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Abstract

Exploring the application of feature visualization techniques in convolutional neural
networks (CNNs), this thesis investigates the enhancement of model interpretability
within the medical imaging domain, specifically using the International Skin Imaging
Collaboration (ISIC) benchmark datasets from 2019 and 2020.

The objective is to leverage pre-trained CNNs such as AlexNet, VGG16, and ResNet50,
for refining model interpretability. The strategy involves fine-tuning these pre-
trained models, followed by employing feature visualization techniques to both the
pre-trained and fine-tuned models to uncover the contributions of various layers and
filters to decision-making processes.

Comparative analysis of the models fine-tuned on the ISIC 2019 and 2020 benchmark
datasets highlight the different capabilities of these models, with VGG16 excelling
in training accuracy and ResNet50 showing superior generalizability in unseen data.
The methodology incorporates data augmentation and hyperparameter tuning to
optimize model performance across both binary and multiclass classification tasks.

Feature visualizations applied to the fine-tuned models reveal distinct patterns that
align with key diagnostic features of skin cancer. These visual insights not only
deepen the understanding of how neural networks interpret and analyze medical
images, but also contribute significantly to educational practices in the field of med-
ical imaging. Selective visualization and layer-by-layer analysis provide insights into
CNN decision-making processes by focusing on the most activated filters and track-
ing the evolution of features from simple to complex patterns within the models.
Through these techniques, filters that respond robustly to outlier features and class-
specific patterns are identified, and these filters are then utilized to apply feature
visualizations. Additionally, various regularization techniques explored in feature vi-
sualizations lead to cleaner and more interpretable visualizations essential in medical
contexts.

However, interpreting feature visualizations in medical contexts poses unique chal-
lenges due to the complexity of the medical images, and some quantification meth-
ods like correlation analysis and sanity checks are performed to enhance the un-
derstanding of the visual patterns identified. The educational implications of this
understanding extend to the development of more robust networks, enhancing the
training process to achieve peak performance, crucial for improving diagnostic ac-
curacy, and reliability in medical applications.

Furthermore, the findings not only deepen the understanding of how neural net-
works process and analyze medical images, but they also highlight the importance
of integrating additional interpretability methods and exploring further datasets for
future research.

The code implemented for this thesis is open-source and available in a Git repository
for further examination and utilization1.

1https://gitlab.studium.uni-bamberg.de/jonida.mukaj/master-thesis
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1 INTRODUCTION 1

1 Introduction

The quest to understand the human brain has been a long-standing pursuit through-
out human history. The rapid advancement of machine learning technologies, partic-
ularly, Convolutional Neural Networks (CNNs), has significantly impacted various
fields, including medical imaging. In dermatology, the ability to accurately classify
images of skin lesions as benign or malignant is crucial for early diagnosis and treat-
ment of skin cancer. However, despite these achievements, a critical gap remains in
the understanding and interpretation of how these models make their decisions. This
thesis addresses this gap by focusing on feature visualization techniques to probe
the inner workings of CNNs, particularly in the context of distinguishing between
benign and malignant skin lesions (Olah et al., 2017).

Feature visualization stands as a relatively less explored area in the domain of med-
ical imaging, despite its potential to enhance educational outcomes and facilitate
groundbreaking research (Natekar P. and Neurosci., 2020). By delving into the
visualization of what exactly CNNs “see” and “learn” from medical images, the
aim was to reveal the decision-making processes of deep learning models (Nguyen
et al., 2019). This approach not only aids in understanding the “neural” mecha-
nisms underlying model predictions, but also serves to build trust among medical
professionals by making these processes transparent.

The motivation behind employing feature visualization in this study is twofold.
Firstly, it allows for a deeper insight into the abstract concepts and high-dimensional
data representations that CNNs utilize, which are often beyond intuitive human in-
terpretation and the aim was to provide logical structure to the model’s predictions,
supporting their validity and reliability. Secondly, from an educational perspec-
tive, understanding these visualizations can significantly enhance the training and
development of future medical applications and build trust in using AI in medicine.

The following research questions are addressed:

1. What training strategies most effectively enhance the performance of CNN
architectures when applied to ISIC benchmark image classification tasks?

2. How can feature visualization techniques be applied to different CNN architec-
tures trained for binary and multiclass classification tasks in the ISIC bench-
mark dataset?

3. How does the introduction of regularization techniques affect the quality of
feature visualizations in CNNs?

4. How can the impact and interpretability of feature visualizations in CNNs be
quantified, particularly to enhance model understanding?

5. How can outlier-specific filters be identified through feature activation pat-
terns? How do these patterns differ from class-specific filters when applied to
binary and multiclass classification tasks?
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This thesis aims to extend the understanding of feature visualizations in CNNs,
particularly how these visualizations can be optimized and interpreted to enhance
the training and functionality of models used in critical applications such as medical
diagnosis.

2 Background

The purpose of this chapter is to provide essential background knowledge to compre-
hend the domain and methodology used. It begins with an introduction to medical
imaging in dermatology. The fundamental principles of CNNs for image classifica-
tion tasks are further discussed. Finally, an overview of different feature visualization
techniques is presented.

2.1 Medical Imaging in Dermatology

Skin cancer is a concerning health issue, with a higher prevalence rate than all other
types of cancer combined. In the United States (US) 9500 new cases are being diag-
nosed every day (SkinCancerFoundation, 2024). The deadliest form of skin cancer,
melanoma, is projected to increase by 62% since 2018, with a staggering half million
cases since 2040. Tragically, one person loses their life to skin cancer every four min-
utes, leading many dermatologists to consider this a global epidemic (MelanomaUK,
2020).

Skin cancer is primarily caused by excessive exposure to ultraviolet (UV) radia-
tion (MelanomaSkinCancer, 2023), which can come from natural sunlight expo-
sure (CancerResearchUK, 2023) or other sources. Furthermore, populations living in
lower latitudes, where UV radiation levels are high, have been found to have higher
rates of non-melanoma skin cancer (Henriksen et al., 1989). Modifiable risk fac-
tors such as poor diet (SkinCancerFoundation, 2022), alcohol consumption (World-
CancerResearch, 2022), and smoking (De Hertog et al., 2001) also contribute to the
development of skin cancer.

Dermoscopy is a non-invasive imaging technique that allows doctors to view sub-
macroscopic structures that are not visible to the naked eye (Kittler H). Although
it was initially limited to the assessment of pigmented melanocytic lesions, its appli-
cations have expanded to various fields of dermatology. A melanocytic lesion refers
to growths of melanocytic cells in the skin, ranging from benign freckles and moles
to malignant melanoma. It is widely held that publicly accessible data regarding
skin cancer is not entirely reliable, as non-melanoma instances are not generally
documented in cancer registries. Furthermore, incomplete registrations can occur
even when treatment is successful, and some less affluent countries may not possess
cancer registries at all (WorldCancerResearch, 2022).

The increase in skin cancer cases is posing significant challenges for healthcare ser-
vices worldwide. As a result, there is a growing demand for remote automated
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diagnosis options, especially in underprivileged areas where patients may not have
access to advanced medical equipment or expert diagnoses. With the increasing use
of deep learning techniques in medical image analysis, skin lesion classification has
emerged as a promising research field. Medical image analysis is critical in modern
medicine because diagnosing from an image alone is challenging. Computer-aided
diagnosis approaches are used to gain insights into possible disease mechanisms.
Nonetheless, the reliability and consistency of open datasets are fundamental fac-
tors that determine the efficacy of state-of-the-art solutions that rely on data for
algorithm development.

The challenges in dermatological imaging primarily revolve around the high vari-
ability in skin lesion appearances, which can vary widely in color, shape, size, and
texture (Cassidy et al., 2022). Additionally, the subtle differences between benign
and malignant lesions can make accurate classification difficult even for experienced
dermatologists.

Deep learning, particularly convolutional neural networks (CNNs), has emerged as
a promising solution to these challenges (Chan et al., 2020). By leveraging large
datasets of annotated dermoscopic images, CNNs can learn to identify patterns
and features indicative of malignancy with a level of precision that matches or
even surpasses human experts. This potential for deep learning to enhance the
accuracy, consistency, and efficiency of skin cancer diagnosis represents a significant
advancement in dermatology.

2.2 Convolutional Neural Networks for Image Classification

One of the powerful family of neural networks that are designed to learn from im-
age data is Convolutional Neural Networks (CNNs). They are also widespread in
the field of computer vision. CNNs tend to be computationally efficient, both be-
cause they require fewer parameters than fully connected architectures and because
convolutional are easy to parallelize across GPU cores (Chetlur et al., 2014).

With their ability to automatically learn features from raw pixel data, CNNs have
achieved remarkable success in a wide range of applications, including object recog-
nition, face detection, and medical image analysis. CNNs consist of multiple layers
including input, convolutional, activation, pooling, fully connected, and output lay-
ers. The advantages of CNNs include their ability to learn local features through
hierarchical representations and focus on local regions of input data, utilize pa-
rameter sharing for translation invariance by enabling them to recognize objects
regardless of their position in the image, and automatically learn relevant features
directly from the data. However, limitations exist, including the requirement for
a large amount of labeled training data to generalize well, computational intensity
because of powerful GPU requirements, and challenges in model interpretability by
making it challenging to interpret the reasoning behind their predictions (O’Shea
and Nash, 2015).
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For image classification, the workflow involves data collection, preprocessing, de-
signing a suitable CNN architecture, training the model while mitigating overfit-
ting through regularization, and evaluating performance using metrics like accuracy
and precision (Sharma et al., 2018). Recent advancements in CNNs such as at-
tention mechanisms and architectural innovations (e.g., Resnet (He et al., 2015),
DenseNet (Huang et al., 2018)), aim to improve model efficiency and address issues
like vanishing gradients (Pascanu et al., 2013).

Convolutional layers are an essential component of image preprocessing, utilizing
filters to perform convolution operations on a matrix of pixel values. For example,
when working with a black-and-white 5x5 image where pixel values are only 0 and
1, these operations are executed by sliding the filter matrix over the image and
computing the dot product to detect patterns. This convolved feature reduces the
image to a smaller matrix. Filters, also known as kernels, are weighted matrices
that compose convolutional layers. They slide across the image from left to right,
taking input only from a subarea of the image (the respective field). Filters have
a width and height. These dimensions determine the size of the respective field of
vision. The depth of a filter is equal to the number of filters in the convolutional
layer.

Figure 1: Operation of the Convolutional layer.

The values of the feature map can be calculated using the convolution formula:

G[m,n] = (f ∗ h)[m,n] =
∑
j

∑
k

h[j, k] · f [m− j, n− k]

Where the input image is denoted by f, the filter by h, and the m and n represent
the indexes of rows and columns of the outputted matrix. The computation occurs
for every filter within a layer.

Filters are an important feature of image processing. They come with certain pa-
rameters that can affect the size of the output for each filter. Stride: the distance
the filter moves at a time. A filter with a stride 1 will move over the input image, 1
pixel at a time. Padding: a zero-padding scheme will “pad” the edges of the output
volume with zeros to preserve spatial information of the image. While incorporating
stride and padding into the process, is ensured that the input and output volumes re-
main the same size, thus maintaining the spatial arrangement of visual features. As
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an image passes through more convolutional layers, more precise details activate the
layer’s filters. The first few convolutional layers often detect edges and geometries
in the image, but in later convolutional blocks, the filter activations could target
pixel intensity and different splotches of color within the image.

Activation functions determine the relevancy of a given node or pixel value in a
neural network. A node relevant to the model prediction will “fire” after passing
through an activation function. After a convolution operation, an activation function
is applied to introduce non-linearity into the model, enabling it to complex patterns.
The Rectified Linear Unit (ReLU) is a common choice due to its simplicity and
efficiency (Agarap, 2019). Once the feature maps or the outputs that result from
applying a filter to the image during convolution operation, are extracted, the next
step is to move them to the ReLU layer. Here an element-wise operation is performed
to set negative pixels to zero which will not activate or “fire”. The ReLU layer
introduces non-linearity to the network for each of the upcoming feature maps. The
final output is a rectified feature map.

The ReLU activation function is defined as:

f(x) = max(0, x)

The rectified feature map now goes through a pooling layer. Pooling is a down-
sampling operation that reduces the dimensionality of the feature map. There are
two types of pooling layers: the Max pooling layer and the global average pooling
layer. Max pooling, which selects the maximum element from the region of the
feature map covered by the filter, is the most common. With global averaging, the
feature map’s dimensions are reduced drastically by transforming the 3-dimensional
feature stack into a 1- 1-dimensional vector. Given a region R, the max pooling
operation P is defined as:

P (R) = max
x∈R

x (1)

Towards the end of the network, convolutional and pooling layers are flattened into
a vector and fed into fully connected layers. These layers combine features learned
by previous layers across the image to identify the higher-level patterns necessary
for classification (Basha et al., 2020). Given an input vector x, weights W , and bias
b, the output o for a fully connected layer can be computed as:

o = Wx+ b (2)

In the final layer for a classification task, the softmax function is often used to
convert the output scores from the fully connected layer into probabilities by taking
the exponential of each output and then normalizing these values. Given a vector
of raw class scores from the final fully connected layer z, the softmax function S(zi)
for class i is:

S(zi) =
ezi∑
j e

zj
(3)

In conclusion, CNNs have revolutionized image classification and other computer vi-
sion tasks through their unique capabilities and have seen continuous improvements
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and broad applications, future research is directed towards overcoming their present
limitations. This includes enhancing model interpretability, reducing computational
demands, and exploring the new potential in emerging technologies like augmented
reality.

2.3 Feature Visualization Techniques

Deep neural networks have multiple layers that can learn hierarchical representations
of the input data (Chen et al., 2021). Despite the widespread use of deep neural
networks, the specific functions of each layer and their contributions to network
performance remain unclear. Currently, researchers are exploring different ways to
shed light on the inner workings of these complex systems, often referred to as ”black
boxes”. In 2014, Zeiler and Fergus (2013) introduced a visualization technique that
allows us to observe the feature representations learned by the intermediate layers
of a convolutional network. Ben-David and Ringel (2019) have developed layer-
wise loss functions that can help in understanding the internal representations of
deep neural networks. This can help establish a clear role for each layer within the
network. Meanwhile, Lakshminarayanan and Singh (2021) have analyzed the ReLU
function’s ”gating” role. This function allows the pre-activation input to either pass
or not, which can help in understanding the learning of active sub-networks that
may contain valuable information.

Motivated by Zeiler and Fergus (2013) technique, this study is focused on under-
standing the role of layers in neural network performance using feature visualization
by Olah et al. (2017). Several studies have explored the interpretability and under-
standing of Convolutional Neural Networks (CNNs) through feature visualization
techniques, particularly in the context of classification tasks (Molnar, 2022).

A core component of modern CNNs is the convolutional layer (Goodfellow et al.,
2016). The convolutional layer takes the output of the previous layer and applies a
set of filters or features, which are also known as kernels. After this, a non-linear
activation function is applied to the result. The final output of this process is called
a feature map or activation map and serves as input for the next layer. CNNs are
designed to learn features of varying complexity, starting with simple features such
as edges and corners in the first layers and progressing to more complex patterns in
subsequent layers (Olah et al., 2017).

One way to understand the features learned by a CNN is by looking at the feature
maps or activation maps. Feature map visualization is a useful model interpretation
technique that has been used in many medical imaging tasks, such as brain lesion
segmentation (Kamnitsas et al., 2017), fetal facial plan recognition (Yang et al.,
2018), classification of skin lesions (Pereira et al., 2018), and diagnosis of Alzheimer’s
disease (Zhang et al., 2019). Visualizing feature maps helps users connect features
that humans learn to identify with features that CNNs learn.

Notably, efforts have been directed toward unraveling the complex hierarchical rep-
resentations learned by CNNs to improve transparency and trust in their decision-
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making processes Geirhos et al. (2023). Researchers have employed various methods,
such as activation maximization to generate insightful visualizations of the learned
features at different layers of the network (Olah et al., 2017). Activation maximiza-
tion is the task of finding an image that maximally activates a certain neuron (aka
“unit”, “feature”, or “feature detector”), which can reveal what each neuron in a
Deep Neural Network (DNN) has learned to fire in response to (i.e. which features it
detects). This technique can be performed for the output neurons, such as neurons
that classify types of images (Simonyan et al., 2014), and can also be performed for
each of the hidden neurons in a DNN (Erhan et al., 2009), (Yosinski et al., 2015).

In the medical field, researchers have primarily used feature attribution-based meth-
ods (Singh et al., 2020). Feature visualization determines the input pattern or fea-
ture that is most exciting to a particular layer or neuron by understanding model
structure and function, while attribution-based methods aim to understand model
predictions (Huff et al., 2021), (Molnar, 2022).

Within the medical field, there appears to be some ambiguity surrounding the dis-
tinction between “feature visualization” and “filter and feature map visualization”.
While some studies have utilized the latter technique to explore the internal repre-
sentations of medical image models (which is one of the methods to gain insights into
the complex workings of such systems), it is not equivalent to feature visualization.
The activation maximization method, as established by Olah et al. (2017), defines
feature visualization.

In the medical domain, feature visualization techniques have been applied in various
contexts. For example, Yu et al. (2021) utilized these techniques to visualize the
progression of Alzheimer’s disease across different stages using MR images. Same,
Yi et al. (2017) developed a unique method for visualizing the features used by
neural networks to classify benign/malignant cases, utilizing the DeepDream algo-
rithm (Mordvintsev et al., 2015b) from the feature visualization blog by Olah et al.
(2017). Another study used neuroimaging data to gain insights into the principles
underlying model learning (Eitel et al., 2022).

In conclusion, while feature visualization has provided valuable insights into the
functioning of deep learning models in the medical domain, the field stands at the
cusp of further significant advancements.

3 Data Analysis and Data Preparation

This chapter introduces the dataset information, which includes two datasets, one
for binary classification and the other one for multiclass classification tasks. The
main dataset for binary classification, with a total of 37648 benign and malignant
samples, was used for both training and validating the models. For testing purposes
in binary classification, a new testing dataset is created with samples taken from the
2016 version of the ISIC dataset. For multiclass classification, were considered data
from both the ISIC 2019 and ISIC 2020 datasets, with a total of 23292 samples.
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3.1 Dataset Information

The demand for remote automated diagnosis solutions for skin cancer samples is
increasing, given its significant impact on global healthcare services. Skin lesion
classification has become very popular in recent years due to the growing use of
deep learning techniques in medical image analysis. However, since most state-
of-the-art solutions rely on data, the reliability and consistency of open datasets
are increasingly crucial for algorithm development. Therefore, this thesis analyzes
images from the largest dermoscopic open datasets released in the past five years,
the International Skin Imaging Collaboration (ISIC) datasets (Rotemberg et al.,
2020).

The dataset that has been used is the medical benchmark dataset ISIC (Rotemberg
et al., 2020). This dataset annotation distinguishes between benign and malignant
skin lesions, with malignant skin lesions further subdivided into different malignant
types. This dataset is used primarily for binary classification.

In 2020, the largest ISIC dataset was released, which includes 33,126 training images
and 10,982 test images, making a total of 44,108 images (Rotemberg et al., 2021).
The dataset provides ground truth data for the training set only, which shows patient
ID, lesion ID, gender, approximate age, anatomical site, diagnosis, and benign or
malignant status, same as the previous year. Out of the 33,126 images in the training
set, there are 2,056 unique patient IDs and 32,701 unique lesion IDs. This suggests
that a significant number of lesion images have been obtained from a relatively small
pool of patients at different times. The test set also includes patient metadata such
as ID, approximate age, anatomical site, and gender. For evaluation of the test set,
the test set of the ISIC 2016 dataset, is used and it has ground truth labels. The
total number of samples in this test set is 392, where 28 are malign images and 364
are benign images. This dataset is also checked for any data leakage.

Malign image Benign image

Figure 2: Visualization of the classes in the medical benchmark dataset ISIC 2020

The medical benchmark dataset ISIC 2020 has a high level of class imbalance, with
only 1.7% malign images and 83% benign images in the training set. This can result
in biased models that tend to predict the majority class while ignoring the minority
class observations. To overcome this problem, in-depth research was conducted to
find a solution. The first winner of the Kaggle Competition (Ha et al., 2020) for
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SIIM-ISIC Melanoma Classification Challenge found a solution by using both 2018
and 2019 year’s data (including 2018 (Codella et al., 2018a), (Tschandl et al., 2018)
and 2019 (Tschandl et al., 2018), (Codella et al., 2017), (Combalia et al., 2019)) and
2020 data. They did 5-fold cross-validation on the combined data to avoid biased
models. Another technique used for handling unbalanced data is random oversam-
pling and data augmentation. Additionally, the class weight technique (Elansary
et al., 2021) was used to provide a weight for each class.

To address the imbalance issue in this master thesis, an upsampling and class weights
technique are employed for the minority class, as explained further in Section 4.3.2.
Specifically, only malignant images from the ISIC 2019 dataset are added to the
2020 dataset. After data preprocessing, the training set now contains 5,106 ma-
lignant samples and 32,542 benign samples. This resulted in a 15.6% increase in
the proportion of malignant class images in the training set. During the training
process, the class weights technique is employed by assigning higher weights to the
minority classes and lower weights to the majority classes.

Table 1: Class distribution of samples in binary classification.

Diagnosis Train before Train Test

Benign 32,542 32,542 364

Malign 584 5,106 28

Multiclass classification dataset information. In multiclass classification, us-
ing data from the ISIC 2019 dataset, only eight primary classes are considered.
The objective of the ISIC 2020 competition was to determine whether an image
depicted a benign (non-melanoma) or malignant (melanoma) condition. Within the
2019 dataset, the various classes are organized into individual folders without using
explicit metadata files. Instead, the image classes are inferred directly from the
hierarchical structure of the folders where the images are stored.

The dataset folders are obtained from the Kaggle competition (Prasanna, 2020)
where only the training directory is considered and the validation directory is used
as a test set, where the number of samples is presented in Table 2 and Fig. 3.

The ISIC challenges are playing a crucial role in the advancement of research on
melanoma classification. These challenges offer digital high-resolution skin lesion
image datasets that have been confirmed through biopsy, along with expert anno-
tations and metadata from all over the world. The objective of these challenges is
to promote research in the field, which will ultimately result in the development of
automated Computer-Aided Diagnosis (CAD) solutions for diagnosing melanoma
and other types of cancers. Additionally, this community organizes yearly skin le-
sion challenges to encourage wider participation of researchers for improving the
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diagnosis of CAD algorithms and to raise awareness about the increasing problem
of skin cancer (Codella et al., 2018b).

Table 2: Class distribution of samples in multiclass classification.

Diagnosis Train Test Diagnosis

NV 10,979 931 Melanocytic nevus

MEL 3,812 350 melanoma

BCC 2,820 253 Basal cell carcinoma

BKL 2,215 206 BKL lichenoid keratosis

AK 716 76 Actinic keratosis

SCC 541 45 Squamous cell carcinoma

VASC 202 27 Vascular lesion

DF 206 22 Dermatofibroma

Figure 3: Multiclass dataset samples.

3.2 Outlier Analysis

The training sets of ISIC images have some outlier observations that might hinder
the model’s performance. These were initially introduced in the paper analyzing
ISIC image datasets (Cassidy et al., 2022). The observations include:
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1. Outliers

(a) cropped lesions

(b) dermoscopy measurement overlay that obscures the lesion

(c) hair that obfuscates the lesion

(d) clinical markings

(e) circular size reference stickers

(f) physical ruler

(g) immersion fluid that distorts the lesion

(h) air pocket in the immersion fluid

For more information see Fig. 4 below.

Figure 4: Outliers of the training set

3.3 Data Preprocessing

Data preprocessing is a crucial step in the field of machine learning. It involves
cleaning and preparing raw data before it is fed into a model. This process helps
improve the quality of the data by removing errors, inconsistencies, and outliers. The
accuracy of the model can be negatively affected by several factors, which can make
it less effective. Preprocessing the data can help to reduce the amount of noise, such
as irrelevant or redundant features, which can improve the efficiency of the learning
algorithm. Ultimately, this can result in better predictions and outcomes.

Exploratory Data Analysis (EDA) refers to the initial analysis and findings that are
performed on data sets, usually in the early stages of an analytical process (Maha-
lakshmi and Sujatha, 2023). Some experts describe it as a preliminary investigation
aimed at understanding the nature of the data, its characteristics, and how it can
be leveraged for statistical analysis. EDA is often a precursor to other kinds of
statistical work with data.

The CSV file of the training set for binary classification provides information about
each image, including ground truth labels for the training set. These labels include
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image name, patient ID, sex, age, anatomy, diagnosis, benign/malignant classifica-
tion, and target. The “target” column is used to distinguish between malign and
benign classes for binary classification. To address the issue of class imbalance, ex-
ternal malign samples from the 2018 and 2019 ISIC benchmark datasets were used,
as explained in section 3.1. As a result, the metadata file for the training set now
includes only the following columns: image name, lesion ID, sex, age, anatomy, and
target. Similar to the binary classification dataset, for multiclass classification, the
metadata file of the training set provides information about each image, including
ground truth labels for all eight classes. The columns are image name, patient ID,
sex, age, anatomy, diagnosis, and benign/malignant classification. The column ti-
tled “diagnosis” is used to distinguish between various categories in the multiclass
classification.

EDA was conducted for the training set, both for binary and multiclass, to analyze
the images based on the correlation of their metadata entries. The analysis focused
on correlating target classes based on age, gender, and anatomy entries. Also, the
age distribution of target types was checked, as well as the gender and anatomy split
by target and diagnosis variable.

Figure 5: Frequency and age distribution of the “target” column (binary)

According to Fig. 5, there is a clear increase in the number of malignant samples,
in comparison to the initial ISIC 2020 benchmark dataset as described in Table 1.
The second graph, which shows the age distribution for target values, indicates that
the benign samples follow a normal distribution. On the other hand, the malignant
samples are slightly skewed to the left, with the peak toward higher age values.

After analyzing the “target” variable, it was found that the dataset has more male
cases than female cases. The distribution of benign and malignant cases is similar
for all anatomical entries, but the torso has a larger sample size. For more detailed
information, please refer to the images shown in Fig. 6 and Fig. 7. The target
variable assigned to value “1” is associated with the malignant class and the target
variable assigned to value “0” is associated with the benign class.

A similar analysis is conducted with the metadata file of the multiclass dataset,
correlating the “diagnosis” column with other metadata variables such as gender
and age.
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Figure 6: Gender split by “target” column

Figure 7: Anatomy split by “target” column

Figure 8: Frequency distribution of the “diagnosis” column (multiclass)

Based on the chart shown in Fig. 8, there is a significant difference in the number
of samples across different classes. The majority of the images belong to the class
labeled NV (nevus), while some classes have only a few images.

3.4 Data Augmentation

This master thesis incorporated a comprehensive preprocessing and data augmenta-
tion pipeline to enhance the performance and generalization capabilities of the deep
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learning model. The preprocessing steps begin with loading the dataset. This func-
tion constructs image paths based on a provided metadata DataFrame and project
directory. This ensures that the dataset is well-organized and ready for subsequent
training.

The core of the preprocessing pipeline lies in the ISIC Dataset class. Here, images
are loaded and transformed to prepare them for model input. Initially, images are
read as tensors. They are then converted to PIL Images, which is a necessary
step for applying various PyTorch transformations. By default, the images are
resized to (224, 224) and their pixel values are normalized using predefined mean
and standard deviation values for binary classification. This ensures that the input
data is standardized, which helps with stable and consistent model training. This
preprocessing step was crucial because the image shapes were quite different as
described in Fig. 9, where only 100 different images are checked.

Figure 9: 100 image shapes for the training dataset.

A key element of this preprocessing strategy is the use of data augmentation tech-
niques. A function defines separate transformation pipelines for training and val-
idation datasets. During training, various augmentations are applied to introduce
diversity to the dataset. These include random resized crops, affine transformations
(rotation, shear, scaling), and random flips (horizontal and vertical). Additionally,
color jitter is applied to further enhance the model’s ability to generalize to various
image conditions.

Based on thorough research on data augmentation techniques suitable for medical
images of ISIC datasets, the paper by Perez et al. (2018) recommends the best
techniques primarily using ISIC 2017 dataset images. Therefore, the above data
augmentations were chosen to use for the ISIC 2020 dataset benchmark. They
conclude that the best augmentation scenario, which involves combining geometric
and color transformations, outperforms the top-ranked AUC values for the ISIC
Challenge 2017 without any additional data. To further enhance performance, one
can fine-tune hyperparameters and use model ensembling techniques.

The best augmentation scenario involves the following steps:
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1. Random Crops: Randomly crop the original image. The crop has 0.4− 1.0 of
the original area and 3/4 - 4/3 of the original aspect ratio.

2. Affine: Rotate the image by up to 90 degrees, shear by up to 20 degrees, and
scale the area by [0.8, 1.2]. New pixels are filled symmetrically at the edges.
This can reproduce camera distortions and create new lesion shapes.

3. Flips: Randomly flip the images horizontally and/or vertically.

4. Saturation, Contrast, Brightness, and Hue: Modify saturation, contrast, and
brightness by random factors sampled from a uniform distribution of [0.7, 1.3],
simulating changes in color due to camera settings and lesion characteristics.
Also, shift the hue by a value sampled from a uniform distribution of [−0.1, 0.1].

For the validation dataset, milder augmentations are employed to simulate real-
world scenarios while evaluating the model’s performance. This approach balances
the need for the model to learn robust features during training with augmented data
while ensuring its adaptability to non-augmented validation data.

The use of PyTorch’s DataLoader class facilitates efficient batch processing during
both training and validation. This preprocessing and data augmentation strategy
collectively contributes to the model’s ability to learn diverse features, handle vari-
ations in input data, and ultimately improve its overall performance on the target
task, such as image classification in this master thesis.

Various data augmentation techniques were used during the training of the model
using medical skin cancer images. These techniques were necessary to account for
variations in skin tones, lighting conditions, and image sizes. One of the critical
considerations was addressing significant imbalance ratios. However, a decision was
made not to use the hair removal augmentation technique deliberately. Although
it could potentially improve the model’s performance, the primary objective of this
thesis is to evaluate the learned features of the model. It is important to test the
model’s ability to distinguish between outliers and skin marks.

4 Methods

This chapter provides an insight into the methodology used in this study. First, the
software tools and libraries that were employed for the study are presented. Then,
the model architectures of the three models are presented. Subsequently, each exper-
imental training methodology used in the study is explained. The chapter concludes
with an explanation of the feature visualization technique applied, regularization,
and quantification methods.

4.1 Technical Setup

This master thesis is implemented in Python on a local and remote machine with
the following hardware:
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The remote server was used for training and validation purposes:

• Processor: Intel(R) Xeon(R) Silver 4309Y CPU @ 2.80GHz

• RAM: 16GB

• Operating System: x86-64 GNU/Linux

The local machine was mostly used for testing and applying feature visualizations:

• Processor: Intel(R) Core(TM) i7-10750H CPU@ 2.60GHz, 2592 Mhz, 6 Core(s),
12 Logical Processor(s)

• RAM: 24GB

• Operating System: Windows 11 Enterprise ( 64-bit operating system, x64-
based processor)

The thesis utilized several open-source libraries that are widely accepted. The
Torchvision package provided the machine learning models and image transforma-
tion capabilities (Marcel and Rodriguez, 2010). Pytorch (Paszke et al., 2019), a
widely deep learning framework, was employed for building and training the neural
networks. Numpy was used to perform numerical calculations and array opera-
tions (Harris, 2020). Pandas was used for efficient analysis and data manipula-
tion (Wes McKinney, 2010). The creation of personalized data visualizations was
accomplished using the Matplotlib (Hunter, 2007) and Seaborn (Waskom, 2021) li-
braries. Furthermore, the Torch Dream library is used to apply feature visualization
techniques (Deb, 2021). The original library for research in neural network inter-
pretability and feature visualization is called Lucid (Christopher Olah, 2017). It is
a collection of infrastructure and tools built using TensorFlow. The version of Lucid
adapted for PyTorch is Lucent by Lim Swee Kiat (2020) and Torch Dream (Deb,
2021).

4.2 Model Architecture

In this master thesis, there are used three different model architectures: AlexNet,
VGG16, and Resnet50 (Krizhevsky et al., 2017). The decision to choose those models
was made based on the best-performing models on medical images. Based on the
ISIC 2020 benchmark dataset leaderboard, the most used model is EfficientNet, but
also Resnet50 has given high accuracy (ISICLeaderboard).

4.2.1 ResNet50 Architecture

A Residual Neural Network with 50 layers or ResNet50 is a type of deep CNN ar-
chitecture developed by Microsoft Research in 2015. It’s a variant of the ResNet
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architecture with 50 layers, which uses residual connections to learn a set of resid-
ual functions that map the input to the desired output (He et al., 2015). The
architecture is divided into four main parts: convolutional layers, identity block,
convolutional block, and fully connected layers. The convolutional layers extract
features from the input image, while the identity block and convolutional block pro-
cess and transform these features. Finally, the fully connected layers are used to
make the final classification.

Figure 10: ResNet50 Architecture

ResNet50 has been trained on large datasets and archives state-of-art results on
several benchmarks. It has been trained on the ImageNet dataset, which contains
over 14 million images and 1000 classes, where ResNet50 achieved an error rate of
22.85% (Deng et al., 2009).

One key feature of the ResNet50 architecture and all residual networks is the skip
connection, also known as a residual connection. Skip connections address the prob-
lem of vanishing gradients that occurs when training deep neural networks, where
the gradient of the parameters in the deeper layers becomes very small, making
it difficult for those layers to learn and improve. This problem is solved by the
ResNet50 model, by allowing the information to flow directly from the input to the
output of the network, bypassing one or more layers. In ResNet50, skip connections
are used in the identity block and convolutional block.

The ResNet50 model has been pre-trained on the ImageNet dataset to serve as a
feature extractor. It can capture detailed representations within the input images.
In this master thesis, a new linear layer with an output size of 1 is used to replace
the final fully connected layer of the pre-trained ResNet50 model. This strategic
modification is governed by the binary classification nature of the skin cancer clas-
sification task, necessitating a singular output unit for discriminative analysis. For
the multiclass classification task, the final layer of ResNet50 is replaced by a layer
with an output size of eight, because there are eight different classes as described
earlier in the Section 3.1.

4.2.2 VGG16 Architecture

VGG16 is an object detection and classification model that can classify 1000 images
of 1000 different categories with 92.7% accuracy (Mascarenhas and Agarwal, 2021).
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It is one of the popular models for image classification and is easy to use with transfer
learning.

Figure 11: VGG16 Architecture

The term “16” in VGG16 denotes the number of layers in the architecture that have
weights. Although there are 21 layers in total, including 13 convolutional layers, five
max-pooling layers, and three dense layers, only 16 of these layers have learnable
parameters. VGG16 accepts an input tensor size of 224 by 224 with 3 RGB channels.
One of the most unique features of VGG16 is that it employs convolutional layers
with 3x3 filters and stride 1, as well as always using the same padding and max pool
layer with a 2x2 filter and stride 2. The structure of the convolutional and max pool
layers remains consistent throughout the entire architecture. The first convolutional
layer (Conv1) has 64 filters, Conv2 has 128 filters, Conv3 has 256 filters, and both
Conv4 and Conv5 have 512 filters. After a sequence of convolutional layers, three
fully-connected (FC) layers follow. The first two have 4096 channels each, while
the third performs 1000-way the ImageNet Large Scale Visual Recognition Chal-
lenge (ILSVRC) classification, and therefore contains 1000 channels (one for each
class) (Russakovsky et al., 2015). The final layer is the soft-max layer.

To preserve the features learned by the pre-trained model during initialization, the
classifier’s parameters are frozen. Subsequently, the final fully connected layer is
modified to accommodate the binary classification task. The original layer is re-
placed by a new linear layer with a single output, reflecting the binary nature of
the classification. For the multiclass classification task in VGG16, the final layer is
replaced with an output layer of size eight, similar to ResNet50 in Section 4.2.1.

4.2.3 AlexNet architecture

AlexNet, which employed an eight-layer CNN, established a milestone in the field
of computer vision by winning the ILSVRC Challenge in 2012 with a substantial
lead over its competitors Russakovsky et al. (2013). This breakthrough network
demonstrated for the first time that learned features can surpass manually designed
features, which was the previous paradigm in computer vision.

The first layer of AlexNet uses an 11x11 convolution window shape to capture larger
objects with more visual details in ImageNet data (Deng et al., 2009), which is eight
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times larger than the MINST dataset Yann. In the second layer, the convolution
window shape is reduced to 5x5, and then 3x3. The network adds max-pooling
layers after the first, second, and fifth convolutional layers with a window shape
of 3x3 and a stride of 2. AlexNet has ten times more convolution channels than
LeNet (Lecun et al., 1998). After the final convolutional layer, there are two FC
layers with 4096 outputs, which require nearly 1GB of model parameters. AlexNet
replaced the sigmoid activation function with a simpler ReLU activation function,
which is computationally simpler as it does not have the exponentiation operation
found in the sigmoid activation function.

Figure 12: Alexnet Architecture

4.3 Training Methodology

4.3.1 Loss Functions and Model Initialization

The primary objective is to demonstrate the adaptability of pre-trained models for
specialized tasks through fine-tuning, which involves adjusting the final layers to
match the target number of classes. The core adaption requires modifying the final
fully connected layer of the specific model’s classifier to accommodate eight output
classes, corresponding to the particular classification task available. This adjustment
is achieved by replacing the original layer with a new linear layer, where the number
of classes is set to eight to match the multiclass classification task and is set to one
to match the binary classification task.

For the binary classification task, all three models were initialized by freezing the
classifier’s parameters to retain the features learned by the pre-trained model. Then,
the final fully connected layer is modified to match the binary classification task.
The original linear layer is replaced with a new one, which has a single output,
reflecting the binary nature of the classification.

A dropout layer, with a rate of 0.1, is applied to improve model generalization and
reduce the risk of overfitting to the majority class or any specific patterns in the
training data that do not generalize well to the validation dataset.

The selection of an optimizer is crucial, and the Adam optimizer is chosen for its
effectiveness in minimizing the loss function (Kingma and Ba, 2017). The learn-
ing rate, a significant hyperparameter, is explicitly set to a value that indicates
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the step size in the parameter space during optimization. In the case of Adam,
the default weight decay parameter is left at zero, and its adaptive momentum
parameters facilitate faster convergence. Furthermore, a learning rate scheduler -
the ReduceOnPlateau (2023) scheduler - is included. This scheduler dynamically
adjusts the learning rate based on the model’s observed performance. Using a pa-
tience of 1, the scheduler intervenes if no improvement is detected for a single epoch,
reducing the learning rate by a factor of 0.4. This adaptive strategy enhances con-
vergence and reduces the risk of overshooting optimal parameter values. Lastly, the
loss function used is the Binary Cross-Entropy with Logits Loss (BCELoss, 2023).
This criterion combines a sigmoid activation function with the binary cross-entropy
loss, ensuring numerical stability during training (Ding et al., 2018). Its application
aligns with the binary nature of the classification task, where the model output is
interpreted as logits to facilitate stable and efficient computation.

For multiclass classification, the learning rate scheduler employed is similar to binary
classification, the ReduceLROnPlateau scheduler, which adjusts the learning rate
when a metric has stopped improving, specifically reducing the learning rate by a
factor of 0.2 after a patience period of two epochs without performance improvement.
This strategy helps in fine-tuning the model by gradually decreasing the learning rate
to refine the model weights. The loss function used is cross-entropy, which combines
a softmax layer and the cross-entropy loss in a single class (Ding et al., 2018). The
function also allows for the specification of class weights, enabling the model to
pay more attention to samples from underrepresented classes, thus addressing class
imbalance.

4.3.2 Handling Class Imbalance

As described earlier in Section 3.1, an upsampling technique is used to handle the
class imbalance for binary classification. This technique is employed for the minority
class. Specifically, only malignant images from the ISIC 2019 dataset are added to
the 2020 dataset. After preprocessing and data augmentation, the proportion of
malignant class images in the training set increased by 15.6%.

Despite using the upsampling technique for the minority class, the number of ma-
lignant class samples still only accounts for 15.6% of the entire training dataset.
During the model evaluation, the confusion matrix for the validation dataset does
not classify the minority samples accurately. To address this issue, a class weighting
technique was employed.

Class weighting is a technique employed to address the imbalance by adjusting
the importance of classes proportional to their representation in the data. This is
achieved by assigning higher weights to the minority classes and lower weights to the
majority classes during the training process. The underlying goal is to increase the
cost of misclassifying the minority class, compelling the model to pay more attention
to correctly predicting these classes.

When performing binary classification, class weights are calculated using a function
that determines weights inversely proportional to the frequency of each class in the
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input data. These weights can then be utilized in the loss function of the classifier to
give greater importance to the minority class. Meanwhile, in multiclass classification,
the weights are assigned manually where the value 0.9 is assigned to the class with
the least number of samples and the value 0.2 to the class with the most number
of samples. Class weighting directly tackles the issue of imbalance by making the
model more sensitive to the minority class, and enhancing its ability to recognize
and correctly predict instances of this class.

The strategic combination of class weighting together with the dropout layer men-
tioned in Section 4.3.1, aims to yield a more balanced and robust model capable
of effectively identifying both majority and minority class instances, leading to im-
proved overall performance on imbalanced datasets.

4.4 Feature Visualization

4.4.1 General Concepts

Deep neural networks can learn high-level features in the hidden layers (Molnar,
2022). One of the primary benefits of this approach is its ability to mitigate the
need for extensive feature engineering. With convolutional neural networks, the
image is fed into the network in its raw form (pixels) and the network transforms
the image multiple times. First, the image goes through many convolutional layers
where the network learns new and increasingly complex features in its layers. Then,
the transformed image information passes through the fully connected layers before
being classified or predicted.

Convolutional neural networks can learn abstract features and concepts from raw
image pixels. Feature Visualization is a technique used to visualize the learned
features by performing activation maximization (Nguyen et al., 2019).

The first few layers of a CNN are responsible for identifying basic image features
such as edges and simple textures. Moving deeper into the network, the subsequent
convolutional layers start learning more complex textures and patterns. Finally,
the last convolutional layers learn to identify objects or parts of objects. The fully
connected layers, which come after the convolutional layers, learn to connect the
high-level features extracted by the convolutional layers to the specific classes or
labels to be predicted.

Feature visualization (FV) is an optimization problem in mathematical terms, where
the input that maximizes the activation of a neural network unit is found (Olah et al.,
2017).

In the context of neural network interpretability, the term “unit” is associated with
various levels of the network’s architecture, ranging from the granular individual
neurons to the broader channels, layers, and output probabilities corresponding to
classification decisions, as presented in Fig. 14. Neurons represent the most funda-
mental units, offering the richest detail through feature visualizations. However, a
specific layer can contain thousands of neurons, often reaching into the millions, and
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Figure 13: Features learned by a convolutional neural network (Inception V1)
trained on the ImageNet data (Molnar, 2022).

this poses a practical challenge to individual analysis due to the extensive compu-
tational resources and time required.

Figure 14: Different units of neural network

Feature visualization (FV), therefore, frequently targets channels - also known as
feature maps - which are intermediate representations capturing the presence of
specific features within the input. Channels provide a more trackable means of
understanding the network’s feature extraction process. Moreover, by aggregating
feature visualizations at the layer level, one can observe the combination of features
that contribute to the network’s decision-making process. This layered approach
is presented in the DeepDream algorithm developed by Google, which iteratively
enhances patterns in an image to produce dream-like visuals, thereby offering a
creative visualization of layer activations (Mordvintsev et al., 2015a).

4.4.2 Activation Maximization

Assuming that the weights of the neural network are already fixed, it means that
the network has already been trained. The primary goal is to find a new image that
maximizes the activation of a particular neuron, which is typically measured by its
mean activation.

img∗ = argmax
img

hn,x,y,z(img)
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The function h is the activation of a neuron, img the input of the network (an
image), x and y describe the spatial position of the neuron, n specifies the layer and
z is the channel index. For the mean activation of an entire channel z in layer n was
maximized:

img∗ = argmax
img

∑
x,y

hn,x,y,z(img)

In this formula, all neurons in channel z are equally weighted. Alternatively, max-
imizing random directions involves multiplying neurons with different parameters,
including negative ones, to study how they interact within the channel.

This optimization problem can be addressed in different ways. For example, instead
of generating new images, was done searching through the training images and
selecting those that maximize the activation (Nguyen et al., 2019). Using training
data is a valid approach, but it has its drawbacks. The elements on the images can
be correlated and cannot be seen as what the neural network is specifically looking
for. For instance, if images that yield a high activation of a certain channel show
a skin cancer mark and a hair outlier, was not known whether the neural network
looks at the skin cancer mark, the hair outlier, or maybe both.

This optimization problem was introduced as Activation Maximization (AM) by Er-
han et al. (2009). AM is a non-convex optimization problem for which one can
attempt to find a local minimum via gradient-based (Szegedy et al., 2014) or non-
gradient methods (Nguyen et al., 2016b). A simple approach is to perform gradient
ascent (Erhan et al., 2009) with an update rule such as:

xt+1 = xt + ϵ1
∂a(θ, xt)

∂xt

Starting from random initialization x0 (here, a random image), then iteratively
taking steps in the input space following the gradient of a(θ, x) to find the input x
that highly activates a given unit. ϵ1 is the step size and is chosen empirically.

Using gradient ascent, network input is optimized instead of the network parameters
∂), which are frozen. The optimization was stopped when the neural activation has
reached a desired threshold or a certain number of steps has passed.

4.4.3 Regularization Methods

Simply optimizing an image to trigger a neuron and visualize its features is not
sufficient. Instead, the final result will be an image full of noise and nonsensical
high-frequency patterns, but to which the network responds strongly, as introduced
in Fig. 15, where the default number of optimization steps applied is 120.

After optimizing long enough, it was obvious that some of what the neuron detects
well, but the image will be dominated by these high-frequency patterns, which are
closely related to the phenomenon of adversarial examples (Szegedy et al., 2014).
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Figure 15: Different optimization steps during feature visualization

Feature visualization research is fundamentally concerned with mitigating the issue
of high-frequency noise. To get useful visualizations, a more natural structure needs
to be imposed by using some kind of prior, regularizer, or constraint. Therefore, the
scope was limited to a specific distribution of images that are comprehensible, such as
photo-realistic representations or images that look like those in the training set. This
is achievable by the integration of natural image priors into the objective function
function, as indicated by references (Mahendran and Vedaldi, 2016) and (Nguyen
et al., 2016a). For example, an image prior may promote smoothness (Mahendran
and Vedaldi, 2016), or penalize pixels of extreme intensity (Simonyan et al., 2014).
These types of constraints are typically embedded in the AM methodology through
a regularization term denoted as R(x).

img∗ = argmax
img

hn,x,y,z −R(x))

As explained in the main paper of Feature Visualizations by Olah et al. (2017),
there are three categories of regularizations:

1. Frequency penalization

2. Transformation robustness

3. Learned priors

Methods such as Frequency penalization aim to reduce the undesirable noise char-
acteristic of high-frequency variance in pixel values. Approaches to this issue may
involve an explicit penalization mechanism, which reduces the variance among ad-
jacent pixels through Total variation methods (Mahendran and Vedaldi, 2015), or
they may adopt an implicit strategy by implementing a blurring process at each it-
erative step of optimization (Nguyen et al., 2015). However, Frequency penalization
methods, do not differentiate between noise and high-frequency image details, such
as edges, which can lead to a loss of important features. An improved approach
involves the application of bilateral filters, which are designed to retain edge details
while reducing noise (Tyka, 2016).

In the Transformation robustness method, the objective is to identify examples that
maintain a strong activation of the optimization target despite undergoing minor
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transformations. To implement this, stochastic manipulations such as jittering, ro-
tation, and scaling are applied to the images before the execution of the optimization
algorithm.

The last regularization method Learned prior, produces the most realistic visualiza-
tions, but it may be unclear what came from the model being visualized and what
came from the prior. A viable strategy involves the construction of a generative
model such as a Generative Adversarial Network (GAN) or Variational Autoen-
coder (VAE), which transforms latent space vectors into data instances (Nguyen
et al., 2016a).

During the application of feature visualization, there are applied different types of
regularization techniques to fine-tune them and visualize a more realistic image, as
shown in Table 3. The most used methods are from the two first categories such
as Frequency penalization and Transformation robustness.

Table 3: Overview of different regularization methods used

Name Description

Jitter Randomly change the brightness of the image within a given range.

Rotation Rotate the image by a random angle, 15 degrees.

Translation Move the image horizontally or vertically, 0.1 value.

Resize Resize the image to a given size factor of 1.2.

Bilateral Filter Determined by the blur parameter and sigmaColor set to 75.

L1 Regularization Regularization strength is controlled by a lambda value of 0.05.

The regularization term R(x) in the formula above calculates the absolute value
of the encoded output using L1-regularization. The optimization is initialized with
random noise and different regularization techniques were experimented and param-
eters to obtain meaningful feature visualizations. Specifically, those types of spatial
transformations were used: jitter, translation, random rotation, and resize. As well
as the two most advanced types of frequency penalization L1-regularization and
bilateral filters.

Using L1 regularization encourages sparsity in the model weights and in the gener-
ated visualizations, potentially leading to simpler and more interpretable patterns.

The bilateral filter is conditionally applied to the generated visualization to smooth
out noise while maintaining sharp edges, often used to make the activation patterns
clear.
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4.4.4 Quantification Approach

Interpreting feature visualizations, especially in sensitive fields like medical imag-
ing, presents a significant challenge due to the complexity and potential ambiguity
of the visualized features. As previously stated in the main feature visualization
paper by Olah et al. (2017) feature visualization alone cannot provide a complete
understanding. This underscores the need for rigorous methodologies to evaluate
and quantify the reliability and interpretability of these visualizations. Two main
critical approaches might arise:

1. Quantification of feature visualization involves developing metrics or criteria
that can objectively measure the informativeness, relevance, and accuracy of
visualized features about the underlying data and the decisions made by the
model.

2. Sanity-checking the reliability involves a set of methods or checks to ensure
that the visualizations are meaningful representations of what the model has
learned, rather than artifacts of the visualization process.

Even looking at hundreds or thousands of feature visualizations, cannot fully un-
derstand the neural network (Molnar, 2022). Network Dissection is an approach
by Bau et al. (2017) which quantifies the interpretability of a unit of a convolutional
neural network. The first difficult, but crucial step is data collection, because Net-
work Dissection requires pixel-wise labeled images, and this was one of the main
obstacles faced with the dataset.

Many researchers are convinced that feature visualizations are interpretable (Graetz,
2019) and that “features can be studied and understood” (Olah et al., 2017). One
way to move forward is to measure the utility of feature visualizations in terms
of their helpfulness for humans. In their studies, Zimmermann et al. (2021) and
Borowski et al. (2021) have designed well-controlled psycho-physical experiments
that aim to quantify the informativeness of the popular visualization method by
Olah et al. (2017) using human judgment. This study is a psycho-physical quan-
tification method that indicates that the widely used visualization by Olah et al.
(2017) does not provide a causal understanding of CNN activations beyond simpler
baselines.

There are increasing demands for generating interpretable feature visualizations be-
cause of their widespread usage. To address these shortcomings, a simple approach
was created called Magnitude Constrained Optimization (MACO) (Fel et al., 2023).
The main idea was to generate images by optimizing the phase spectrum while keep-
ing the magnitude constant to ensure that generated visualizations lie in the space
of natural images. This approach yields significantly better results - both qualitative
and quantitative. The most important part is the quantitative method they have
used. They introduce three different scores to compare the different feature visual-
ization methods: the first one using AM by Olah et al. (2017), CBR (optimization
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in the pixel space) (Nguyen et al., 2015), and their method MACO. The metrics
they used are:

1. Plausibility score: a feature visualization is considered plausible when it is
similar to the distribution of images belonging to the class it presents. The
plausibility is quantified through an OOD (Out-of-Distribution) metric which
measures how far a feature visualization deviates from the corresponding Ima-
geNet object category images on their representation in the network interme-
diate layers (Sun et al., 2022).

2. FID score quantifies the similarity between the distribution of the feature vi-
sualizations and that of natural images for the same object category. The FID
score measures the distance between two distributions, while the plausibility
score quantifies the distance from a sample to a distribution.

3. Transferability score measures how consistent the feature visualizations are
with other pre-trained classifiers.

The researchers have computed all metrics using 500 feature visualizations and they
observe that MACO produces better feature visualizations than those generated
by Olah et al. (2017) and CBR (Nguyen et al., 2015). They also emphasize that the
three proposed scores provide a more complete and accurate evaluation of the feature
visualization methods. These metrics together form a coherent evaluation framework
- requiring generated images to robustly maximize logit scores (transferability) while
encouraging features that are both diverse concerning the distribution (FID), and
representative of the internal paths that are typical for the model (plausibility).

Another approach for quantifying the feature visualization and checking their relia-
bility is introduced by Geirhos et al. (2023). Their paper is named: “Don’t trust your
eyes: on the (un)reliability of feature visualizations.” They provide some meaningful
research questions such as:

1. Can feature visualizations be fooled? Checking the adversarial perspective
by developing fooling circuits that trick feature visualizations into displaying
arbitrary patterns or visualizations of unrelated units.

2. How can be used sanity-check feature visualizations? A simple sanity check
demonstrates the use of feature visualizations processed along different paths
compared to natural images.

Based on their conclusions, feature visualizations can be arbitrarily fooled or ma-
nipulated. Applying a sanity check, it is concluded that feature visualizations are
processed very differently from natural images. The recommendation was: (a) to
use the feature visualizations for exploratory, but not confirmatory use cases; (b)
combining visualizations with additional methods including dataset samples.
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5 Experimental Setup

This chapter focuses on the experimental setup starting with the hyperparameter
tuning, and model evaluation, and the last experiment is the application of feature
visualizations.

5.1 General Concepts

In classification, the model needs to look at features, e.g., the pixel values in an
image, and then predict to which category (sometimes called a class) among some
discrete set of options, an example belongs (Zhang et al., 2023). The simplest form
of classification is when there are only two classes, a problem that is called binary
classification. When more than two possible classes are present, the problem is
called multiclass classification.

The choice of models such as Alexnet, VGG16, and ResNet50 emanates from their
proven efficacy in image classification domains (Sharma et al., 2018). Within the
initialization process, all three models undergo weight initialization, essential for in-
stilling learnable parameters conducive to subsequent feature extraction and classi-
fication. Furthermore, the models are strategically transferred to the computational
resource, a GPU or CPU, through the invocation of model.to(device).

5.2 Hyperparameter Tuning

Upon the completion of a structured series of experiments aimed at optimizing
the hyperparameters for the model, using only 10% available training data, was
arrived at an optimal configuration that balances learning efficiency with predictive
performance. These experiments ensure a systematic approach to hyperparameter
tuning in the context of limited data availability. In Table. 4 are shown different
hyperparameters selected as the best performing after hyperparameter tuning, for
binary classification. For multiclass classification, the number of epochs is set up
to 40. The final model configuration, determined to be the most effective across all
tested dimensions, is as follows:

1. Batch Size “64” emerged as the optimal choice. Size “32” showed slightly
better generalization but at the cost of increased computation time. Larger
sizes (“128” and “256”) resulted in faster training, but exhibited signs of poor
gradient estimation, as evidenced by inconsistent validation loss trends.

2. Number of Epochs: The model undergoes 25 complete iterations over the entire
dataset for binary classification and 45 complete iterations over the entire
dataset for multiclass classification, encapsulating the comprehensive scope of
the training data. Training for more than 25 epochs in binary classification
did not improve validation accuracy significantly, indicating that the model
quickly learned patterns in the data.
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Table 4: Hyperparameters across three binary classification model architectures

Model Learning Rate Batch size Optimizer Epochs

AlexNet 0.0001 32 Adam 15

VGG16 0.0001 64 Adam 25

ResNet50 0.0001 64 Adam 25

3. Learning Rate: The learning rate, denoted as 0.0001, dictates the magnitude of
weight adjustments during each optimization step, influencing the convergence
and stability of the training process. Higher rates (e.g., “0.1” and “0.01”) led to
volatile loss function behavior, indicating overshooting of the loss minimum.
Lower rates ( 0.00001) significantly slowed down the convergence, requiring
more epochs to achieve compatible accuracy.

4. Optimizer Selection: The Adam optimizer is enlisted for weight updates, em-
ploying adaptive moment estimation to enhance convergence in the presence of
varying gradient magnitudes. While the stochastic gradient descent optimizer
(SGD) demonstrated competitive performances, it required more fine-tuning
of the learning rates and momentum parameters (Ruder, 2017).

5. Early Stopping Patience: The training regimen integrates an early stopping
mechanism with the patience of 10 epochs, ensuring termination if a prede-
fined number of epochs transpire without noticeable improvement in validation
performance.

6. Number of Folds for Cross-Validation: The dataset undergoes partitioning
into five folds, signifying the application of stratified k-fold cross-validation to
ascertain robust model generalization.

5.3 Model Evaluation

5.3.1 Metrics for Model Evaluation

The logging mechanism encapsulated within the code facilitates a comprehensive
understanding of the model’s progression and performance. Metrics such as training
loss, validation loss, balanced accuracy, ROC AUC, precision, recall, and F1 score are
carefully documented. The visualization of confusion matrices and the persistently
recorded learning rate contribute to a comprehensive analysis of model behavior.
Furthermore, the architectural state of the model achieves the optimal validation
performance is serialized, affording reproducibility and subsequent deployment in
real-world scenarios.
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Recall or Sensitivity quantifies the model’s ability to correctly identify all relevant
instances, calculated as the ratio of true positive predictions to the total actual
positives. High recall indicates that the model is effective in detecting positive
cases, but does not inform about the number of incorrect positive predictions made
(false positives).

Recall, or Sensitivity, is defined as:

Recall =
TP

TP + FN

Precision evaluates the accuracy of positive predictions from a classification model,
calculated as a proportion of true positive predictions to the total predicted positives.
High precision indicates that a model generates few false positives.

Precision is defined as:

Precision =
TP

TP + FP

F1 score is a statistical measure for assessing the accuracy of a binary classification
system. It represents the harmonic mean of precision and recall, balancing them
and providing a single metric to access the model’s performance in scenarios with
uneven class distribution.

The F1 score is defined as the harmonic mean of precision and recall:

F1 = 2× precision× recall

precision + recall

A more detailed explanation of what TP, FP, FN, and TN are, can be found in
Fig. 16.

Figure 16: Building blocks of metrics

These metrics are the building blocks of many other metrics used such as accuracy,
precision, and recall.
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1. TP or True Positive is an instance for which both predicted and actual values
are positive.

2. FP or False Positive is an instance for which the predicted value is positive,
but the actual value is negative.

3. FN or False Negative is an instance for which the predicted value is negative,
but the actual value is positive.

4. TN or True Negative is an instance for which both predicted and actual values
are negative.

Balanced accuracy adjusts accuracy for imbalanced datasets because the dataset
has a significant imbalance issue, offering a more insightful metric for evaluating
classification models. It is computed as the average of the proportion of true positives
correctly identified (recall) for each class, thereby accounting for the performance of
both minority and majority classes.

Balanced Accuracy =
1

2

(
TP

TP + FN
+

TN

TN + FP

)
Validation and Training loss are measures of how well the model’s predictions
match the actual data labels during and after training. Those metrics are funda-
mental for monitoring the learning process, identifying when a model is underfitting
or overfitting, and tuning hyperparameters.

Finally, the AUC score stands for “Area under the ROC Curve” (Bradley, 1997).
It measures the entire two-dimensional area underneath the entire ROC curve. The
ROC curve stands for “Receiver Operating Characteristic Curve”, which is a graph
showing the performance of a classification model at all classification thresholds.
This curve has two parameters: true positive rate (Recall) and false positive rate.
An AUC score of 1.0 represents perfect classification, where the model correctly
classifies all positive and negative instances, whereas an AUC score of 0.5 indicates
no discriminative ability, akin to random guessing.

5.3.2 K-fold Cross Validation

K-fold cross-validation, as implemented in the Python library scikit-learn Pedregosa
et al. (2011) is a statistical method for estimating the efficiency of machine learning
models. It involves dividing the original dataset into a training set to train the
model and a validation (or test) set for evaluating its performance. This process is
repeated k times (folds), with each of the k subsamples used exactly once as the
validation data. The outcomes from the k folds are then averaged or combined to
produce a single estimate. The benefit of this method over a single split is that
it mitigates the dependence of the model’s performance on the specific manner in
which the data is divided.
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During the training process, the data is divided into k folds using “StratifiedFold”
from “scikit-learn”, ensuring each fold is a good representative of the whole as
shown in Table 5. Stratification is crucial for maintaining the proportion of classes
across each fold, especially important in multiclass classification tasks to prevent
the model’s performance bias toward dominant classes. For each fold, the model
undergoes training with the training subset and is evaluated on the validation subset.

K-fold cross-validation is crucial for validating the stability and reliability of machine
learning models.

Table 5: Resnet50 for binary classification: Training and validation across folds.

Iteration Train Benign Train Malign Validation Benign Validation Malign

1 26033 4085 6509 1021

2 26032 4086 6509 1021

3 26034 4084 6509 1022

4 26034 4084 6508 1021

5 26032 4086 6509 1021

5.4 Feature Visualizations

5.4.1 Qualitative Methods

Leveraging the PyTorch deep learning framework, as well as auxiliary libraries such
as Torch Dream and Matplotlib, introduced in Section 4.1, the next steps endeavor
to explain the activated feature maps of a specified layer within a fine-tuned neural
network. This methodological pursuit aligns with the broader goal of comprehending
the learned representations encoded by the network.

Finding the most activated filters for each layer. Before applying the acti-
vation maximization (AM), for each input image d and each convolutional layer m,
the activations in the feature maps are collected by attaching a hook to that specific
layer. The activation a(m, i, d, j) represents the activation of the j − th element
in the feature map calculated from the image d and filter i in the convolutional
layer m. For the next steps, once all images (from the validation dataset) of specific
classes are processed in batches, the activations that are saved for each batch, are
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concatenated into a single numpy array for easier processing. This array has dimen-
sions corresponding to (number of images x number of filters x spatial dimensions),
where spatial dimensions are the width and height of the layer’s output. Then,
the maximum activation for each filter across spatial dimensions for each image of
each class is found. A threshold is calculated based on the quantile of maximum
activations per filter (using an activation threshold like 0.95, meaning the top 5%
of activations). Filters that have a maximum above this threshold are considered
significantly activated for that particular image in a specific class. To get the most
activated filters across images of a specific class, the occurrences of each filter are
processed and saved on a CSV file containing column information: class, filter index,
and filter occurrence for each class. As a final step, the most activated filter indexes
are used to apply feature visualization by AM to each specific model.

This method of finding the most activated filters is introduced later in the class-
specific filter Section (referring to 5.5) to identify the class-specific filters mostly
activated in each class. This approach effectively isolates the most relevant features
(filters) that the network uses to recognize patterns specific to each class. By focus-
ing only on filters that exceed a high activation threshold, is ensured that only the
most activated and influential filters per class are considered for further analysis,
which could involve more detailed visualization or deeper interpretative studies to
understand how these filters contribute to the model’s decision-making process.

Application of activation maximization technique. Ultimately, for VGG16
and Resnet50, where the application of feature visualization for each layer and chan-
nel is a critical step because of the large number of channels per layer, the goal was
to find the top-N feature maps with the highest activation values for each layer. This
process embodies a methodological approach to unveil and preserve the most acti-
vated feature maps within a designated layer of a pre-trained CNN when presented
with a genuine image (Zeiler and Fergus, 2013).

On the other hand, AlexNet has fewer channels per layer compared to other models.
In addition, feature visualization does not require the extra step of finding the top
feature maps with the highest activation values for each layer. Instead, feature
visualization is applied across all channels within the layers.

The next step is to apply the AM technique, as described in Section 4.4.2, with
the help of the Torch Dream library listed in Section 4.1. Activation maximization
is achieved through an iterative optimization process, where the goal is to find an
image that results in the highest activation for a given channel and layer. This is
accomplished by defining a loss function that quantifies the activation level of the
target channel and then using gradient ascent to modify the image to maximize this
loss. The process leverages the backpropagation mechanism, not for the training of
the network, but for updating the image itself.

To visualize the activation of specific channels, a custom function is employed. This
function computes the loss as the negative mean activation of the target channel,
a strategy that encourages features maximally stimulating the neuron to emerge in
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the optimized image. By focusing on individual channels, the method reveals the
diversity of features that the network has learned to recognize, from simple patterns
in early layers to complex, abstract representations in deeper ones.

The optimization process is controlled by several hyperparameters and regularization
techniques as explained in Section 4.4.3, to ensure the generation of meaningful
visualizations. The default number of optimization steps was initially set to 120, but
was changed to 200 during feature visualization using a custom function, depending
on the model.

5.4.2 Quantitative Methods

The approach introduced in this master’s thesis is based on an empirical sanity
check for feature visualizations (Geirhos et al., 2023), as mentioned in Section 4.4.4.
In the context of saliency methods, sanity checks have proven highly valuable for
investigating method reliability (Adebayo et al., 2018). Neural networks use feature
visualizations to explain natural input processing. These visualizations should follow
similar paths as natural images. Images from the same class are expected to be
processed along a similar path because they share certain features. The goal is to
compare how similar natural images from a class with feature visualizations of the
same class are processed. The comparison is based on different directions:

1. Comparing natural images and feature visualizations of the same class.

2. Comparing natural images and feature visualizations of the different layers.

3. Comparing feature visualizations of the different models.

The most important layers in each model for this type of analysis are the last
convolutional layers. Unlike hidden layers, the features in the last convolutional
layer have well-known selectivity based on ground truth data.

To measure the similarity between activations of inputs x(i) and x(j) in layer l of
the network n, Γ(nl(xi), nl(xj)) was calculated, employing Spearman’s rank order
correlation. There are also alternatives like Cosine Similarity or Pearson correlation
which also yield consistent results. Utilizing this metric allows us to assess whether
images of a class have similar activations across the network. A high correlation
suggests similar processing paths, while zero correlation indicates independent pro-
cessing. The natural images used for the comparison are the validation indices
predicted during each model’s training and validation process.

The respective feature visualization of the specific class and layer is then compared
with natural images of that class. From each layer, the top five feature visualiza-
tions with the highest activations are selected for comparison against natural images
belonging to the same class.
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5.5 Class-specific Filters

Before applying feature visualizations to specific layers of each model, the most
activated filters are highlighted as the most responsive to features within a spe-
cific class. The methodology outlined in Section 5.4.1 is introduced in the initial
paragraph to identify class-specific filters. This analysis utilizes images from the
validation dataset, which were extracted during the training process from the first
fold.

Datasets employed for class-specific filter experiments. Three experiments
are conducted to identify the most activated filters per class in three different image
sets, where only the validation indexes extracted during the training process from
the first fold, are considered. The motivation behind using only validation images
for analyzing filter activations was to uphold unbiased evaluation standards, and
mitigate the risk of overfitting. This approach preserves the model memorizing
specific features of the training set and instead focuses on its ability to generalize
patterns to unseen data.

The initial dataset contains images from the validation dataset of ISIC 2020 used
for binary classification, considering only the first fold indexes, categorized into five
distinct classes through manual separation and identified using the z-score method,
as later explained. These classes include different numbers of images tailored to
specific classes, such as 70 images representing hairy artifacts, 40 images depicting
stickers, 70 images featuring clinical markings, 50 images displaying ruler signs, and
60 images showcasing fluid marks, introduced in Section 3.2.

The second dataset consists of all validation images with and without outliers, where
only 50% of the validation images for each class were selected, specifically 3254
benign images, and 510 malign images. The primary objective was to identify filters
that activate patterns unique to each class of the binary classification task.

Additionally, a comparative approach was employed to determine the most activated
filter for the third dataset, containing images of a multiclass task. In this instance,
100 images are randomly selected from the validation indexes for each class.

In the results chapter, Section 6.3 underscores the findings focusing on the most
activated filter for particular classes of each model. This approach is particularly
useful in contexts where understanding model interpretability and the reasoning
behind its decisions is vital.

Application of z-score to identify outlier images. The first step is to identify
all the images with outliers of the binary validation dataset and the detection is
performed using the concept of Z-scores, which are statistical measures that describe
a pixel’s relative distance from the mean pixel value of the dataset in terms of
standard deviations (Tschuchnig and Gadermayr, 2022). The mean and standard
deviation of pixel values are calculated for all images in the dataset. The mean
pixel value for each color channel (assuming RGB images, so three channels: Red,
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Green, and Blue) is determined by dividing the total sum of pixel values by the
total number of pixels. Then the squared differences of each image are calculated
by subtracting the mean pixel value from each pixel’s value, squaring the result,
and summing these squared differences. Finally, the standard deviation for each
color channel is calculated by taking the square root of the average of the squared
differences.

Figure 17: Application of z-score to identify outlier images.

Once the mean and standard deviation are known, the z-scores are calculated for
each pixel in each image, by subtracting the mean value of each pixel’s respective
channel. Then the result is divided by the standard deviation of the respective
channel. This gives the z-score for each pixel, which indicates how many standard
deviations a pixel’s value is from the mean.

The outliers are then detected based on a threshold ( set to 2.0, which is typical
for many statistical applications). Pixels with z-scores exceeding this threshold in
absolute value are considered outliers. For visualization, a mask is created where
these outlier pixels are marked in blue. This mask overlays the original image to
visually highlight outliers, as shown in Fig. 17.

In the final steps, if any high z-score pixels are found, the original image along with
the computed z-score image and the mask highlighting the outliers are saved. This
way, the outlier images are saved and used for further processing steps in identifying
class-specific filters.

6 Results

This chapter focuses on the presentation and evaluation of the research results. The
following sections present the training and evaluation results of the models on both
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binary and multiclass datasets. The core of this chapter was to unveil the results
of the experimental methods of feature visualizations in binary and multiclass clas-
sification tasks. Furthermore, qualitative and quantitative methods are introduced.
The findings are presented using performance summary tables and graphical repre-
sentations.

6.1 Binary Classification Task

The performance of each model in the binary classification task is very different
because of their complexity. The performance of AlexNet shows progressive im-
provement over the epochs. Training and validation accuracy curves, as shown in
Fig. 18, reveal that the model’s accuracy increases steadily with more epochs, al-
though validation accuracy shows a tendency to plateau, indicating that the model
might have reached its learning capacity. This can happen due to the simplicity
of AlexNet’s model trained on a large number of samples. The confusion matrix
indicates a higher number of false negatives, suggesting a potential bias toward pre-
dicting the negative class. Loss curves for AlexNet, as shown in Fig. 19, display
a decreasing trend, but there is a slight uptick in validation loss towards the later
epochs, which could imply the onset of overfitting.

Figure 18: Accuracy curves for AlexNet

VGG16 demonstrates a quick escalation to high accuracy levels, with the training
and validation accuracy closely aligned, which suggests good initial learning. How-
ever, there is a noticeable fluctuation in the validation accuracy as epochs increase,
which may indicate some overfitting or model instability in later stages. The con-
fusion matrix for VGG16 shows a relatively balanced classification with a reduced
number of false negatives and positives compared to AlexNet. The loss curves de-
crease and stabilize early in the training process, with validation loss remaining
slightly below the training loss, indicating a good fit.
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Figure 19: Validation and Training curves for AlexNet

On the other hand, ResNet50 showcases an impressive performance with rapid gains
in accuracy in the initial epochs and some fluctuations in later epochs. Both training
and validation accuracy curves begin to plateau, which indicates a well-trained model
that generalizes well to new data. The confusion matrix for ResNet50 reveals fewer
misclassifications both in terms of false positives and false negatives, which speaks to
its high level of precision and recall. The loss curves for ResNet50 descend sharply
and converge, which suggests a robust fit with neither significant overfitting nor
underfitting.

The comprehensive results for both the VGG16 and ResNet50 models, including
validation and training curves detailing accuracy and loss, are presented in Appendix
A1 (see Appendix A.1).

When comparing the three architectures in Table 6, VGG16 stands out as the most
effective model for binary classification in this scenario. It reveals some volatility
that might be addressed with further tuning but exhibits remarkable training and
validation accuracy. ResNet50 demonstrates superior generalization capabilities, as
shown by its stable validation and test accuracy and the balanced confusion matrix.
AlexNet, despite its acceptance performance, appears to be the least sophisticated
of the three, with its learning curve showing signs of plateauing early and a higher
tendency towards false negatives, which might require additional strategies to im-
prove performance. The balanced accuracy and loss results for both the validation
and training phases are presented as averages across all folds.

Results of Hyperparameter Tuning. Based on the Section 5.2, the accuracy
throughout the hyperparameter optimization process was collected and the main
goal was to find the best-performing hyperparameters for each model with the high-
est validation accuracy on validation data. The results can be distinguished better
using the graph in Fig. 20, where each model has been optimized for three hyper-
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Table 6: Training, validation, and test results of three model architectures.

Training Validation Test

Model Accuracy Loss Accuracy Loss Accuracy

AlexNet 81.1 0.638 85.3 0.534 81.3

VGG16 92.6 0.078 93.2 0.070 70.1

ResNet50 91.3 0.0126 91.1 0.0121 83.2

parameters, and their corresponding accuracies are plotted. Adjusting the learning
rate, number of epochs and batch size changes the validation accuracy for each
model. It was observed that training the models with a small value of the learning
rate set to 0.0001 results in a high value of training and validation accuracy. Using
a small number of epochs (only 15) and a batch size of 32 works well for AlexNet.
After 15 epochs, the accuracy values plateau. Increasing the number of epochs to
25 and the batch size to 64 leads to higher accuracy for VGG16 and ResNet50.
However, high values of batch size caused instability, especially with validation loss.

Figure 20: Validation accuracy of the models on validation data during hyperpa-
rameter optimization for binary classification. When trying to optimize a model’s
performance, adjusting hyperparameters like learning rate, number of epochs, and
batch size can result in different accuracies on the validation set. Fine-tuning these
parameters to find the highest accuracy was necessary.
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Evaluation on test dataset Due to the lack of ground truth labels on the test
set, the model was evaluated on a limited number of test data. With only 392
data samples, the statistical significance of the results is limited. However, the
performance on a small, well-curated dataset can still provide valuable insights,
especially in the field of medical image analysis where data can be scarce. Recently,
new data were downloaded from the official website of the ISIC archive benchmark
dataset (Codella et al., 2018b). Some of these data are dissimilar to the training
and validation dataset. For evaluation of the test set, the test set of the 2016 ISIC
dataset, is used and it has ground truth labels. The total number of samples in this
test set is 392, where 28 are malign images and 364 are benign images. This dataset
is also checked for any data leakage.

Table 7: Qualitative results on ISIC 2016 test set, binary classification.

Model AUC Accuracy % Ensemble Source

AlexNet 0.71 82 x Fine-tuned

VGG16 0.70 69 x Fine-tuned

ResNet50 0.72 83.2 x Fine-tuned

Yu et al. (2017a) 0.84 - x Article

Codella et al. (2016) 0.80 - ✓ Published paper

Yu et al. (2017b) 0.85 - ✓ Conference Paper

The evaluation results of AlexNet and ResNet50 on the test data are shown in
Fig. 21.

The first ranking in terms of AUC and accuracy is highlighted in bold, in Table 7,
and the second ranking is indicated in italics. The fine-tuned models ( AlexNet,
VGG16, and ResNet50) archive better results without using an ensemble of models.
Notations: AUC: the area under the ROC curve; Ensemble: ensemble method or
not.

As depicted in Table 7, ResNet50 exhibits the most promising results among the
fine-tuned models, with a test accuracy of 83.2% and the highest AUC score of 0.72.
These metrics indicate its superior performance on this dataset. Specifically, when
comparing the AUC score of the fine-tuned models within the same test dataset,
the best performance is archived by Yu et al. (2017b) with an AUC score of 0.85.
However, it is noteworthy that the AUC score of the fine-tuned models achieved in
this master thesis appears comparatively lower when compared with those reported
in other publications using the same test dataset.
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Figure 21: AlexNet vs. Resnet50: Confusion matrix on the test set for binary
classification. Two confusion matrices are displayed in the image, one for each model,
based on prediction results on the test set. The results show that both models can
predict benign and malign samples with high accuracy, achieving a prediction rate
of 82% for AlexNet and 83% for ResNet50.

VGG16 and AlexNet exhibit lower performance across both metrics, with VGG16
scoring the lowest. This suggests potential overfitting to the training data, especially
if there was insufficient regularization or data augmentation to generalize to new
data.

6.2 Multiclass Classification Task

For multiclass classification, only two models were considered, AlexNet and VGG16.

For the VGG16 model, both the training and validation accuracy curves demon-
strate a steady increase in accuracy as the number of epochs increases, indicating
that the suggesting effective learning. The training accuracy slightly exceeds the
validation accuracy, which may suggest that the model fits well with the training
data. Similarly, the training and validation loss curves for the VGG16 model show
unexpected behavior, where the training loss decreases over time, and the validation
loss follows the training loss closely but starts to slightly fluctuate after around 20
epochs. This can be a sign of potential overfitting issues.

The confusion matrix for VGG16 shows that certain classes, like MEL(melanoma)
and NV(nevus), have high true positive rates because their number has a significant
impact on the dataset. However, there is some confusion between classes such as
BKL and NV, as well as between MEL and NV. The color scale indicates the matrix
is normalized across all folds, showing consistent performance across different subsets
of the data.

For AlexNet, was observed a similar trend in the accuracy curves as with VGG16,
with a steady increase over epochs. However, the validation accuracy plateaus earlier
and stays more constant compared to VGG16, suggesting that AlexNet may not be
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Figure 22: Accuracy curves for AlexNet (left) and VGG16 (right), multiclass clas-
sification.

Figure 23: Training and validation loss curves for AlexNet (left) and VGG16 (right),
for the multiclass classification task.

learning as effectively toward the later epochs. The loss curves for AlexNet also
show a decrease over time, but there is a more noticeable gap between the training
and validation loss, which could be indicative of slight overfitting or less effective
generalization, shown in Fig. 23. The confusion matrix for AlexNet demonstrates
similar patterns to VGG16, with high true positive rates for certain classes, but
some confusion between classes such as BKL and NV, MEL and NV. The diagonal
values in the confusion matrix are generally high, suggesting good classification
performance, but some off-diagonal values indicate misclassifications.

In conclusion, both VGG16 and AlexNet are effective models for classifying skin
cancer types on the ISIC dataset, with AlexNet showing a slightly better gener-
alization in the loss curves and VGG16 showing a more pronounced early plateau
in validation accuracy, shown in Fig. 22. The confusion matrices for both models
indicate that while they perform well in certain classes, there is still room for im-
provement in distinguishing between similar skin lesion types, shown in Fig. 24 and
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Figure 24: Validation confusion matrix for AlexNet. It is observed that melanoma,
nevus, BKL, BCC, and VASC are the best well-predicted classes during multiclass
classification. The reason behind this can be the large number of samples that each
one of those classes contains, compared with other minority classes such as AK, DF,
and SCC.

Fig. 25. The high true positive rates for melanoma are particularly promising, given
the importance of accurate detection for this dangerous skin cancer.

Table 8: Results of the training, and validation accuracy for the multiclass task.

Model Training % Validation %

AlexNet 71.4 68.6

VGG16 78.5 73.4

As introduced in Table 8, VGG16 has shown better results than AlexNet in both the
training and validation processes. Although VGG16 has a higher accuracy value,
accuracy alone cannot be used as a sole indicator to determine the best-performing
model. The confusion matrices in Fig. 25 and Fig 24 show that AlexNet predicts
the values of the majority class more accurately than VGG16.
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Figure 25: Validation confusion matrix for VGG16. The NV class has the highest
true positive value, followed by other majority classes such as melanoma (MEL),
BCC, and BKL.

Evaluation of the models in the test set. During the evaluation of the test
set, the same procedure is followed as binary classification explained in Section 6.1,
due to the lack of ground truth labels on the test set, the model is evaluated on a
limited number of test data, with only 1,910 data samples in total, introduced in
Table 2.

Table 9: Qualitative results of the test and validation set.

Model Test AUC Val. Accuracy Source

AlexNet 0.56 68.6 Fine-tuned

VGG16 0.58 73.4 Fine-tuned

Dohan (2023) ResNet9 - 75.90 GitHub page

Dohan (2023) ResNet34 - 82.20 GitHub page
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For the assessment of the generalization capabilities of CNNs, the validation dataset
results are crucial. These results presented in Table 9, illustrate the validation ac-
curacy, serving as a fundamental metric of each model’s ability to correctly classify
unseen data. The comparison encompasses both fine-tuned versions of established
models and two other model accuracies that were gauged using the identical evalu-
ation set. In the comparison, the results from two variations of the ResNet archi-
tecture, as proposed by Prasanna (2020).

The Table 9 provides a clear and comparative snapshot of the performance of each
model, enabling us to draw informed conclusions about their relative effectiveness.
The results indicate that the ResNet31 model outshines the rest with an accuracy
of 82.20%, suggesting that its deeper architecture captures features more effectively.
The fine-tuned models have achieved a lower accuracy than other versions, indicating
that those models may not be as effective at correctly identifying or classifying
patterns in the validation dataset as those with higher accuracies.

6.3 Class-specific Filters.

The use of class-specific filters across various conditions such as: with outliers, and
across different classes, is driven by the need to understand and improve the internal
representations that a neural network model has learned, introduced in Section 5.5.
The outlier images, as detailed in Section 3.2, are identified as those containing
artifacts like hair, rulers, fluids, clinical markings, stickers, and other elements.

The AlexNet was employed to compute class-specific filters, for binary and multiclass
classification. The motivation behind including outliers in the feature activation can
provide insights into the extreme cases where the model might be overfitting to par-
ticular examples or capturing noise. Visualizing the features that activate certain
filters can give direct insights into what the model “sees” or considers important
when classifying data into different classes. If certain filters are found to be fre-
quently activated by noise or irrelevant features, they can be a focus for model
improvement. By understanding which features are activated for each class, the
training process can be tailored to emphasize or de-emphasize certain filters, lead-
ing to better learning and generalization. The most activated filters for a certain
class are used to apply feature visualization to show the features learned by that
specific filter for that class. The method used is explained in detail in Section 5.4.1.

In Fig. 26, class-specific filters for binary and multiclass classification are presented,
showcasing results from a fine-tuned AlexNet model. Only images from the valida-
tion dataset are considered. Outlier images are excluded to identify filters activated
by specific classes of images with outliers (first row), for binary tasks (second row),
and multiclass tasks (third row). During the experiment, only the last convolutional
layer of the AlexNet model is considered which can capture the most important fea-
tures.

The normalization of filter occurrence values into percentages is done by dividing
the number of occurrences in each cell, by the total number of images used for
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Figure 26: Class-specific filters for binary and multiclass classification, layer 10, last
convolutional layer of AlexNet model. Images with and without outliers are taken
into consideration, which are part of validation indices.

that particular class and then multiplying by 100. Raw counts are converted into
percentages, to compare filters within each class, especially when the total counts
for classes differ significantly.

Based on the observations, the filter numbers: 10, 20, 41, 60, 143, 218, and 228
are the most activated filters for the outlier class. It is observed that certain filters
activated by the benign and malign classes in binary classification show similarities,
yet there are also some differences.

Investigating other heatmaps in Fig. 26 is concluded that some filters are highly
activated in all classes, mostly shown in the binary tasks. These filters, which are
the same most activated for both outlier images and binary dataset of the AlexNet
model, include those with the following indexes: 10, 20, 41, 60, 143, 218, and 228.

In the multiclass classification task using the AlexNet model, the filters that exhibit
the highest activation levels are 41, 53, 60, 83, 91, 106, 143, 164, and 218.

The main reason why those certain filters are consistently highly activated across all
classes and tasks indicates that these filters are detecting features that are universally
present or particularly salient in the input data. Here are some reasons why this
might occur based on subjective observations:

1. General features: These filters might capture very general features that are
common in all classes, such as edges, colors, textures, or gradients.
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2. Considering that the layer that is used is the last layer of the AlexNet model,
those filters might have captured high-level abstractions that could be common
across classes.

3. Dominant features: Some features might be dominant in the input data and
therefore result in a higher activation in the convolutional filters.

4. Transfer learning artifacts: The model is pre-trained on a different dataset and
then fine-tuned for a specific task in the ISIC dataset. These filters might have
been important for feature detection in the pre-training dataset and retained
their significance due to the transfer learning process.

In the context of the CNNs, the number of filters in the last convolutional layer
varies across architectures. Specifically, while AlexNet’s final layer has 256 filters,
VGG16 counts 512, and ResNet50 escalates it to 2048. As introduced in Table 10,
the most activated filters exhibit variability across different models; however, these
filters remain consistent between the outlier and binary task.

Table 10: Top five most activated filters in the last convolutional layer of each model.

Model Binary/ Outlier Multiclass

AlexNet 41, 60, 143, 218, 228 41, 60, 143, 164, 218

VGG16 46, 121, 270, 394, 420 81, 119, 206, 450, 484

ResNet50 152, 388, 1064, 1165, 1836 no data

6.4 Feature Visualization

6.4.1 Qualitative Methods

To begin with, a noisy image is needed and a pre-trained neural network like AlexNet
or VGG16 is trained on the ImageNet dataset. Then, feature visualization will be
applied to it. The same procedure will be repeated on the fine-tuned models with
the skin cancer dataset, both for binary and multiclass classification.

Feature visualization applied to pre-trained VGG16 model, for the binary
classification task. The Fig. 27 displays the feature visualization outcomes for
the top five feature maps of the selected layer within the pre-trained VGG16 model.
The input is a “noisy” image, which refers to an initial image composed of ran-
dom pixel values. Each feature visualization labeled with the corresponding filter
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represents the patterns that most strongly activate that particular filter within the
neural network. These visualizations can look abstract because the features that
neural networks use to identify objects are often not intuitive to human observers.

The feature visualization process applied to the first layer of pre-trained VGG16,
as shown in the first row of Fig. 27, highlights the types of features that activate
certain filters in this layer. “Filter 0” and “Filter 10” appear sensitive to specific
edge orientations, such as vertical or near-vertical patterns. Meanwhile, other filters
detect contrasting edges, different textures or noise patterns, and color gradients.

Figure 27: Feature Visualization of the first and last convolutional layer of pre-
trained VGG16, for the binary classification task. The first layer contains 63
filters, and the last layer (index 28) has 512 filters. The top-5 filters with the high-
est activation values have been chosen for presentation, calculated as explained in
Section 5.4.1. The first row corresponds to the first layer, and the second corre-
sponds to the last layer.

The feature visualization process applied to the last layer of pre-trained VGG16, as
shown in the second row of Fig. 27, highlights the types of features that activate cer-
tain filters in this layer. Based on the observations, “Filter 46” appears to capture
textural details, possibly from natural textures. Other filters detect circular pat-
terns, complex multi-colored patterns, and a mix of features, suggesting sensitivity
to diverse visual characteristics in images.

In the next step, a noisy image as input is needed and a fine-tuned neural network like
AlexNet or VGG16 is trained on the skin cancer dataset. Then feature visualization
will be applied. The feature visualizations below are applied to VGG16 fine-tuned
in the skin cancer ISIC benchmark dataset for binary classification tasks.

Feature visualization applied to fine-tuned VGG16 model, for the binary
classification task. The feature visualization process applied to the first layer of
fine-tuned VGG16, as shown in Fig. 28, highlights the types of features that activate
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Figure 28: Feature Visualization of the first and last convolutional layer of fine-
tuned VGG16, for the binary classification task. As with the pre-trained VGG16,
the fine-tuned model uses the same filters for each layer. The first row corresponds
to the first layer, and the second corresponds to the last layer.

certain filters in this layer. All filters appear to highlight edges and color distribu-
tion characteristics of certain skin lesions, although the colors appear excessively
exaggerated. There are a few reasons why feature visualization might show colors
like red or blue that are not directly present in the dataset:

1. Contrast maximization shows an amplified version to highlight the filter’s re-
sponse.

2. Image preprocessing and regularization techniques can introduce colors to dis-
tinguish between features that the filter is sensitive to.

The feature visualization process applied to the last layer of fine-tuned VGG16,
as shown in Fig. 28, highlights the types of features that activate certain filters
in this layer. Based on the observations, the first most activated filter seems to
respond to irregular patterns in lesion growth, indicating its sensitivity to shapes
and structures. Notably, the last filter might focus on distinct skin textures relevant
to cancer diagnosis, including irregular pigmentation and mole shapes.

Feature visualizations without regularization techniques applied to fine-
tuned VGG16 model, for the binary classification task. Applying regular-
ization techniques, explained in the Section 4.4.3 can result in the filters activating
on more meaningful patterns in the image rather than fitting to noise and other
irrelevant variations, such as ones shown in Fig. 29.

The filters require regularization to better respond to nuanced features associated
with particular classes or layers.
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Figure 29: Feature visualizations without regularization techniques applied to the
fine-tuned VGG16 model, represents the role of using regularization techniques
explained in Section 4.4.3. Those visualizations likely represent the raw activations
of filters, which can be noisy, overly complex, or too sensitive to the specific details of
the dataset. The first row corresponds to the first layer, and the second corresponds
to the last layer.

Figure 30: Class-specific feature visualizations of the fine-tuned AlexNet model
for binary classification. The top row, labeled “Class 0: Benign”, showcases the
feature visualizations extracted from convolutional layers during the processing of
benign images by the model. The bottom row, labeled “Class 1: Malign”, illustrates
the feature visualizations from the same layers when the model is presented with a
malignant sample.

Feature visualizations applied to fine-tuned AlexNet model for each class
in binary classification. The Fig. 30 showcases two rows of visual representations
of feature visualization outputs from the AlexNet model that has been fine-tuned for
the binary classification tasks, to differentiate between benign and malignant classes.
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The feature visualizations appear relatively uniform for the benign class, indicating
that the features learned for the benign class may not be as complex. Conversely, the
feature visualizations of malignant class exhibit greater complexity, with vivid colors
and patterns. The contrast between the two classes highlights how the network has
learned to activate differently for benign and malign inputs. Earlier layers show
more basic feature detectors, while deeper layers exhibit more complex interactions,
potentially capturing the higher-order structures that distinguish between the two
classes.

The feature visualizations are applied across the entire convolutional layer rather
than targeting specific filters, thereby presenting a comprehensive visualization of
all features within that layer.

An overview of feature visualizations applied for binary classification.
The feature visualizations generated by the ImageNet pre-trained model exhibit a
broader array of patterns and colors, which aligns with the diverse range of images
present within the ImageNet dataset. The feature visualizations produced by the
skin cancer fine-tuned model exhibit a heightened focus on distinct types of features.
These features correspond to textures, edges, and colors relevant to identifying dif-
ferent types of skin cancer. The visualizations of the skin cancer dataset may exhibit
patterns that are either repetitive or structured, reflecting the regularity or irreg-
ularity of skin textures and colors. These patterns are crucial for the model to
distinguish between benign and malignant lesions.

In Appendix Section A.2, are presented additional results from the analysis of both
pre-trained and fine-tuned AlexNet and ResNet50 models. These results encompass
detailed feature visualization results for specific filters found within the first and last
convolutional layers of each model. Observations and interpretations of these visu-
alizations provide insights into the changes in feature extraction behavior resulting
from the fine-tuning process. Please refer to Section A.2 for a comprehensive view
of this analysis.

Feature visualizations applied to the multiclass classification task. In a
comparative analysis of feature visualizations from the last convolutional layer of a
fine-tuned VGG16 model, as shown in Fig. 31, distinct patterns emerge when the
model is adjusted for binary versus multiclass classification. The fine-tuned VGG16
for binary classification demonstrates consistent visual patterns across filters, re-
flecting the network’s focus on distinguishing between cancerous and non-cancerous
lesions.

Conversely, the multiclass displays a more diverse array of patterns, reflecting the
model’s necessity to discriminate between multiple classes of skin conditions. Each
filter appears to capture a broader spectrum of features, reflecting the complex
nature of identifying various types of skin lesions.

It is crucial to acknowledge that these visualizations do not include those of a pre-
trained VGG16 model, as they are generally uniform for binary and multiclass tasks.
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Figure 31: Feature Visualization of the last convolutional layer of fine-tuned
VGG16, for the multiclass classification task. The top-5 filters with the high-
est activation values have been chosen for presentation, calculated as explained in
Section 5.4.1.

Visualizing the most activated class-specific filters in the AlexNet model.
Section 6.3, introduces a method for identifying the most activated filters of each
class, using fine-tuned AlexNet model for binary and multiclass classification.

Figure 32: Visualizing the most activated class-specific filters in the AlexNet model.

To better understand the most activated filters across tasks and classes, feature
visualizations are applied to each, presented in Fig. 32. These visualizations show
that the binary class images reveal symmetrical patterns with vibrant color contrast,
signifying the filter’s tendencies to respond to specific, high-contrast features within
the input data. Similarly, the multiclass filters exhibit greater complexity, indicating
a higher level of abstraction in their responsiveness to filters. Additionally, it was
challenging to determine whether the feature visualizations included outlier features
or not. Identifying outlier patterns in feature visualizations solely through visual
inspection can pose a challenge, as some patterns may resemble outliers but require
thorough analysis for conclusive determination.

6.4.2 Quantitative Methods

Section 6.4.1 explained the qualitative part of feature visualization in detail. How-
ever, these visualizations are hard to interpret, particularly for medical images. As
introduced in Section 5.4.2, some metrics can be used to check the reliability of
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feature visualizations and quantify their correlation between natural samples of the
same class or feature visualizations of different layers. The core idea is simple:
Feature visualizations are designed to explain how neural networks process natural
input (Geirhos et al., 2023). This implies that effective visualizations should un-
dergo processing similar to natural images once generated. This underscores the
importance of employing a quantification method as an empirical sanity check for
feature visualizations, introduced in Section 5.4.2 of this master’s thesis.

Figure 33: Empirical sanity check for AlexNet applied for the binary classifi-
cation tasks. The similarity of a layer’s activations caused by natural images and
feature visualizations across layers (only the features block) is measured. Similar-
ity increases in the last layers of AlexNet, because of roughly similar patterns with
natural images.

As can be seen in Fig. 33, 34, and 35, first-layer feature visualizations are pro-
cessed differently from natural images throughout most of the network. Although
later layers exhibit a stronger correlation, it does not necessarily imply that acti-
vations stem from the same path. The low values of the similarity index, and the
investigated feature visualization for all three models, do not pass completely the
sanity check. The class used to calculate the Spearman correlation for all three
models is malignant, due to complex features observed during class-specific feature
visualizations.

The x− axis denotes the index of layers, progressing from the input to the output
layer, while the y − axis represents the similarity index. The similarity index indi-
cates how similar the feature visualizations are to natural images across the layers of
the specific model. In all three models, the similarity index calculated using Spear-
man’s rank correlation, tends to increase as the layers progress deeper. This trend
suggests that higher layers capture more complex and abstract features, resulting in
visualizations that correlate more closely with those layers.
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Figure 34: Empirical sanity check for VGG16, applied for the binary classifi-
cation tasks. The feature visualizations have a low similarity index with natural
images, as the similarity index remains below the middle value.

Figure 35: Empirical sanity check for ResNet50, applied for binary classification
tasks.

The core idea was to apply Spearman correlation only to convolutional layers for
VGG16 and ResNet50, because of their ability to capture hierarchical features in
the data.

Heatmaps displaying correlation of feature visualizations across different
layers, for binary classification. The Fig. 36 and Fig. 37 depict the correlation
heatmaps of feature visualizations from two different CNNs, especially AlexNet and
VGG16.
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Figure 36: Empirical sanity check for AlexNet: analyzing the correlation across
different layers.

Figure 37: Empirical sanity check for VGG16: analyzing the correlation across
different layers.
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The only difference in creating the heatmaps is that the diagonal is the correlation of
each layer with itself, which is the reason for the highest correlation in the diagonal
cells.

The first heatmap in Fig. 36 illustrates the correlation of feature visualizations of
various layers in AlexNet. The greener values in the heatmap indicate higher positive
correlation values. Higher correlations are observed within a block of layers in the
center of the matrix, or layers that are close next to each other, indicating that these
layers’ features have stronger relationships.

In Fig. 37, the second heatmap illustrates the correlation of feature visualizations
of convolutional layers within VGG16. This is a noticeable diagonal pattern of high
correlations, which is expected as it represents the correlation of each layer with
other layers next to it.

7 Discussion

This chapter presents a discussion of the thesis results, with a particular focus on
the application of feature visualizations on the fine-tuned models in the ISIC 2019
benchmark dataset for multiclass classification and 2020 for binary classification.
This chapter also highlights the potential for future research and emphasizes the
importance of this study in advancing the understanding of the inner workings
of deep neural networks in the medical domain. This analysis aims to provide
a comprehensive understanding of the study’s implications and the possibilities it
offers for further investigation.

7.1 Interpretation of Results

The achieved results are positive, despite the significant imbalance issue between
positive and negative samples of the binary classification dataset, the imbalance is-
sue between minority and majority classes in multiclass classification, the absence
of ground truth labels for both datasets, the large number of layers for VGG16 and
especially for ResNet50 during feature visualization application, the lack of stud-
ies of feature visualizations in the medical domain, and the absence of quantitative
metrics to measure the results of feature visualizations. However, there is signifi-
cant potential for improvement in evaluating multiclass models on unseen data and
quantitatively analyzing feature visualizations.

During binary classification, the comparative analysis of AlexNet, VGG16, and
ResNet50, explains the performance of these architectures on the ISIC 2020 bench-
mark dataset. VGG16 exhibits superior proficiency during the training phase, boast-
ing the highest accuracy (92.6%) and a lower loss (0.078), which may be attributed
to its deeper architecture conducive to more complex feature extraction. Neverthe-
less, this does not translate into commensurate performance in the testing phase,
where it falls short with an accuracy of 69%. However, ResNet50, despite exhibiting
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slightly lower training and validation accuracy than VGG16, demonstrates superior
generalizability to the test data, achieving an accuracy of 83.2%. This underscores
its ability to effectively balance bias and variance. Notably, the AUC values for all
models are relatively similar, suggesting that while there are differences in accuracy,
the overall ranking performance of the models remains largely consistent.

During multiclass classification, the results suggest a progressive enhancement in
model performance with increased architectural complexity. Utilizing a manually
curated test dataset introduces a variable that may not entirely parallel the com-
plexity of the original test data, which is reflected in the modest AUC scores, with
the highest value of 0.58. However, these scores remain critical in establishing the
model’s predictive capabilities. The incremental improvement in validation accuracy
observed with the VGG16 model underscores the merit of deeper architectures and
their ability to capture more abstract data representations.

After training the models for specific classes, the next step is the representation of
the most activated filters in the final layers of the AlexNet, VGG16, and ResNet50
models that hold substantive significance for deep learning interpretability. By fo-
cusing on these filters, the feature visualization methods can be deployed, to explain
the otherwise opaque decision-making processes of CNNs. This targeted approach
avoids the redundancy of analyzing the entire neural network, concentrating instead
on the most influential components - those filters that are the most responsive to
stimuli across classification tasks. This elective visualization was not only compu-
tationally efficient during the application of feature visualization but also explains
the patterns and abstractions that these preeminent filters have learned, which may
be pivotal in advancing the model’s interpretability and trustworthiness in practical
applications.

In the presented results, feature visualizations of both pre-trained and fine-tuned
models for binary and multiclass classification illuminate the transformative effects
of model training on feature extraction, especially with different regularization tech-
niques effectively used for the medical domain. The pre-trained model’s visual-
izations reveal essential patterns that the network is innately sensitive to, which
mostly reflect the general visual features of the ImageNet dataset. Conversely, the
fine-tuned visualizations display a marked change, with the top-activated filters man-
ifesting distinct patterns characteristic of the specialized dataset they were trained
on, namely medical skin cancer images. Their adaption of learned representations
to the specific characteristics of the skin cancer dataset is evidenced by the presence
of some visible patterns that align with the textual features inherent to skin cancer
imagery, such as border irregularity, structural asymmetry, and circular black and
brown shapes - critical indicators in melanoma detection. However, quantitatively
discerning whether these visualizations represent features indicative of skin cancer
poses a considerable challenge, as it is crucial to analyze them accurately.

During the application of feature visualization in fine-tuned models, there is a pres-
ence of certain patterns from the pre-trained ImageNet models within the fine-tuned
models, which implies that some fundamental visual features are universally applica-
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ble across domains, serving as foundational building blocks for the model’s learning
process.

Comparing the different feature visualizations applied for binary and multiclass
tasks in fine-tuned models is seen as a tendency to capture different patterns. The
feature visualizations from the binary classification tasks reveal filters that focus
on stark, high-contrast features likely corresponding to distinctions between benign
and malignant lesions. However, the multiclass task visualizations exhibit a broader
spectrum of patterns, suggesting an indication of textural details, potentially to
differentiate among various skin lesion types.

Furthermore, while comparing the feature visualizations between different layers of
the fine-tuned models, the visualizations from the initial layer exhibit primitive fea-
ture detection, capturing basic contrasts and edge detection. As we transition to the
final layer, there is an observable shift towards more complex pattern recognition.
During the sanity check, it was observed that when correlating feature visualiza-
tions with natural samples of the same class across different layers of the models
in a binary classification task, there is an increasing similarity between feature vi-
sualizations and the natural images when moving across the depth of the network
layers for AlexNet, VGG16, and ResNet50. This trend reinforces the approach
that the deeper the layer, the more refined the features it captures, but still the
correlated values are below the average. When correlating between feature visu-
alizations of different layers in a specific model, the correlation matrices highlight
a nuanced intra-layer and inter-layer relationship, with early layers showing higher
inter-correlation, reflecting shared primitive features, while deeper layers exhibit
more specialized and less correlated feature representations. This pattern indicates
a complex transformation from general to particular features.

The comparison of feature visualizations from the last convolutional layers of AlexNet,
VGG16, and ResNet50 reveals features that those networks have learned, with
VGG16’s filters displaying a pattern complexity that might closely resemble the
characteristic textures of skin cancer imagery. This suggests that VGG16’s archi-
tecture may provide a more nuanced extraction of features relevant to the recognition
of oncological patterns in dermatological images.

To summarize the findings in response to the research questions posed in the in-
troduction, the results indicate that using deeper architectures like ResNet50 and
VGG16 during the training phase can lead to higher accuracy due to their capacity
for more complex feature extraction. Utilizing techniques like dropout, L1 regu-
larization, and data augmentation can effectively improve the generalization of the
model on unseen data. Another training strategy that highly contributed to the
performance of the models was fine-tuning pre-trained models on the ISIC dataset,
which helps to leverage learned features from large datasets and adapt them to
specific tasks, enhancing efficiency and model performance.

The method of applying feature visualizations is answered with two techniques:
selective visualization and layer-by-layer analysis. Focusing on the most activated
filters of the last layer of the models can clarify the decision-making process of
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the CNNs. This avoids the redundancy of visualizing the less significant features.
Through a layer-by-layer analysis technique, feature visualization was progressively
performed to gain insight into the evolution of features from simple to complex
patterns.

The third research question aimed to explore various regularization techniques that
can be used in feature visualization. These techniques help the model avoid over-
fitting the training data, which enables it to generalize better and produce cleaner,
more interpretable visualizations. This is especially important in the medical do-
main, where the visualizations need to be precise and easy to interpret.

The methods used to visualize features required quantification due to their difficulty
in being qualitatively interpreted. Those methods include correlation analysis and
sanity check. Comparing feature visualizations with natural images of the same
class and analyzing correlation matrices between different layers may quantitatively
measure how feature representations evolve across the network. However, the low
values of the similarity index, indicate that the investigated feature visualizations
of all three models, do not pass completely the sanity check. This suggests that
feature visualizations only partially capture the essence of natural images belonging
to the same class.

For the last research question, analyzing activation patterns and comparing feature
responses across binary and multiclass classification tasks can distinguish between
filters responding to outlier features and those capturing class-specific details, en-
hancing the identification of filter specificity. Notably, it is observed that the most
activated filters of the outlier dataset are almost similar to the most activated filters
of the binary dataset. This occurrence might be attributed to the inclusion of outlier
images within the binary dataset, underscoring their influence on filter activations
and suggesting a shared representation between the two datasets. Additionally,
comparing whether the applied feature visualizations include outlier features can be
challenging.

8 Conclusion

In conclusion, this master’s thesis underscores the pivotal role of feature visualization
in enhancing interpretability within the medical domain, particularly in dermato-
logical oncology. The results demonstrate that VGG16’s architecture while excelling
in training performance, facilitates detailed feature extraction crucial to recognizing
complex textures in skin cancer imagery. Conversely, ResNet50’s superior general-
ization capabilities underscore its robustness across diverse datasets, and AlexNet
is the least-performing model.

Through the application of feature visualization, both pre-trained and fine-tuned
models reveal distinct patterns by providing visual insights into the neural network’s
learning process. This enhances understanding of how these complex networks inter-
pret and analyze medical images, contributing significantly to educational practices
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in medical imaging. Furthermore, the educational application of this understand-
ing aims to develop more robust networks. By grasping how these models learn
from medical images, the training process can be refined to achieve peak perfor-
mance, which is crucial for improving diagnostic accuracy and reliability in medical
applications.

However, relying solely on feature visualization may not fully capture what the
network is learning, particularly in the medical domain where similar patterns may
appear across different conditions. Furthermore, the resulting feature visualizations
are challenging to interpret visually. It is crucial to combine feature visualization
with other interpretability methods, such as attribution techniques, to obtain a more
comprehensive understanding of the learning process.

9 Future Work

Despite the significant advancements in feature visualization and its applications
within the medical domain, there remain several gaps and opportunities for fur-
ther research that can contribute substantially to understanding and utilizing deep
learning models in healthcare.

1. Quantification and standardization of feature visualizations: While most of the
studies offer qualitative insights into model decisions, there is a lack of stan-
dardized methods for quantifying the interpretability and relevance of these
visualizations. The use of the Network Dissection method could solve this
problem, but it requires pixel-wise labeled datasets, and this was one of the
main obstacles faced by the dataset used in this master’s thesis (Bau et al.,
2017). Furthermore, developing novel quantification methods for medical data
could significantly impact the measurement and analysis of complex image
features.

2. Advanced attribution methods such as Layer-wise Relevance Propagation (LRP),
saliency maps, GradCam and other attribution methods could be integrated
with feature visualization in future studies (Molnar, 2022). This integration
aims to enhance the interpretability of neural network decisions in medical
applications.

3. Future research could compare models trained from scratch with pre-trained
models within the medical imaging domain. The presence of certain patterns
from the pre-trained ImageNet models within the fine-tuned models, which
was observed during the feature visualization application, can be overcome by
using trained models from scratch.
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A Appendix

A.1 Results of binary and multiclass classification

Figure 38: VGG16 Binary classification: Convergence of Training and Validation
Loss over epochs. Both losses are decreasing, which suggests the model is learning
effectively without overfitting significantly, as the validation loss is close to the
training loss.

Figure 39: ResNet50 Binary classification: Convergence of Training and Validation
Loss over epochs. The training loss decreases sharply and then levels off, while
the validation loss decreases and then shows some fluctuation, indicating possible
instability in learning as the model may be learning noise from the training data or
the hyperparameters need adjustments.



A APPENDIX 62

The confusion matrix in Fig. 40, Fig. 41 and Fig. 42 indicate the performance of the
three models on validation data for binary classification, highlighting the counts of
true positives, true negatives, false positives, and false negatives.

The images in Fig. 43 illustrate the accuracy curves of VGG16 and ResNet50 trained
for binary classification tasks over a series of epochs. The VGG16 image in Fig. 43
shows both accuracies improve over time with some fluctuation in validation accu-
racy, while for ResNet50 both accuracies increase sharply initially and then stabilize,
indicating the model’s learning effectiveness over epochs. Validation accuracy shows
some fluctuations over epochs, indicating any noise and outliers or the model might
see slightly different versions of the validation data in each epoch, because of data
augmentation used, leading to variability in accuracy.

Figure 40: Binary classification confusion matrix of AlexNet on validation data.

Figure 41: Binary classification confusion matrix of VGG16 on validation data.
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Figure 42: Binary classification confusion matrix of ResNet50 on validation data.

Figure 43: Accuracy curves for VGG16 and ResNet50, for binary classification.

A.2 Qualitative results of feature visualizations

The Fig. 44, Fig. 45, and Fig. 46 show the feature visualizations of pre-trained
AlexNet and ResNet50, together with feature visualizations of fine-tuned ResNet50.
The filters selected are the most activated filters of ResNet50 introduced in Table 10.

Other feature visualizations shown in Fig.47, and Fig. 48 highlight the features
learned by the layers in the specific filters (random filters) for malignant class, both
for AlexNet and VGG16. As visually seen the feature visualizations of the last layer,
in the second row, for the AlexNet model are almost the same for most filters.
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Figure 44: Feature Visualization of AlexNet pre-trained model, binary classification.
The first row represents the first convolutional layer, and the second row the last
convolutional layer.

Figure 45: Feature Visualization of ResNet50 pre-trained model, binary classifica-
tion. The first row represents the first layer, and the second row the last layer.
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Figure 46: Feature Visualization of ResNet50 fine-tuned model, binary classification.
The first row represents the first layer, and the second row the last layer.

Figure 47: Feature Visualization AlexNet fine-tuned model, binary classification,
malign class. The first row represents the first layer, and the second row the last
layer.
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Figure 48: Feature Visualization of VGG16 fine-tuned model, binary classification,
malign class. The first row represents the first layer, and the second row the last
layer.
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Colin, Drew Linsley, Tom Rousseau, Rémi Cadène, Laurent Gardes, and Thomas
Serre. Unlocking feature visualization for deeper networks with magnitude con-
strained optimization, 2023.

Robert Geirhos, Roland S. Zimmermann, Blair Bilodeau, Wieland Brendel, and
Been Kim. Don’t trust your eyes: on the (un)reliability of feature visualizations,
2023.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

Fabio Graetz. How to visualize convolutional features in 40
lines of code. 2019. URL https://towardsdatascience.com/

how-to-visualize-convolutional-features-in-40-lines-of-code-70b7d87b0030.

Qishen Ha, Bo Liu, and Fuxu Liu. Identifying melanoma images using efficientnet
ensemble: Winning solution to the siim-isic melanoma classification challenge,
2020.
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