLO PARK CA ARTIFICIAL INTELLIGENCE CENTER.
- Fikes, R. E., & Nilsson, N. J. (1972). STRIPS: A new approach to the application of theorem proving to problem solving. Artificial intelligence, 2(3), 189-208.
- Haslum, P., & Geffner, H. (2014, May). Heuristic planning with time and resources. In Sixth European Conference on Planning.
Maschinelles Lernen
- Michalski, R. S., Carbonell, J. G., & Mitchell, M. L. (1986). An Artificial Intelligence Approach. Understanding the Nature of Learning, 2, 3-26.
- Muggleton, S. (1991). Inductive logic programming. New generation computing, 8(4), 295-318.
- Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A fast learning algorithm for deep belief nets. Neural computation, 18(7), 1527-1554.
Presentations:
- Cognitive Artificial Intelligence
- Knowledge Representation for Scene Understanding
- Scene Interpretation with Description Logics
- Context-aware classification for incremental scene interpretation
- Image Understanding Using Qualitative Geometry and Mechanics
- Textonboost for image understanding
- Machine Learning – Basic Approaches
- Machine Learning and Games
- Fluxplayer: A successful general game player
- Alpha-beta search enhancements
- Evolving strategy for a probabilistic game of imperfect information
- Lifelong robot learning
- Deep Learning
- Introduction to Deep Learning [pdf]
- A unified architecture for natural language processing
- The Arcade Learning Environment: An Evaluation Platform for General Agents
- Deep reinforcement learning from self-play in imperfect-information game
- Planning for Intelligent Robots
- Generative adversarial nets [pdf]
- Shared grounding of event descriptions by autonomous robots
- Fast Planning Through Planning Graph Analysis
- Path Planning for Autonomous Underwater Vehicles
- Selected Applications of Machine Learning
- Autonomous Cars
- Robust Vehicle Localization in Urban Environments Using Probabilistic Maps
- The dynamic window approach to collision avoidance
- The robot that won the DARPA Grand Challenge
- White-Box Learning and Explainability
- Interaction and Language
- A Computational Model of Human-Robot Spatial Interactions Based on a Qualitative Trajectory Calculus
- Understanding Natural Language Commands for Robotic Navigation and Mobile Manipulation
- Deep Semantic Analysis of Text
- Selected AI Applications
Previous Seminars
KI-Seminare: [WS 16/17] [WS 15/16]
Bachelor Seminare: [WS 04/05] [WS 05/06] [WS 06/07] [<link kogsys/teaching/archiv/ws0708/bachelorseminar_kognitive_systeme/ - extern>WS 07/08</link>] [<link kogsys/teaching/archiv/ws0809/bachelorseminar_kognitive_systeme/ - extern>WS 08/09</link>] [WS 09/10] [WS 10/11] [SS 11] [WS 11/12] [WS 12/13] [WS13/14]
Master Seminare: [SS 05] [SS 06] [SS 08] [SS 09] [WS 09/10] [SS 10] [WS 11/12] [WS 12/13] [WS 13/14]
Reading Clubs:
- WS 14/15: Cognitive Models for Number Series Induction Problems [Archiv Page]
- SS 2014: Experimenting with a Humanoid Robot - Programming NAO to (Inter-)Act [Archiv Page]
- SS 2013: An introduction into statistic data analysis with R [Archiv Page]
- SS 2012: Transfer Learning [Archiv Page]
- SS 2011: Emotion Mining in Images and Text [Archiv Page]
- SS 2010: Aspects of Cognitive Robotics [Archiv Page]
- SS 2009: Reading Club Decision Support Systems [Archiv Page]
- WS 08/09: Algebraic Foundations of Functional Programming (together with Theoretical Computer Science) [Archiv Page]
- SS 2008: Similarity (together with Statistics) [Archiv Page]
- SS 2007: Automated Theorem Proving with Isabelle (together with Theoretical Computer Science) [Archiv Page]
- SS 2006: Support Vector Machines [Archiv Page]