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Abstract

Training deep learning (DL) models requires large amounts of data, posing a chal-
lenge in the medical domain due to the particular sensitivity of medical data. To
mitigate this data scarcity, especially in medical imaging, data augmentation is com-
monly employed to synthetically enlarge training data. However, existing solutions
either lack specialization in the medical domain or have high computational require-
ments.

Therefore, this work proposes the Cross-Modality Data Augmentation (CMDA),
an adaptive real-time data augmentation dealing with limited medical data. By
translating images between different medical imaging modalities, it specifically ad-
dresses the cross-modality shift. To achieve this, it synthesizes new training samples
that represent the target modality’s distribution, using existing images from a given
modality.
CMDA consists of four types of augmentations, focusing on color, artifacts, spa-
tial resolution, and noise respectively. It supports the clinically relevant modalities
positron emission tomography (PET), magnetic resonance imaging (MRI), and com-
puted tomography (CT) and furthermore ensures compatibility with common data
augmentations.
Quantitative experiments evaluated CMDA’s potential in improving model robust-
ness and generalization. This was done by comparing the classification performance
of NNs trained with CMDA and other commonly-used data augmentations. Results
showed minimal improvements (<2%) across all performance metrics in some exper-
iments and a substantial (<−9%) decrease in others. Qualitative assessments indi-
cate CMDA’s success in aligning augmented images with the target modality. They
compared CMDA-augmented images to images of the original and target modality
by various approaches, with two experiments showing an average alignment improve-
ment of 23.5%.

Despite remaining challenges in enhancing model generalization, CMDA demon-
strates its potential in addressing the data scarcity in medical imaging. As such, it
can be integrated into existing data augmentation pipelines and serve as a founda-
tion for further research in cross-modality translation.
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Abstract

Das Training von Deep-Learning (DL) Modellen erfordert große Datenmengen, was
im medizinischen Bereich auf Grund der besonderen Sensibilität medizinischer Daten
eine Herausforderung darstellt. Um dieser Datenknappheit, insbesondere in der
medizinischen Bildgebung, entgegen zu wirken, werden üblicherweise Data Augmen-
tations zur synthetischen Vergrößerung der Trainingsdaten eingesetzt. Existierende
Lösungen hierfür sind jedoch entweder nicht auf den medizinischen Bereich spezial-
isiert oder erfordern viel Rechenleistung.

Deshalb wird in dieser Arbeit die Cross-Modality Data Augmentation (CMDA)
vorgestellt, eine adaptive Echtzeit-Data Augmentation, die sich dem Problem be-
grenzter medizinischer Daten annimmt. Durch die Übersetzung von Bildern zwis-
chen verschiedenen medizinischen Bildgebungsmodalitäten geht sie speziell auf den
cross-modality shift ein. Um dies zu erreichen, werden vorhandene Bilder einer bes-
timmten Modalität verwendet um neue Trainingsbilder zu synthetisieren, die die
Verteilung der Zielmodalität repräsentieren.
CMDA besteht aus vier kleineren Augmentierungen, die sich jeweils mit Farbe,
Bildartefakten, räumlicher Auflösung und Rauschen befassen. Es unterstützt die
klinisch relevanten Modalitäten Positronen-Emissions-Tomographie (PET), Magne-
tresonanztomographie (MRI) und Computertomographie (CT) und gewährleistet
darüber hinaus die Kompatibilität mit gängigen Data Augmentations.
In quantitativen Experimenten wurde das Potenzial von CMDA zur Verbesserung
der Modellrobustheit und Generalisierung untersucht. Dazu wurde die Klassifizie-
rungsleistung von NNs, die mit CMDA trainiert wurden, mit anderen häufig ver-
wendeten Data Augmentations verglichen. Die Ergebnisse zeigten in einigen Exper-
imenten minimale Verbesserungen (<2%) bei allen leistungsmessenden Metriken, in
anderen Experimenten jedoch einen erheblichen Leistungsabfall (<−9%). Qualita-
tive Experimente deuten auf den Erfolg von CMDA bei der Angleichung von aug-
mentierten Bildern an die Zielmodalität hin. Sie verglichen CMDA-augmentierte
Bilder mit Bildern der Original- und Zielmodalität durch verschiedene Ansätze,
wobei zwei Experimente eine durchschnittliche Verbesserung der Angleichung von
23,5% zeigten.

Trotz der verbleibenden Herausforderungen bezüglich der Verbesserung der Modell-
generalisierung, demonstriert CMDA sein Potenzial bei der Bekämpfung der Daten-
knappheit in der medizinischen Bildgebung. Als solches kann es in bestehende Data
Augmentation Pipelines integriert werden und als Grundlage für weitere Forschung
im Bereich der modalitätsübergreifenden Bildübersetzung dienen.
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FID Fréchet inception distance
FPR95TPR False Positive Rate at 95% True Positive Rate
GAN Generative Adversarial Network
GLCM Gray Level Co-Occurrence Matrix
HU Hounsfield Unit
IN In-Distribution
MAE Mean Absolute Error
ML Machine Learning
MRI Magnetic Resonance Imaging
NLP Natural Language Processing
NST Neural Style Transfer
NN Neural Network
OOD Out-Of-Distribution
PCA Principal Component Analysis
PET Positron Emission Tomography
ResNet Residual Neural Network
RMSE Root Mean Square Error
RSNA Radiological Society of North America
TCGA-BLCA The Cancer Genome Atlas Urothelial Bladder Carcinoma Collection
TL Transfer Learning
VAE Variational Autoencoder
ViT Vision Transformer

ix



1 INTRODUCTION 1

1 Introduction

Due to its ability to address complex challenges through data-driven approaches,
DL has had substantial influence across various domains (Gheisari et al., 2023). Yet
in healthcare, the full potential of DL is often limited by the scarcity of high-quality
medical data. As a subtype of machine learning (ML), DL uses multilayered neu-
ral networks (NNs) to learn how to solve a task directly from the data. Therefore,
large-scale data processing is needed, where the data can be labeled (supervised DL)
or unlabeled (unsupervised DL). Instead of training each layer sequentially one after
the other, end-to-end learning models are employed, where all parts of the network
are trained simultaneously. These models are then able to automatically extract
features from the inputs, which allows them to detect patterns in high-dimensional
data (LeCun et al., 2015). Apart from the previously mentioned applications, it en-
abled major advancements in natural language processing (NLP), computer vision,
and speech recognition (Goodfellow et al., 2016). Because NNs learn by themselves,
minimal engineering is needed from the programming side. This makes DL versatile
across many more domains.
One of these is the formerly stated medical domain, specifically medical imaging.
There it can be utilized to detect patterns in complex image data, and consequently
to detect, classify, and segment diseases. DL is also applicable for almost all anatom-
ical areas, most prominently the brain, eye, abdomen, chest, or in digital pathology
(Litjens et al., 2017). This further supports the clinical workflow by assisting with
personalized treatment and clinical decision support systems (Shen et al., 2017).
These benefits lead to enhanced diagnostic accuracy and the active support of med-
ical staff.
However, the aforementioned NNs need lots of data to learn enough to actually be
implemented into real clinical scenarios. Thus, the scarcity of medical imaging data
still remains a major challenge to overcome. This scarcity is due to a manifold of
reasons, most prominently because of privacy concerns as patients often don’t want
their medical data to be published, even if de-identified (Kagadis et al., 2013; Ziller
et al., 2021; Vizitiu et al., 2019; Bansal et al., 2022). The General Data Protection
Regulation (GDPR) and other comparable confidentiality regulations also restrict
the sharing of patient data (Zhang et al., 2023). Meanwhile, legal obligations and
ethical considerations like specifically signing an informed consent, not publishing
data due to research ethics, or only providing request-based access, further reduce
available data (Larson et al., 2020). The technical side also poses limitations due
to high costs, time, and efforts required to gather high-quality medical data, specif-
ically images. This often exceeds available resources (Hendee et al., 2010; Bansal
et al., 2022) or results in scarce and weak (imprecise) image annotations (Tajbakhsh
et al., 2020). Furthermore, accessible data is often not consistent due to a domain
and a cross-modality shift. In this case, domain shift describes data inconsistencies
owing to non-standardized equipment and imaging protocols (Smith et al., 2021).
Meanwhile, the cross-modality shift is concerned with differences among images orig-
inating from different imaging techniques (modalities) (Chen et al., 2019).
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1.1 Motivation

In comparison to domain shift, the cross-modality shift between images is severe
(Chen et al., 2019). Since different modalities utilize different physics, scans of the
same patient may thus look quite dissimilar for most modalities. These wide gaps in
appearance make it particularly challenging for NNs to apply multimodal learning
(learning that combines information from different data sources) (Liang et al., 2024;
Gat et al., 2021; Ngiam et al., 2011). Therefore, a lot of data is needed to cross
said gaps and allow the model to better generalize across modalities (Schmidt et al.,
2018). In this context, generalizing refers to a model making accurate predictions
on unseen data. But as mentioned before, medical imaging data is scarce, often
making adequate multimodal learning impossible.
To address this problem, a commonly employed ML technique is data augmentation.
Hereby, limited training data is artificially enlarged by synthetic sample generation.
Simple image manipulations like rotation, flipping, blurring, or color changes are
one option for this. However, these are domain-independent and thus fail to in-
corporate medical characteristics, constraining their full potential for this specific
domain (Ratner et al., 2017). Another approach are DL-based data augmentations.
They enable visually stunning image translation between modalities or generation
of completely new data. Yet, existing implementations all suffer from the high com-
putational requirements that DL-based methods bring along, as this limits their
applicability for real-time augmentation (Miko lajczyk and Grochowski, 2018).
A cross-modality data augmentation that ensures real-time usability, retains medical
relevance, and generates diverse training data is thus needed to overcome existing
problems, address data scarcity, and support multimodal learning.

1.2 Contribution

Existing data augmentations lack modality-specific transformations that can be em-
ployed during runtime and help to combat the cross-modality shift. Therefore, this
work proposes CMDA as an adaptive, real-time data augmentation to address said
problems. The objective is to synthesize new training samples that better represent
the distribution of the target modality, while also helping to improve the general-
ization performance of deep learning algorithms.
To assess CMDA’s potential in improving the robustness and generalization capabili-
ties of models, quantitative experiments are carried out. They compare performance
metrics of NNs trained with CMDA and other data augmentations and also partially
combine them to analyze compatibility.
Furthermore, qualitative experiments evaluate the visual image quality and charac-
teristics of augmented images. This is done by comparing CMDA-augmented images
to images of the original and target modality. To provide information on how well
CMDA works across anatomical structures, these experiments are conducted for two
different anatomies.
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2 Related Work

Since the advent of DL, the importance of data augmentation has risen, as its many
benefits, such as more diverse data, improved generalization performance, and re-
duced overfitting (Shorten and Khoshgoftaar, 2019), have made it more relevant
than ever. The domain of medical imaging is no exception to this, with certain
established standards and interesting approaches.
PyTorch’s transforms, imgaug, and Albumentations (Buslaev et al., 2020) are among
the most popular basic data augmentation libraries used in medical imaging. They
allow users to augment their data at runtime but only with modality-unspecific aug-
mentations like flipping or rotating. In comparison, they therefore are not tailored
to medical imaging while CMDA addresses modality unique characteristics and pre-
serves medical image integrity, all while working in runtime as well.
Another approach when working with multiple modalities is image harmonization.
In this case, it aims to standardize images to a common representation, such that
they all have similar appearances and consistent characteristics after the translation.
To do so, this technique attempts to remove domain-specific features. Ren et al.
(2021) and Liu et al. (2021) both used image harmonization to translate between
images of the same modality but different scanners. This works well, as the scans
are rather similar to each other and not much detail has to be removed. With
cross-modality translation, however, the harmonization has to fill too much of a
distance, as the differences between modalities are comparably huge. Thus, a trans-
lation would lead to too much loss of information, which could become a problem for
subsequent tasks such as disease classification or segmentation. Nevertheless, Seoni
et al. (2024) give a good overview of why image harmonization is still especially
interesting in the case of addressing the distribution shift across medical imaging
scanners.
With rising from Schock and Baumgartner (2023) and SimpleITK from Lowekamp
et al. (2013) there also exist specialized libraries for medical image processing, with
the first one providing highly performant image processing and augmentation tools,
while the latter simplifies the use of the Insight Segmentation and Registration
Toolkit (ITK). Both provide basic but, unlike CMDA, lack cross-modality and
modality-specific augmentations. Cardoso et al. (2022) developed the framework
MONAI which covers the full medical imaging workflow and even includes some rare
modality-specific, but also no cross-modality augmentations. The Eisen framework
by Mancolo (2020) is very similar to MONAI, only that development has stopped
and it is not available anymore. Thus, both frameworks do not offer the functional-
ities that CMDA provides. If interested, Chlap et al. (2021), Hussain et al. (2017),
and Goceri (2023) provide an extensive survey of medical data augmentation using
basic geometric transformations.
In addition to classic data augmentations, advancements in deep learning have also
enabled novel approaches. In 2016, Gatys et al. (2016) introduced the idea of neural
style transfer (NST) through convolutional neural networks (CNNs), where NST
describes the process of transferring the style of an image to another image with-
out changing its content. This foundational research led to many interesting ideas,

https://pytorch.org/vision/main/auto_examples/transforms/plot_transforms_getting_started.html
https://github.com/aleju/imgaug
https://github.com/albumentations-team/albumentations
https://github.com/PhoenixDL/rising
https://simpleitk.org/
https://monai.io/
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among others enabling a translation between modalities. But the proposed solu-
tion relied on a slow iterative optimization process and only had fixed implemented
styles. Shortly after, Huang and Belongie (2017) refined this procedure by intro-
ducing adaptive instance normalization (AdaIN) to make the NST fast while giving
the user more control by being able to choose a custom style and more settings such
as style interpolation. Chandran et al. (2021) later extended AdaIN by Adaptive
Convolutions (AdaConv) which allows transferring structural and statistical styles
at the same time, yielding even better results than AdaIN. However, neither AdaIN
nor AdaConv is specifically tailored for medical imaging and may thus produce
inadequate samples when used for cross-modality translation. Furthermore, both
require more computational resources than basic geometric transformations and can
therefore not be applied at runtime. Jing et al. (2019) and Singh et al. (2021) both
review the current progress of NST and may be referred to for further insight.
Alternative approaches use Generative Adversarial Networks (GANs) or other deep
learning techniques to not only transfer style but also to generate entirely new con-
tent which is also of high interest in medical imaging. (Bowles et al., 2018) illustrates
this interest by proposing a GAN that creates synthetic MRI and CT patches, while
Shin et al. (2020) synthesized PET images from given MRI images by utilizing
the Bidirectional Encoder Representation from Transformers (BERT). While both
studies align with CMDA to address the challenge of modality shift, they offer a
different methodology that may produce unrealistic results and is not deployable
at runtime. Although more related to policy sampling than cross-modality transla-
tion, the Automated Augmentation for Domain Generalization (AADG) developed
by Lyu et al. (2022) presents an interesting domain generalization strategy as the
method is based on data manipulation, where new domains for retinal images can
be created via sampled augmentation policies. More closely related to CMDA is the
MedGAN framework which is capable of PET, MRI, and CT cross-modality trans-
lation. Therefore, Armanious et al. (2020), whose overall contribution to this sector
is noteworthy, also utilize a GAN that takes an image as an input and transforms
it to the target modality. While MedGAN produces more realistic images than
CMDA does, it has the same downsides as all deep-learning approaches, mainly
not being applicable during model training. Similarly, Yang et al. (2020) present
a cross-modality generation framework that employs conditional GANs (cGANs)
to translate between different T1, T2 (see Section 3.1), and T2-Flair MRI modali-
ties, whereas TarGAN, a target-aware GAN introduced by Chen et al. (2021) can be
used to translate between CT and MRI images where the target area with a possible
disease is further enhanced. The latter is more concerned with target-aware aug-
mentation than with the cross-modality aspect, but both methods also implement
fewer modalities than CMDA does. Other deep learning based data augmentation
and modality translation approaches can be found in Kebaili et al. (2023) and Kaji
and Kida (2019).
Despite the presented options providing great opportunities for medical data aug-
mentation, basic augmentations continue to be the most widely used augmentation
techniques in practice (Chlap et al., 2021). This underlines CMDA’s value as it
addresses the specific problem of modality translation at runtime.
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3 Theoretical Background

3.1 Implemented Modalities

In order to be more effective than random augmentations, CMDA takes advantage
of modality-specific characteristics. This leads to a targeted selection of imple-
mented modalities where augmentations can be fine-tuned with precision. PET,
MRI, and CT were chosen for this study due to several relevant factors. They en-
sure broad applicability and relevance by not only being prevalent in clinical practice
but also providing consistent and comparable representations of anatomical struc-
tures across dimension and shape. Furthermore, these modalities partially overlap
in their scanned anatomical structures which only makes sense in the context of
a modality transformation. It is therefore necessary to explore the mode of oper-
ation, specific applications, and characteristics of the chosen modalities to better
understand CMDA and utilize its full potential. Therefore, the following Section
will introduce all implemented modalities.

PET Positron Emission Tomography is part of nuclear medicine where it is of-
ten conducted in combination with a CT scan for attenuation correction purposes.
The procedure starts with a tracer being injected into the patient. In this case, a
tracer refers to a radiopharmaceutical combined with a carrier, mostly sugar. The
current standard for this is [18F ]Fluorodeoxyglucose (FDG) (Bailey et al., 2005).
The goal of the injected tracer is to take part in the patient’s metabolism or blood
flow so that it can be used to monitor functional processes inside the human body.
As diseases often consume abnormal (less or more) amounts of energy in order to
exist, the tracer centers (or specifically does not appear) around the affected body
part. This enables disease localization through certain reconstruction algorithms,
indicating what medical problem the patient has and where it is situated (Rennie,
1999).
The physical processes exploited to create the images provide more information
about the name of the modality. As radionuclides have an unstable connection,
they tend to decay (Saha, 2015). In addition to a neutrino and a newly formed
nuclide, this decay causes the emission of a positron. As the surrounding air is full
of electrons, it is inevitable that the positron immediately hits one of them, causing
an annihilation. The resulting energy is then emitted in the form of two photons
being shot in opposite directions. These are then detected by scanners and can now
be used to calculate the point of decay (Saha, 2015). This sequence of events is also
shown in Figure 1.
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Figure 1: Physical processes following the decay of a tracer. A positron is emitted
and subsequently collides with an electron, resulting in an annihilation. The photons
thereby emitted photons can be used to calculate the point of decay and thus to
localize the disease.

As randomly detected photons or a weakened signal through the interactions of the
particles with human tissue can cause attenuation (Muehllehner and Karp, 2006),
the created images have to carefully be checked for such.
PET is commonly used in oncology, cardiology, and neurology and, unlike the other
implemented modalities, gives insights into the functional processes inside the body
(Bailey et al., 2005). An entire scan typically takes 30-45 minutes. Sample PET
images can be seen in Figure 2.

brain (ADNI, 2022) bladder (Kirk et al., 2016)

Figure 2: Sample PET images of two adult patients taken in the axial plane, viewed
from the feet upwards. The left image depicts a healthy brain, while the right image
depicts an abdominal scan with bladder cancer.

MRI Magnetic Resonance Imaging is a non-invasive imaging technique. There-
fore, it uses strong magnetic fields and radio waves to produce detailed images of
soft tissue, organs, and other internal body structures. This makes it suitable for



3 THEORETICAL BACKGROUND 7

imaging the brain, spinal cord, joints, and muscles (Hashemi et al., 2012). Mean-
while, its absence of ionizing radiation expands its application to patients who must
not be exposed to such.
On a physical level, the imaging procedure begins by exposing the patient to a strong
and static magnetic field B0. As a result, hydrogen atoms in the patient’s body align
with B0. The patient is now pulsed by radio waves, which stimulate the atoms and
make them push against B0’s influence. This disturbs the alignment, as can be seen
in Figure 3. As soon as the pulse of radio waves stops, the atoms will realign with
B0, thereby emitting the supplied energy as electromagnetic signals. This process
is called relaxation and is the reason for different types of image contrast. As the
intensity and amount of released energy differ depending on the tissue the hydrogen
atoms are located in, these signals can then be used to create images of the scanned
anatomy (Weishaupt et al., 2009). Additionally, pharmaceuticals, named contrast
agents, taken by the patient can enhance the emitted signals.
Depending on the focus, MRI scans can either be T1- or T2-weighted. T1-weighted

Hydrogen atoms inside the
patient are initially ran-
domly aligned.

Hydrogen atoms align with
the applied magnetic field
B0.

When stimulated by radio
waves, the hydrogen atoms
push against B0’s force.

Figure 3: Physical processes that take place during an MRI scan, in chronological
order from left to right. It starts with randomly aligned hydrogen atoms which are
subsequently influenced by a magnetic field and radio waves.

scans concentrate on signals emitted shortly after the relaxation of the tissue starts.
They highlight fat and are thus useful for accurately imaging anatomical structures
and detecting certain abnormalities. In turn, T2-weighted scans highlight fluid and
can better be used to locate edema, tumors, and inflammation. In contrast to T1,
they focus on signals emitted a longer time after relaxation starts (Katti et al.,
2011).
As it can provide precise anatomical information, the diagnosis of tumors, spinal
injuries, brain disorders, and joint abnormalities are the most common use-cases.
With 30-90 minutes, an entire scan takes comparably long and can be unsettling for
some patients (Hashemi et al., 2012). Sample MRI images can be seen in Figure 4.
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brain (ADNI, 2022) bladder (Kirk et al., 2016)

Figure 4: Sample MRI images of two adult patients taken in the axial plane, viewed
from the feet upwards. The left image depicts a healthy brain, while the right image
depicts an abdominal scan with bladder cancer.

CT Computed Tomography combines X-ray images taken from different angles to
create cross-sectional images (slices) of the body. The scanning procedure starts with
the patient being placed on a bed. This bed will then be moved through the circular-
shaped part of the CT scanner, called gantry. The structure of the gantry can be
observed in Figure 5. It consists of an X-ray tube and corresponding X-ray detectors.
When the patient is moved further into the gantry, the tube starts rotating around
the patient, meanwhile constantly sending out X-ray beams at different angles. The
detectors then measure the radiation absorbed in Hounsfield units (HUs). Here, each
kind of tissue traversed has different HU values with high values indicating high, and
low values low attenuation (Goldman, 2007; Mazonakis and Damilakis, 2016). These
measurements can then be processed by computers to generate detailed images,
hence the name. If interested, Koetzier et al. (2023) provide more information
about commonly used reconstruction techniques. Each rotation of the tube results
in one slice with 5mm - 1mm thickness (Thrower et al., 2021). The bed is then
slightly pushed forward and the procedure repeats. In the end, all slices can be
combined to create a three-dimensional representation of the scanned body parts.
Its use of ionizing radiation limits its applicability for some patients, but it produces

detailed images of bones, blood vessels, organs, and other internal structures. This
makes it excellent for detecting bone fractures, internal bleeding, infections, and
tumors (Buzug, 2011).
The scan itself only takes 5-20 minutes. Sample CT images can be seen in Figure 6.
Due to the speed of acquisition, it is often used in emergency situations where it
can be utilized to assist in surgeries or biopsies.
Depending on the intended use-case, images can be reconstructed in multiple planes
or 3D. In addition, contrast agents can be used to enhance the visibility of certain
tissues or blood vessels (Buzug, 2011). CT is most commonly used in oncology,
neurology, cardiology, and trauma care.
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Figure 5: Structure of a gantry, the circular shaped part of a CT scanner. An X-ray
tube rotates around the patient and sends out X-ray beams which are then used to
measure the experienced attenuation with the X-ray detectors.

brain (A. Stein, 2019) bladder (Kirk et al., 2016)

Figure 6: Sample CT images of two adult patients taken in the axial plane, viewed
from the feet upwards. The left image depicts a healthy brain, while the right image
depicts an abdominal scan with bladder cancer.
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3.2 Transfer Learning, Domain Adaptation, Domain Gen-
eralization

Each medical imaging modality provides different essential insights for the precise
diagnosis and therapy of diseases. However, it’s often not feasible for a patient to
undergo scans of multiple modalities. This is due to various factors such as health
constraints, costs, and time. The thereby created cross-modality shift leads to a
data scarcity where high-quality data is often only available for a single rather than
multiple modalities. As a result, the development of robust models across differ-
ent modalities is limited. As the appearance of images changes heavily between
diagnostic procedures the following concepts are the key to overcome this challenge.
Understanding how these concepts can benefit from the larger and more diverse
training data provided by the CMDA is important to create more robust and gen-
eralizable models.

Transfer Learning Weiss et al. (2016) define Transfer Learning (TL) as a tech-
nique that supports a model in the learning process by utilizing information learned
from another, related domain. Therefore, a model trained on one task TS and source
domain DS = (xS

i , y
S
i )

NS

i=1 is used to assist in solving a different task TT with a dif-

ferent target domain DT = (xT
j (, yTj ))

NT

j=1
. This often involves the use of models

pre-trained on a large dataset.
It is commonly used when the target domain has limited labeled data as it utilizes
information from DS. This approach helps to reduce training time and improve the
model performance on the target task.
TL can be divided into homogeneous and heterogeneous learning, where the first
covers types with DT = DS while the latter one includes the cases where DT ̸= DS

(Day and Khoshgoftaar, 2017).
Commonly used techniques listed by Donges (2024) are

• Feature extraction: Use learned features from DS as input for TT

• Domain-specific pre-training: Keep DS similar to DT

• Fine-tuning: Train a model on DS, then fine-tune it on DT

The applications involve image classification, natural language processing, object de-
tection, or segmentation tasks (Torrey and Shavlik, 2010; Weiss et al., 2016; Csurka,
2017).
Example: Training a model on a large MRI brain dataset as DS. Here TS is a binary
classification problem deciding whether the image includes a tumor or not. Then
train the model further on a small CT brain dataset DT with TT to classify different
types of lesions.
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Domain Adaptation The general concept of Domain Adaptation (DA) is adapt-
ing a model trained on a source domain DS and task TS to perform well on a different
target domain DT , where the data distributions PS(X) and PT (X) differ. The tasks
stay the same, such that TT = TS. Hence, DA is a variant of TL(Farahani et al.,
2021).
DA is used for cases where no or limited labeled data is available for DT . The
technique aims to minimize the distribution shift distance(PS(X), PT (X)) between
source and target domains.
It can be categorized into three subtypes (Guan and Liu, 2022). Unsupervised DA
presents the case where no labeled data is available from DT , while supervised DA
is the opposite with DT providing labeled data. If labeled and unlabeled data is
mixed in DT , it is further referred to as semi-supervised DA.
Kundu (2022) and Farahani et al. (2021) enumerate the following, frequently em-
ployed techniques

• Domain-Invariant Feature Learning: Learn features invariant to domain changes

• Feature Based Adaptation: Align feature spaces between DS and DT

• Instance Based Adaptation: Assign weights to samples from DS to match
PT (X)

• Reconstruction Based Adaptation: Minimize distance(PS(X), PT (X)) though
reconstruction of samples within a shared intermediate feature space

• Adversarial Training: Use adversarial networks to minimize distance(PS(X), PT (X))

Its uses span various fields, including cross-domain image segmentation and classifi-
cation, language translation, and autonomous driving (Farahani et al., 2021; Guan
and Liu, 2022; Csurka, 2017).
Example: Training a model on a large, high-quality MRI brain dataset as DS. Here,
TS is a binary classification problem deciding whether the image includes a tumor or
not. Then train the model on low-quality custom MRI images with the same binary
classification task such that TT = TS.

Domain Generalization While TL and DA require data from the target domain
DT , Domain Generalization (DG) focuses on building models that generalize well to
unseen target domains DT1 ,DT2 , ...,DTm . However, these models are trained without
having access to data from the target domains. This typically involves training a
model on several source domains DS1 ,DS2 , ...,DSn which are similar to the target
domains. This in turn helps the model to learn domain-invariant features, ensuring
robustness and adaptability to new environments and conditions (Zhou et al., 2022).
DG uses the techniques outlined by Zhou et al. (2022)

• Data Augmentation: Generate diverse training samples to cover potential tar-
get domains (further explored in Section 3.3)
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• Domain Alignment: Learn features that remain stable across different domains

• Meta-Learning: Train model on variety of tasks TS1 , TS2 , ..., TSn to improve its
generalization ability

• Ensemble Learning: Combine predictions from multiple models trained on
different source domains

• Regularization: Prevent overfitting by applying regularization

However, realizing a generalizing model is often challenging. It requires large and
diverse datasets to cover DT1 ,DT2 , ...,DTm while having to balance domain invariant
features with task-specific performance.
When successfully implemented, applications cover autonomous systems, natural
language processing, and general-purpose medical diagnosis models, among others
(Zhou et al., 2022; Gulrajani and Lopez-Paz, 2020; Wang et al., 2022).
Example: Training a model on MRI (DS1), PET (DS2), and ultrasound (US) (DS3)
brain datasets. Here TS is a binary classification problem deciding whether the
image includes a tumor or not. Then test the model on a CT brain dataset DT1

with the same binary classification task such that TT = TS.

3.3 Data Augmentation as a Concept

Data augmentation describes a DG technique to enhance the size and diversity of the
training data. It does so by creating synthetic data samples, often being variations of
the original training samples. Applicable domains along with their most commonly
used manipulation techniques are

• Images: flipping, rotation, cropping, scaling, contrast adjustment, color space
transformation, noise injection, mixup, erasing (Shorten and Khoshgoftaar,
2019)

• Text: back-translation, random insertion, synonym replacement, word dropout,
random swap (Bayer et al., 2022)

• Audio: pitch shifting, time stretching, noise injection, mixup (Wei et al., 2020)

Figure 7 displays some of the mentioned image manipulations in action. As can
be observed, all augmentations are domain-independent, which means that they
can be applied to every possible image, no matter the content. In contrast, cross-
modality augmentations utilize modality-specific features and are thus tailored for
the medical imaging context. They assume medical images as an input, thereby
trading domain independence for task-specific and meaningful augmentations. As
an example, take Sharpening from Figure 7. While this augmentation is equally
suited for every image, a cross-modality Sharpening augmentation could incorporate
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information about spatial resolution relations across modalities. This may result in
more realistic augmentations in that specific context.

original Flip Rotation Sharpening Erase Color Jitter

Figure 7: Brain MRI image (ADNI, 2022) of a healthy patient is transformed by
various traditional data augmentation techniques. The caption always names the
respective technique.

Such tailored augmentations, alongside traditional techniques, contribute to more,
and more diverse training data. Additionally, they simulate real-world data vari-
ations and can thus mitigate overfitting and improve robustness. This is key for
deep learning, as models have only limited real-world data at their disposal but can
hereby improve their accuracy and generalization performance (Shorten and Khosh-
goftaar, 2019).
As data is especially rare in the medical domain (see Section 1), many possible
use-cases arise. With the most obvious application being the enlargement of the
data size, it could also combat class imbalance by creating more samples of the un-
derrepresented class. Both applications lead to enhanced diagnostic tool accuracy.
More diverse data also increases the training data variability. This in turn improves
the model generalization across heterogeneous patient populations and enables the
simulation of rare diseases (Chlap et al., 2021; Hussain et al., 2017). Apart from
the technical benefits, data augmentation also supports regulatory compliance by
altering the original data which helps protect the patients’ privacy (Shorten and
Khoshgoftaar, 2019).
While more advanced data augmentations like synthetic data creation and style
transfer via GANs (see Section 2) exist, geometric and pixel-level adjustments en-
able a more efficient approach as they are faster and require less data. They also take
real data as a foundation which protects the data augmentations from hallucinating.
This, as well as the outlined advantages of Data Augmentation, provides a basis for
exploring the targeted approach of a cross-modality translation in Section 4.1.
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4 Methods

4.1 Cross-Modality Data Augmentation

The Cross-Modality Data Augmentation CMDA takes gray-scale or color images
as input and translates them from their initial to a given target modality. This
translation helps to adapt the distribution of the training data to that of the tar-
get modality by keeping the original content but changing its style. It does so by
utilizing and altering modality-specific characteristics. This is accomplished by se-
quentially applying special but resource-efficient augmentations to the input image,
executed in the specified order presented in this Section. Since it is not always de-
sired for each image to be augmented, CMDA also offers users the choice of setting
a probability for the data augmentation to actually be applied to an image.

To increase randomness, and thus also the variety of the augmented data, users can
choose a range of augmentations to be applied to each image. This includes the
option to make certain augmentations more likely to be applied than others. As
each augmentation might not prove useful in each context, this is frequently use-
ful. Additionally, the intensity of each applied augmentation can again be defined,
which further supports diversity. These adjustments provide full control and allow
to customize CMDA for each specific use-case.

Basic geometric augmentations like flipping, rotating, scaling, shearing, or such are
not implemented on purpose. Instead, the data augmentation can easily be added
to existing augmentation pipelines which is very much recommended. For the imple-
mentation, more elaborate information, permitted parameter values, examples, and
the use of custom reference images please refer to the corresponding GitHub repos-
itory. Additionally, Appendix A.1 provides randomly augmented example images
created by CMDA.

4.1.1 Color Augmentation

In comparison to the other augmentations, color is of major importance as it can
change the focus, contrast, intensity, and overall appearance of an image the most.
Taking advantage of modality-specific characteristics, certain structures can be high-
lighted or adjusted by changing their brightness and color.
Thus, each image first undergoes the same initial modality-unspecific step which is
a basic alignment to the target modality. Therefore, a reference image (see Fig-
ure 8) has been created for every implemented modality. This was done by iterating
through a sufficiently large (≥ 200) dataset of each modality, calculating the mean
color value for each pixel, and assembling these mean pixels to a new image. This
procedure makes sure that essential features and areas of interest are correctly se-
lected. The size of the dataset is further needed to make the creation of the reference
image more robust to outliers.

https://github.com/juliustutz00/cross-modality-data-augmentation
https://github.com/juliustutz00/cross-modality-data-augmentation
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PET MRI CT

Figure 8: Reference images of the implemented modalities, created by iterating
through a respective dataset and building an ”average image”. They are required
for the color augmentation as they include modality-specific color information.

To now augment an image, the color histogram of that image is calculated and com-
pared to the histogram of the reference image for the target modality. Histogram
matching (scikit-image) is then used to adjust the image’s color histogram to match
that of the reference image. Thereby its colors are transformed to resemble those
of the target modality. This technique aligns the cumulative distribution function
of both images’ color histograms, thus ensuring similar intensity and color. At the
same time, it preserves the structural content of the input image.
CMDA also allows to create custom reference images for any desired modality, with
sample results being shown in Section 4.1.5.
Additionally, certain refinements are performed based on the target modality:

PET PET is used to highlight functional processes inside the human body (see
Section 3.1). Thus, bones are attenuated and attention is drawn to the active soft
tissue by brightening it, resulting in black and white images. Sample results can be
observed in Figure 9 and 10.

original 20% 40% 60% 80% 100%

Figure 9: A brain MRI image is transformed to target modality PET, using CMDA’s
color augmentation. The above images are augmented with different intensities
that are displayed in the respective caption. This illustrates how the set intensity
influences the severity of the augmentation. Original image taken from ADNI (2022).
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original 20% 40% 60% 80% 100%

Figure 10: A brain CT image is transformed to target modality PET, using CMDA’s
color augmentation. The above images are augmented with different intensities
that are displayed in the respective caption. This illustrates how the set intensity
influences the severity of the augmentation. Original image taken from A. Stein
(2019).

MRI MRI gives a detailed view of soft tissue and its structure (see Section 3.1).
Therefore, bones are also darkened, and texture is slightly added to the soft tissue.
This leads to detailed, dark gray images. Sample results can be observed in Fig-
ure 11 and 12.

original 20% 40% 60% 80% 100%

Figure 11: A brain PET image is transformed to target modality MRI, using
CMDA’s color augmentation. The above images are augmented with different in-
tensities that are displayed in the respective caption. This illustrates how the set
intensity influences the severity of the augmentation. Original image taken from
ADNI (2022).

original 20% 40% 60% 80% 100%

Figure 12: A brain CT image is transformed to target modality MRI, using CMDA’s
color augmentation. The above images are augmented with different intensities
that are displayed in the respective caption. This illustrates how the set intensity
influences the severity of the augmentation. Original image taken from A. Stein
(2019).

CT CT focuses on displaying the overall structure of the body with an empha-
sis on the bones (see Section 3.1). Consequently, these are illuminated while the
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soft tissue structure is slightly blurred, producing rather detailed, light gray images.
Sample results can be observed in Figure 13 and 14.

original 20% 40% 60% 80% 100%

Figure 13: A brain PET image is transformed to target modality CT, using CMDA’s
color augmentation. The above images are augmented with different intensities
that are displayed in the respective caption. This illustrates how the set intensity
influences the severity of the augmentation. Original image taken from ADNI (2022).

original 20% 40% 60% 80% 100%

Figure 14: A brain MRI image is transformed to target modality CT, using CMDA’s
color augmentation. The above images are augmented with different intensities
that are displayed in the respective caption. This illustrates how the set intensity
influences the severity of the augmentation. Original image taken from ADNI (2022).

4.1.2 Artifact Augmentation

Imaging artifacts are the second augmentation to be added to an image. They
describe accidental, unwanted, and in reality often non-existent anomalies in the
final medical images (Stanford), caused by technical or environmental factors. They
therefore corrupt the actual data which is why this augmentation should be used
with care. However, since normal datasets are usually not perfect either, it still helps
to create a more accurate distribution of the target modality when used moderately.
As each modality has different underlying physics, artifacts are modality-specific
which might cause them to look different even if having the same cause. A brief
explanation of said causes and effects is given in the following.

PET (Abouzied et al., 2005; Sureshbabu and Mawlawi, 2005; Cook et al., 2004)

Artifact Cause Effect
metal object metal objects in patient dark areas
motion movement during scan blurring
attenuation random coincidence events light dots
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original metal object motion attenuation

Figure 15: A brain CT image is transformed to target modality PET, using CMDA’s
artifact augmentation. The above images thus include certain target-modality-
characteristic artifacts, with their names displayed in the respective caption. Origi-
nal images taken from A. Stein (2019).

MRI (Krupa and Bekiesińska-Figatowska, 2015; Smith, 2010)

Artifact Cause Effect
metal object metal objects in patient dark areas
motion movement during scan ghosting
gibbs inadequate sampling of fre-

quencies for reconstruction
oscillations near sharp edges

chemical shift different resonance frequen-
cies between fat and water

double contours

original metal object motion gibbs chemical shift

Figure 16: A brain CT image is transformed to target modality MRI, using CMDA’s
artifact augmentation. The above images thus include certain target-modality-
characteristic artifacts, with their names displayed in the respective caption. Origi-
nal images taken from A. Stein (2019).

CT (Boas et al., 2012; Barrett and Keat, 2004; Cook et al., 2004)

Artifact Cause Effect
metal object metal objects in patient bright rays
motion movement during scan bright streaks
beam hardening energy-absorbing objects dark bands
ring miscalibrated scanner circular contour
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original metal object motion beam hardening ring

Figure 17: A brain MRI image is transformed to target modality CT, using CMDA’s
artifact augmentation. The above images thus include certain target-modality-
characteristic artifacts, with their names displayed in the respective caption. Origi-
nal images taken from ADNI (2022).

4.1.3 Spatial Resolution Augmentation

Because of the basic functionality of the scanners in use, each modality produces
images of different quality. The third augmentation is thus concerned with spatial
resolution. Adapting it is achieved by applying either a blur of sharpness filter, de-
pending on the initial and target modality. Hereby, blurring takes while sharpening
gives detail to the transformed image.
While this augmentation might not produce as visually noticeable results as the oth-
ers (see Figure 18), it is still the second most important to be applied as it strongly
contributes to changing the distribution of the input images. Great results can es-
pecially be achieved when paired with the color augmentation as it, depending on
the refinements performed, may have slightly added or removed detail.

PET Since modalities including radionuclides rather concentrate on functional
body processes than exact structures, their spatial resolution of 1000-3000µm is
comparably poor (Kasban et al., 2015; Key and Leary, 2014; Yim et al., 2011).

MRI The high magnetic field strengths and advanced gradient coils, paired with
a long screening time during which the patient has to stay still, leads to a superior
image quality of 10-200µm (Kasban et al., 2015; Key and Leary, 2014; Yim et al.,
2011).

CT Even with x-ray beam divergence, the high-resolution x-ray detectors and
rapid sequential imaging allow for a spatial resolution of 50-500µm (Kasban et al.,
2015; Key and Leary, 2014; Yim et al., 2011).

subsubsec:methods_cross modality data augmentation_color augmentation
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original PET (ADNI, 2022) PET to MRI (sharpened) PET to CT (sharpened)

original MRI (ADNI, 2022) MRI to PET (blurred) MRI to CT (blurred)

original CT (A. Stein, 2019) CT to PET (blurred) CT to MRI (sharpened)

Figure 18: Brain images transformed to the respective target modalities, using
CMDA’s spatial resolution augmentation. The above images compare their orig-
inal and the spatial resolution transformed images, where blur and sharpen filters
have been applied.

4.1.4 Noise Augmentation

According to Morin and Mahesh (2018), noise refers to the graininess of an image
as it describes unintentionally added pixels all over said image. Similar to artifacts,
it usually corrupts the data by hiding or concealing potentially useful information.
However, noise augmentation can thereby support robustness as it introduces new
variations to the training data which leads to better generalization. The model thus

subsubsec:methods_cross modality data augmentation_artifact augmentation
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learns to focus on the underlying patterns, ultimately improving its performance in
real-world applications where data may be noisy and imperfect as well.
For the implemented modalities, the noise of each follows a certain statistical dis-
tribution. In turn, these can be utilized and applied to the images in the form of
noise filters which can be seen in Figure 19.

PET The detection of coincidence events is subject to statistical fluctuations that
often follow a normal distribution (Kim et al., 2013).

f(x|µ, σ) = 1√
2πσ2

exp
(
− (x−µ)2

2σ2

)
where x is the random variable, µ = 0 is the mean of the distribution, σ is the
standard deviation and depends on the given augmentation ratio.

MRI As MRI signals are processed as complex numbers, a real and an imaginary
noise is created. Thus, the noise level can be seen as the magnitude of their com-
bination which can best be modeled by a Rician distribution (Aja-Fernández and
Vegas-Sánchez-Ferrero, 2016).

f(x|σ, ν) = x
σ2 exp

(
−(x2+ν2)

2σ2

)
I0
(
xν
σ2

)
where x is the random variable, σ and ν are shape parameters dependent on the
given augmentation ratio, I0 is the zero-order modified Bessel function of the first
kind.

CT The amount of detected X-ray photons varies because of the random nature of
their radiation. This variation leads to characteristic noise which follows a Poisson
distribution (Diwakar and Kumar, 2018; FAU; Wang et al., 2008).

f(k|λ) = λk exp(−λ)
k!

where k is the random variable, λ is the mean of the distribution and depends on
the given augmentation ratio.

original PET (ADNI, 2022) PET to MRI (Rician) PET to CT (Poisson)
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original MRI (ADNI, 2022) MRI to PET (Gaussian) MRI to CT (Poisson)

original CT (A. Stein, 2019) CT to PET (Gaussian) CT to MRI (Rician)

Figure 19: Brain images transformed to the respective target modalities, using
CMDA’s noise augmentation. The above images compare their original and the
noise-transformed images, where noise has been added using the respective distri-
butions given in parentheses.

4.1.5 Custom Modalities

In addition to the implemented modalities, CMDA also provides the possibility to
translate images to any desired modality. This is demonstrated in Figure 20 which
shows an MRI brain scan (ADNI, 2022) being transformed to eight other modalities.
Here, CT (A. Stein, 2019) and PET (ADNI, 2022) are implemented by default while
the other six (Yang et al., 2021, 2023) are custom modalities.
This requires a dataset of sufficient size (≥ 200), used to create an adequate reference
image. Due to the missing fine-tuning, the transformations are rather coarse, but
certain scenarios may still benefit from it.
For more elaborate information on the use of custom reference images please refer
to the corresponding GitHub repository.

https://github.com/juliustutz00/cross-modality-data-augmentation
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Figure 20: MRI image of the brain being gradually (20%, 40%, 60%, 80%, 100%)
transformed by CMDA to eight different modalities. While CT and PET are im-
plemented target modalities by default, the other six are custom target modalities
that have been implemented by providing CMDA with a dataset of each custom
modality. The last row shows sample images of the respective target modality for
comparative purposes.
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4.2 Evaluation Metrics

4.2.1 Quantitative Evaluation Metrics

Quantitative evaluation is concerned with hard numbers, assessing the performance
and efficiency of CMDA by focusing on numerical, empirical, measurable, and ob-
jective results (Roessner, 2000; Garbarino, 2009; Dobrovolny and Fuentes, 2008).
The evaluation of models in the quantitative experiments is thus carried out us-
ing suitable metrics. Therefore, the trained model is presented with data from the
test set, measuring the amount of correct, also known as true positives (TP) and
true negatives (TN). Additionally, incorrect predictions, termed false positives (FP)
and false negatives (FN), are recorded. These values are then used to calculate the
following metrics. Results for all may vary between 0 and 1 where higher values
indicate better performance.

Balanced Accuracy = Recallclass1+Recallclass2
2

Useful accuracy metric for imbalanced datasets as it prevents bias towards a majority
class. It does so by taking the average of recall (see further metrics) for each class
to adjust for class imbalance.

Precision = TP
TP+FP

Measures the model’s performance just looking at the degree of correct positive
predictions, especially important when FP are dangerous.

Recall = TP
TP+FP

Measures the model’s performance in finding all positive samples, especially impor-
tant when FN are dangerous.

F1-Score = 2 Precision·Recall
Precision+Recall

Balances Precision and Recall and calculates their harmonic mean, combining both
values in one metric.

ROC AUC
Measures the model’s performance in distinguishing between classes over a range of
decision thresholds. This is done by plotting the true positive rate (TPR) = TP

TP+FN

against the false positive rate (FPR) = FP
FP+TN

and calculating the area under the
resulting curve.

4.2.2 Qualitative Evaluation Metrics

Qualitative evaluation pertains to soft insights, assessing quality and characteristics
of the images CMDA generates. It is therefore concerned with visual, statistical,
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perceptual, and subjective judgment (Roessner, 2000; Garbarino, 2009; Dobrovolny
and Fuentes, 2008).

GLCM features In 1973, Haralick et al. (1973) first described the idea of textural
analysis through gray level co-occurrence matrix (GLCM) features. These provide a
powerful tool for the statistical analysis of spatial correlations between pixel values
in images. In modern times, they are most commonly utilized for image classifica-
tion, segmentation, or pattern recognition (Yogeshwari and Thailambal, 2023) by
comparing learned features to those of the input images.
Their calculation first requires forming the GLCM. The GLCM is a matrix where
each element P (i, j) is representative of how often a pixel with intensity i is adjacent
to a pixel with intensity j under a defined spatial relationship. For this evaluation
the following GLCM features are of interest:

• Contrast:

– Measures intensity variations and local contrast changes.

–
∑L

i,j=1(i− j)2P (i, j)

• Dissimilarity:

– Measures degree of intensity variations and image roughness.

–
∑L

i,j=1 |i− j|P (i, j)

• Homogeneity:

– Measures local pixel similarity, uniformity, and texture smoothness.

–
∑L

i,j=1
P (i,j)
1+|i−j|

• Energy:

– Measures texture uniformity and complexity.

–
∑L

i,j=1 P (i, j)2

• Correlation:

– Measures co-occurrence likelihood and linear dependencies between pixel
pairs. Requires calculating means (µi, µj) and standard deviations (σi, σj)
of pixel values in GLCM.

–
∑L

i,j=1
(ij)P (i,j)−(µiµj)

(σiσj)
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FID In search of evaluation metrics to assess the image quality of synthetically
created images, Heusel et al. (2017) introduced the Fréchet inception distance (FID).
The FID measures the Fréchet distance (FD) between two Gaussian distributions
derived from the feature representations of real and generated images (Woodland
et al., 2024). Its calculation requires feature extraction of the real and generated im-
ages. Therefore, the Inception-v3 model was used, as Woodland et al. (2024) showed
that even in the medical domain feature extractors based on ImageNet constantly
provide better results than those trained with medical datasets. The extracted fea-
ture vectors are then used to calculate the FID as follows

d2 = ||µr − µg||2 + Tr(Cr + Cg − 2
√

CrCg)

Here, µr and µg refer to the mean, while Cr and Cg refer the the covariance matrix of
the r(eal) and g(enerated) feature vectors. Tr refers to the trace operation defined
as the sum of all elements on the main diagonal of a square matrix.

PCA In ML, it’s common to work with high-dimensional data as in- and output
data are often represented as vectors. Therefore, a principal component analysis
(PCA) can be used as a dimensionality reduction technique, enabling the visual-
ization of complex data by trading information against simplicity. To calculate the
most important features, a PCA is conducted by following these steps (Ringnér,
2008; Maćkiewicz and Ratajczak, 1993):

• Standardize all given features to ensure equal contribution of every feature.

• Compute the covariance matrix of the standardized features to capture vari-
ance and correlation between features.

• Use the covariance matrix to compute the eigenvectors (principal components)
and eigenvalues (variances).

• Rank the eigenvalues to see which principal component explains the highest
variance.

• Multiply the original data by the highest-ranked principal components to ob-
tain lower-dimensional data.

The resulting data can then be plotted or used for other purposes.

VAE Proposed by Kingma (2013), the variational autoencoder (VAE) is a proba-
bilistic generative DL approach that can be used for data generation, feature learn-
ing, dimensionality reduction, and compression (Zhai et al., 2018). It does so by
combining two different DL models. The first one takes data, transforms it into a
latent space, and is called encoder. The second model is called decoder and tries to
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reconstruct these latent representations back to their original content. The quality
of the reconstructions is evaluated on the following metrics.

• Test Loss = 1
n

∑n
i=1(BCE(yi, ŷi) + KLD(µi, log(σ2

i )))
where n is the number of images in the test set, BCE(yi, ŷi) refers to the binary
cross-entropy loss between original image yi and reconstructed image ŷi, and
KLD(µi, log(σ2

i ))) is the Kullback-Leibler divergence measuring the difference
between a learned latent space distribution with mean µi and variance σ2

i , and
a normal distribution

• Mean Absolute Error (MAE) = 1
n

∑n
i=1 |yi − ŷi|

where n is the number of images in the test set, yi is the original and ŷi the
reconstructed image

• Root Mean Square Error (RMSE) =
√

1
n

∑n
i=1(yi − ŷi)2

where n is the number of images in the test set, yi is the original and ŷi the
reconstructed image

OOD-Sample Detection Test data for model evaluation often closely resembles
the training data to achieve optimal measures. These training samples are said to
be in-distribution (ID). In real-world scenarios, however, the models’ generalization
capabilities are often tested by being confronted with previously unseen data, called
out-of-distribution-samples (OOD-samples). To ensure reliability and robustness it
is thus desired to be able to identify samples that do not belong to the training
distribution (Yang et al., 2024). Therefore, the following measures are used.

• Area Under the Receiver Operating Curve (AUROC): Measures the model’s
ability to distinguish between OOD- and ID-samples. Higher values indicate
better distinction.

• Area Under the Precision-Recall Curve for ID-samples (AUPR-IN): Measures
the model’s ability to detect ID-samples. Higher values indicate better preci-
sion and recall.

• Area Under the Precision-Recall Curve for OOD-samples (AUPR-OOD): Mea-
sures the model’s ability to detect OOD-samples. Higher values indicate better
precision and recall.

• False Positive Rate at 95% True Positive Rate (FPR95TPR): Measures the
FPR when the TPR is at 95%. Lower values indicate precise detection.
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5 Evaluation

5.1 Datasets

ADNI ”The ADNI was launched in 2003 as a public-private partnership, led by
Principal Investigator Michael W. Weiner, MD. The primary goal of ADNI has
been to test whether serial MRI, PET, other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild
cognitive impairment (MCI) and early Alzheimer’s disease (AD)” (ADNI, 2022).
Among other information, it provides PET and MRI human brain scans, all of
which are in gray-scale with intensity range [0, 1]. The scans gathered from the Im-
age and Data Archive (IDA) (ADNI, 2022) are available in the Digital Imaging and
Communications in Medicine (DICOM, .dcm) format and focus on the diagnosis of
AD, the most common form of dementia.
This evaluation uses a subset of the original ADNI data with 847 PET and 914
MRI images, all acquired in the axial plane. The PET data was acquired from 2006
till 2021 and includes scans from the image series ADNI Brain PET: Raw FDG,
ADNI Brain PET: Raw AV45, ADNI Brain PET: Raw, ADNI (AC) FDG, ADNI2
(AC) FDG, ADNIGO - FDG BRAIN STUDY, and ADNI3-AV45 (AC). Meanwhile,
the MRI scans were collected between 2006 and 2018 with the images series Ax-
ial PD/T2 FSE and Axial T2-FLAIR being used. For preparation, each scan has
been adapted to the .npy (numpy array) format, resized to dimensions 256x256,
normalized to intensity range [0, 255], and denoised. Additionally, an own test set
with distinct subjects from the train and validation set has been created. For more
information see Table 1.
The ADNI dataset was selected due to its carefully annotated and well-established
PET and MRI images. In contrast, alternative datasets were characterized by sparse
or non-existent annotations, suboptimal image quality, limited scale, or lack of pub-
lic accessibility. However, limitations arise as ADNI does not include CT scans.
For evaluation purposes, this dataset therefore had to be merged with the RSNA
dataset. Although this contains CT scans, it does not have the same classification
task as ADNI. Hence, a custom classification task ”healthy”/”not healthy” had to
be established for the merged dataset. Furthermore, access to ADNI data has to
be applied for, which, for legal reasons, makes it impossible to publish the created
subset for reproduction purposes.

RSNA Published by the Radiological Society of North America (RSNA) (Flan-
ders et al., 2020) in 2019 as part of the RSNA Intracranial Hemorrhage Detection
challenge on Kaggle (A. Stein, 2019), the task in this dataset is to classify whether
a patient has intracranial hemorrhage (bleeding inside cranial) and if true also what
exact subtypes are present. Therefore, CT human brain scans are provided, all of
them acquired in the axial plane, presented in gray-scale, expressed in HUs, and
wrapped as DICOM files.
The subset used for the evaluation consists of 1075 CT images, all preprocessed by

https://adni.loni.usc.edu/
https://www.kaggle.com/c/rsna-intracranial-hemorrhage-detection/data
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being formatted to the .npy format, resized to dimensions 256x256, normalized to
intensity range [0, 255], and denoised. Distribution details can be checked in Ta-
ble 1.
Finding publicly accessible, large enough, well-annotated, and high-quality CT brain
scans is difficult, thus choosing the RSNA dataset was a well-justified decision. This
is because, despite the deviating classification task in comparison to the ADNI
dataset, it fulfills all other requirements.

TCGA-BLCA Version 8 of The Cancer Genome Atlas Urothelial Bladder Carci-
noma Collection (TCGA-BLCA) presents a data collection with a focus on urothelial
bladder carcinoma (bladder cancer) published as part of TCGA. It provides gray-
scale PET, MRI, and CT scans of the human bladder with intensity range [0, 1].
All data is provided by The Cancer Imaging Archive (TCIA) (Kirk et al., 2016) in
the DICOM format.
Here, a selection from the initial TCGA-BLCA dataset is utilized, consisting of 300
PET, 300 MRI, and 300 CT images, each captured in the axial or coronal plane and
with the task of classifying cancer as stage II or stage III. The specifics of the data
distribution are listed in Table 1. Data preprocessing was done by transforming
every image to the .npy format, resizing them to dimensions 256x256, normalizing
them to intensity range [0, 255], and denoising them. Similar to ADNI, an own test
set with from training and validation data distinct subjects had to be created as
well.
Picking the TCGA-BLCA dataset was not much of a choice as a dataset of a second
anatomy was needed for the evaluation to suggest the applicability of CMDA for the
whole body, instead of just the brain. However, with extreme effort, only this one
dataset could be found when it came to searching for an anatomy for which scans of
all three implemented modalities exist. Yet, TCGA-BLCA still brings many prob-
lems along. As the dataset did not provide negative samples, a different classification
task had to be created. The chosen task was the only choice with sufficient data
but may be hard to accomplish due to stage II and stage III cancer being difficult
to distinguish. Still, the major problem was the distribution between modalities in
the original dataset. As only very few patients had undergone PET scans, lots of
PET images from each patient had to be included in the subset used, resulting in
invariable data. Additionally, to avoid imbalances, this forced the number of images
of the other modalities the be reduced as well.

5.2 Comparative Models and Data Augmentations

Some experiments require the use of different NNs, other data augmentations, or
generally applied transformations. Therefore, this Section justifies their usage and
presents their benefits.

https://www.cancerimagingarchive.net/collection/tcga-blca/
https://www.cancerimagingarchive.net/collection/tcga-blca/
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Table 1: Dateset subsets used for the evaluation. ”-” indicates that no or insufficient
information was given.

Dataset Anatomy Modality Diagnosis # images Age Sex (F/M)

ADNI brain

PET
AD 531 (62.69%)

56-96 102/100
CN 316 (37.31%)

MRI
AD 498 (54.49%)

56-95 93/109
CN 416 (45.51%)

RSNA brain CT
Intracranial Hemorrhage 642 (59,72%)

- -
healthy 433 (40,28%)

BLCA bladder

PET
stage II 150 (50,00%)

- -
stage III 150 (50,00%)

MRI
stage II 150 (50,00%)

- -
stage III 150 (50,00%)

CT
stage II 150 (50,00%)

- -
stage III 150 (50,00%)

5.2.1 Models

Both qualitative and quantitative evaluation include experiments that require train-
ing a NN. For each of these cases not just one, but two separate models are trained
and implemented using the PyTorch library. This strengthens the reliability and
robustness of the presented findings as their consistency across models can be eval-
uated. Furthermore, it might reveal architecture- and pretraining-specific behavior
and interactions.

ResNet-18 Introduced by He et al. (2016), ResNet-18 is a version of the Residual
NN (ResNet) architecture with 18 layers. It utilizes the deep residual learning
framework which enables skip connections that allow for some layers to be skipped.
This helps to mitigate the problem of vanishing or exploding gradients and thus
enables more effective training of very deep NNs. It combines efficiency with the
ability to capture low- and high-level features, leading to good performance when it
comes to image classification tasks.
If used in an experiment and not otherwise stated, the model is not pretrained,
set to two output classes, and the first convolutional layer only accepts gray-scale
images.

ViT-B/16 Initially designed for NLP, Vision Transformers (ViTs) follow another
paradigm as they split images into patches and treat them as sequences. The ex-
periments employ the ViT-B/16 proposed by Dosovitskiy (2020) which uses a patch
size of 16x16. Instead of convolutions, ViTs make use of self-attention mechanisms
that allow them the capture global dependencies and complex patterns across im-
ages better than CNNs do. However, they require large datasets for their training
while also being slower than CNNs.

https://pytorch.org/
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If used in an experiment and not otherwise stated, the model is pretrained on Ima-
geNET1k.

5.2.2 Comparative Data Augmentations and General Transformations

To better assess the results achieved by CMDA, a comparison to other data augmen-
tations is appropriate for some experiments, establishing a performance benchmark.
This could also help to justify the innovation of CMDA by highlighting its advantages
over current standards, or by giving insights into augmentation synergies when data
augmentations are combined. For information on the exact augmentation pipelines
used for each experiment, please refer to the corresponding GitHub repository.

imgaug imgaug is a well-known and popular library for data augmentation in
image processing. It supports complex geometric and color transformations, works
efficiently, provides native flexibility in designing augmentation pipelines, and is
transparent as its source code is made available on GitHub.

Albumentations Known for its speed and efficiency, Albumentations also pro-
vides extensive transformations that easily integrate with deep learning frameworks
(Buslaev et al., 2020). It is designed to be easy to use and customizable while the
source code is once again published on GitHub.

v2 The PyTorch library also supplies built-in data augmentations in the name of
transforms v2. Due to their PyTorch integration, they are easy to implement and do
not require additional libraries to be used. They provide standard transformations
such as normalization, flipping, or rotating, and are suitable for provisional drafts
and augmentation strategies.

RandAugment Unlike the previous data augmentations, RandAugment is not a
library but rather an automated augmentation method presented by Cubuk et al.
(2020). It works by randomly selecting augmentation from a given set and then
sequentially applying them with random intensities. Its results have proved its
effectiveness in improving robustness and generalization which, besides its simple
implementation, makes it a popular choice.

General Transformations The following transformations are performed on every
image if used as input for a model

• ResNet-18

1. Convert image to Tensor

2. Normalize Tensor using a calculated mean and standard deviation

https://github.com/juliustutz00/cross-modality-data-augmentation
https://github.com/aleju/imgaug
https://github.com/aleju/imgaug
https://albumentations.ai/
https://github.com/albumentations-team/albumentations
https://pytorch.org/
https://pytorch.org/vision/main/auto_examples/transforms/plot_transforms_getting_started.html
https://pytorch.org/vision/main/generated/torchvision.transforms.RandAugment.html
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• ViT-B/16

1. Convert image to Tensor

2. Convert Tensor from gray-scale to RGB

3. Resize Tensor to 224x224 pixels

4. Normalize Tensor using a given/calculated mean and standard deviation

5.3 Quantitative Evaluation

This evaluation allows to test whether CMDA can be used to enhance model gen-
eralization capabilities, improve model robustness under changing conditions, and
provide efficient resource utilization. All experiments shown in this Section are con-
ducted with the ADNI/RSNA dataset. Unfortunately, there are no comparative
results with other anatomical structures as the acquired TCGA-BLCA dataset is
too small. Implementations of the following experiments with exact parameters
used can be found in the corresponding GitHub repository.

5.3.1 Experimental Setup

Generalization performance The following experiments aim to prove the effec-
tiveness of CMDA when comparing the ability of models to generalize across medical
imaging modalities. Therefore, ResNet-18 and ViT-B/16 models are trained with
and without data augmentations, afterward being evaluated on the same test set.
The hypothesis always sees the models trained with augmented data performing
better than those without. However, because of unexpected results multiple ex-
periments were conducted, trying to support the hypothesis. In the following, let
M = {ResNet-18,ViT-B/16} be a set of a ResNet-18 and a ViT-B/16 model used
in the experiments, where an operation on M denotes that the operation is applied
to each element of M. Mall is further defined as the set of M for each data augmen-
tation (e.g. Mall = {MNone,Mimgaug,MAlbumentations,Mv2,MRandAugment,MCMDA}.
Additionally, a set with one or more modality names refers to a set of images from
these modalities (e.g., {PET, CT} refers to a set of non-augmented PET and CT
images). If not otherwise stated, these images are taken from the combined ADNI
and RSNA dataset. If the set of images is augmented by some data augmentation
it is denoted by adding it as superscript (e.g. {PET}CMDA refers to a set of PET
images augmented by CMDA). Training is always performed with the training sets,
testing with the prepared test sets.

Experiment 1
Training : MNone is trained on {PET, MRI, CT}, then MCMDA is trained on {PET,
MRI, CT}CMDA where each image is randomly augmented to look like one of the
other two modalities (e.g., PET images are either transformed to MRI or CT). The

https://github.com/juliustutz00/cross-modality-data-augmentation
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same procedure is conducted for the other comparative data augmentations, yield-
ing Mall. Furthermore, Mcombined is created by combining CMDA with each data
augmentation (e.g. Mimgaug ◦CMDA ∈ Mcombined).

Testing : Mall and Mcombined are evaluated on {PET, MRI, CT}.

Rationale: This experiment should demonstrate how CMDA can be used to cre-
ate more diverse training data. This should lead the models to have a higher focus
on disease-specific, rather than modality-specific characteristics.

Experiment 2
Training : MNone

CT is trained on {PET, MRI}, MNone
MRI on {PET, CT}, and MNone

PET on
{MRI, CT}. Next, MCMDA

CT is trained on {PET, MRI}CMDA where each image is
augmented to {CT}, MCMDA

MRI on {PET, CT}CMDA where each image is augmented
to {MRI}, and MCMDA

PET on {MRI, CT}CMDA where each image is augmented to
{PET}. Again, the same happens for all other comparative data augmentations,
yielding Mall where each data augmentation now provides three sets of models in-
stead of one (e.g., {MNone

CT ,MNone
MRI ,MNone

PET } ⊂ Mall).

Testing : For all data augmentations and the non-augmented case, MCT, MMRI,
and MPET are evaluated on {PET, MRI, CT}.

Rationale: With this setup, it is expected that models trained with CMDA-augmented
data perform better than those without. The augmented images should help the
models to learn more about the characteristics of the missing modality. Thus, posi-
tive results would prove CMDA’s usefulness in improving the generalization ability
of models.

Experiment 3
Training : MNone

CT is trained on {PET, MRI}, then fine-tuned on {CT}, MNone
MRI is

trained on {PET, CT}, then fine-tuned on {MRI}, and MNone
PET is trained on {MRI,

CT}, then fine-tuned on {PET}. For CMDA, the custom modalities shown in Fig-
ure 20 have been added. MCMDA

CT is thus trained on {PET, MRI}CMDA where each
image is randomly augmented to mod ={PET, MRI, CT, Retinal OCT, Kidney
Cortex Microscopy, Blood Cell Microscopy, Colon Pathology, Breast Ultrasound,
Dermatoscopy} \ {current image modality}, then fine-tuned on {CT}. Similarly,
MCMDA

MRI is trained on {PET, CT}CMDA where each image is randomly augmented to
mod, then fine-tuned on {MRI}, and MCMDA

PET is trained on {MRI, CT}CMDA where
each image is randomly augmented to mod, then fine-tuned on {PET}. To obtain
Mall where each data augmentation now provides three sets of models instead of
one, the same is done for all other comparative data augmentations. For this exper-
iment, the ViT-B/16 model is not pretrained as the pretraining is done in the first
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step. Additionally, as the reference images of the custom modalities are in color,
the first convolutional layer of the ResNet-18 model now accepts RGB images, and
all gray-scale images are transformed to RGB.

Testing : For all data augmentations and the non-augmented case, MCT is eval-
uated on {CT}, MMRI is evaluated on {MRI}, and MPET is evaluated on {PET}.

Rationale: Similar to Experiment 1, if successful, this protocol could illustrate that
models trained with CMDA provide a better model base for other medical imaging
related tasks as they are trained with more diverse data.

Training Details
All experiments have been conducted with learning rate = 0.001, batch size = 32,
epochs = 25, 5 runs to perform a kind of cross-validation, the Adam optimizer, and
a 70%/15%/15% train/validate/test split.

Execution time As previously mentioned, CMDA should function during run-
time, making it integrable into existing pipelines. Hence, its execution time is tested
and compared to other data augmentations where CMDA is hypothesized to per-
form in the same magnitude as such.
As CMDA has multiple possible modality combinations, the data augmentations are
tested by augmenting a PET, MRI, and CT dataset, each containing 300 images.
The augmentation pipelines are designed to be realistic and similar in complexity,
exact values can be found in the corresponding GitHub repository. The time it
takes each data augmentation to augment all 300 images is measured in millisec-
onds, with this experiment being repeated 1000 times to account for outliers or
unpredicted results.

5.3.2 Results

Generalization performance
Experiment 1
The results presented in Table 2 show that the best values for the ResNet-18 model
could be achieved with Albumentations, while CMDA partially performs slightly
better, partially slightly worse than the case where no augmentation is applied.
For the ViT-B/16 model, however, CMDA always achieves the best results across
all comparative data augmentations. Yet, the differences to the values of the non-
augmented case can not be proven to be significant.
When combining the comparative data augmentations with CMDA it can easily be
seen that, apart from RandAugment, all others benefit from CMDA, as highlighted
by the bold values in Table 3. As before, Albumentations performs best for the
ResNet-18 model, while imgaug performs best for the ViT-B/16 model, both com-

https://github.com/juliustutz00/cross-modality-data-augmentation
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bined with CMDA. The results in both tables support the hypothesis rather than
invalidating it but are still less meaningful than expected.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

Balanced Accuracy
ResNet-18 0.6193 0.6437 0.6516 0.6285 0.6282 0.6259

ViT-B/16 0.7176 0.7203 0.7194 0.7095 0.7092 0.7229

Precision
ResNet-18 0.6360 0.6620 0.6676 0.6449 0.6505 0.6446

ViT-B/16 0.7295 0.7322 0.7322 0.7237 0.7248 0.7355

Recall
ResNet-18 0.6407 0.6537 0.6639 0.6343 0.6310 0.6282

ViT-B/16 0.7282 0.7306 0.7301 0.7241 0.7213 0.7338

F1-Score
ResNet-18 0.6356 0.6494 0.6613 0.6312 0.6250 0.6254

ViT-B/16 0.7268 0.7292 0.7284 0.7216 0.7186 0.7321

ROC AUC
ResNet-18 0.6801 0.7078 0.7235 0.7025 0.6879 0.6880

ViT-B/16 0.7787 0.7807 0.7798 0.7801 0.7813 0.7819

Table 2: Metrics measured for experiment 1 where each data augmentation is tested
on its own. The best values for each row are highlighted by color.

Metric Model imgaug+ Albumentations+ v2+ RandAugment+

Balanced Accuracy
ResNet-18 0.6482 0.6657 0.6494 0.6118

ViT-B/16 0.7235 0.7162 0.7119 0.7039

Precision
ResNet-18 0.6795 0.6874 0.6677 0.6415

ViT-B/16 0.7350 0.7307 0.7274 0.7208

Recall
ResNet-18 0.6593 0.6755 0.6556 0.6204

ViT-B/16 0.7333 0.7287 0.7264 0.7167

F1-Score
ResNet-18 0.6474 0.6703 0.6522 0.6050

ViT-B/16 0.7321 0.7259 0.7236 0.7133

ROC AUC
ResNet-18 0.7312 0.7393 0.7229 0.6910

ViT-B/16 0.7830 0.7809 0.7808 0.7854

Table 3: Metrics measured for experiment 1 where the + indicates that each data
augmentation is tested in combination with CMDA. The best values for each row
are highlighted by color while values that are better in comparison to the data
augmentation’s application without CMDA are put in bold.

Experiment 2
Tables 4, 5, and 6 illustrate that this experiment fails to confirm the hypothesis.
Apart from some values in Table 4, CMDA performs notably worse than all other
data augmentations and mostly also worse than the case where no data augmenta-
tion is applied. Instead, imgaug stands out through good results across all left-out
modalities.

Experiment 3
Similar to experiment 2, Tables 7 and 8 show that results achieved by CMDA are
partially substantially worse than comparative measures. Table 9 is the only case
where all CMDA values are better than those where no data augmentation has been
applied. Overall, Albumentations, v2, and RandAugment perform the best.

Execution time As can be seen in Table 10, CMDA takes just slightly longer than
the comparative data augmentations, whereby Albumentations is a special case as
it is specifically designed for being fast. While the standard deviations of CMDA
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Metric Model None imgaug Albumentations v2 RandAugment CMDA

Balanced Accuracy
ResNet 0.5605 0.5958 0.5543 0.5661 0.5544 0.5579

ViT 0.5662 0.5673 0.5680 0.5638 0.5764 0.5929

Precision
ResNet 0.5795 0.6297 0.5823 0.6165 0.5948 0.5810

ViT 0.5875 0.5897 0.5892 0.5865 0.6049 0.6369

Recall
ResNet 0.5484 0.5976 0.5538 0.5830 0.5805 0.5864

ViT 0.5995 0.6024 0.6010 0.6000 0.6107 0.6409

F1-Score
ResNet 0.5360 0.5788 0.5276 0.5425 0.5589 0.5736

ViT 0.5851 0.5862 0.5869 0.5816 0.5933 0.6096

ROC AUC
ResNet 0.5875 0.6201 0.6000 0.5830 0.6085 0.5814

ViT 0.6162 0.6214 0.6176 0.6187 0.6188 0.6135

Table 4: Metrics measured for experiment 2 where CT data is not included in the
training. The best values for each row are highlighted by color.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

Balanced Accuracy
ResNet-18 0.5752 0.5902 0.6041 0.6009 0.5358 0.5192

ViT-B/16 0.6000 0.5976 0.5951 0.5972 0.5959 0.5513

Precision
ResNet-18 0.5950 0.6152 0.6250 0.6225 0.5456 0.5456

ViT-B/16 0.6143 0.6129 0.6113 0.6137 0.6159 0.5706

Recall
ResNet-18 0.5538 0.5674 0.6112 0.5830 0.5669 0.5849

ViT-B/16 0.6170 0.6175 0.6161 0.6190 0.6234 0.5805

F1-Score
ResNet-18 0.5501 0.5623 0.6053 0.5783 0.5300 0.5030

ViT-B/16 0.6147 0.6135 0.6113 0.6136 0.6135 0.5691

ROC AUC
ResNet-18 0.6200 0.6164 0.6675 0.6459 0.6003 0.5656

ViT-B/16 0.6287 0.6146 0.6171 0.6193 0.6467 0.5772

Table 5: Metrics measured for experiment 2 where MRI data is not included in the
training. The best values for each row are highlighted by color.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

Balanced Accuracy
ResNet-18 0.5926 0.6006 0.6090 0.6024 0.5507 0.5088

ViT-B/16 0.6814 0.6863 0.6837 0.6830 0.6833 0.5975

Precision
ResNet-18 0.6106 0.6188 0.6255 0.6199 0.5676 0.5281

ViT-B/16 0.7131 0.7210 0.7161 0.7040 0.7066 0.6169

Recall
ResNet-18 0.6024 0.6147 0.6127 0.6146 0.5645 0.5523

ViT-B/16 0.7109 0.7178 0.7139 0.7022 0.7075 0.6165

F1-Score
ResNet-18 0.5979 0.6112 0.6107 0.6111 0.5547 0.5162

ViT-B/16 0.6999 0.7058 0.7026 0.6966 0.7004 0.6098

ROC AUC
ResNet-18 0.6721 0.6802 0.6674 0.6593 0.6174 0.5373

ViT-B/16 0.7689 0.7620 0.7637 0.7610 0.7733 0.6460

Table 6: Metrics measured for experiment 2 where PET data is not included in the
training. The best values for each row are highlighted by color.
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Metric Model None imgaug Albumentations v2 RandAugment CMDA

Balanced Accuracy
ResNet-18 0.7047 0.7160 0.7373 0.7413 0.6046 0.6510

ViT-B/16 0.5861 0.5722 0.5876 0.6174 0.6020 0.5830

Precision
ResNet-18 0.7365 0.7509 0.7577 0.7650 0.7137 0.6891

ViT-B/16 0.6389 0.6066 0.6534 0.6351 0.6262 0.6503

Recall
ResNet-18 0.7130 0.7354 0.7578 0.7466 0.6161 0.6857

ViT-B/16 0.6124 0.6000 0.6137 0.6398 0.6261 0.6099

F1-Score
ResNet-18 0.7069 0.7267 0.7535 0.7430 0.5553 0.6628

ViT-B/16 0.5704 0.5544 0.5728 0.6352 0.6150 0.5686

ROC AUC
ResNet-18 0.8111 0.8272 0.8248 0.8354 0.7714 0.7513

ViT-B/16 0.6909 0.6780 0.6917 0.6881 0.6885 0.6880

Table 7: Metrics measured for experiment 3 where CT data is not included in the
first and then fine-tuned on in the second training stage. The best values for each
row are highlighted by color.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

Balanced Accuracy
ResNet-18 0.6075 0.6108 0.6128 0.6550 0.6450 0.5881

ViT-B/16 0.5222 0.5239 0.5222 0.5047 0.5261 0.5208

Precision
ResNet-18 0.6563 0.6507 0.6526 0.6965 0.6874 0.6293

ViT-B/16 0.6528 0.6516 0.6529 0.5425 0.6097 0.6511

Recall
ResNet-18 0.6696 0.6625 0.6679 0.6750 0.6964 0.6661

ViT-B/16 0.6286 0.6321 0.6287 0.6089 0.6179 0.6268

F1-Score
ResNet-18 0.6488 0.6429 0.6525 0.6678 0.6853 0.6292

ViT-B/16 0.5524 0.5507 0.5524 0.5435 0.5621 0.5510

ROC AUC
ResNet-18 0.6924 0.7165 0.7092 0.7229 0.7344 0.6844

ViT-B/16 0.5842 0.5975 0.5815 0.5864 0.5697 0.5751

Table 8: Metrics measured for experiment 3 where MRI data is not included in the
first and then fine-tuned on in the second training stage. The best values for each
row are highlighted by color.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

Balanced Accuracy
ResNet-18 0.6812 0.6855 0.6769 0.6930 0.6196 0.6903

ViT-B/16 0.5244 0.5336 0.5261 0.5606 0.5688 0.5268

Precision
ResNet-18 0.6931 0.6958 0.6873 0.7051 0.6340 0.6994

ViT-B/16 0.6148 0.6041 0.6057 0.5888 0.5782 0.6219

Recall
ResNet-18 0.6884 0.6870 0.6768 0.7000 0.6130 0.6971

ViT-B/16 0.5493 0.5580 0.5493 0.5681 0.5797 0.5507

F1-Score
ResNet-18 0.6836 0.6835 0.6730 0.6950 0.5738 0.6935

ViT-B/16 0.4555 0.4709 0.4636 0.5393 0.5638 0.4619

ROC AUC
ResNet-18 0.7435 0.7547 0.7297 0.7515 0.7063 0.7481

ViT-B/16 0.5721 0.6152 0.5992 0.5989 0.6217 0.6058

Table 9: Metrics measured for experiment 3 where PET data is not included in the
first and then fine-tuned on in the second training stage. The best values for each
row are highlighted by color.
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are notably higher than the others, the average execution times are still within an
acceptable time range and thus integration viable, supporting the hypothesis.

Dataset imgaug Albumentations v2 RandAugment CMDA to MRI CMDA to CT

PET
64.88 11.37 53.75 104.04 150.54 103.64
± 3.67 ± 1.48 ± 9.08 ± 9.30 ± 52.08 ± 23.68

Dataset imgaug Albumentations v2 RandAugment CMDA to PET CMDA to CT

MRI
64.27 11.91 53.89 103.23 121.63 90.59
± 3.96 ± 1.64 ± 8.68 ± 8.63 ± 48.49 ± 19.34

Dataset imgaug Albumentations v2 RandAugment CMDA to PET CMDA to MRI

CT
65.15 12.13 54.10 103.40 112.76 89.11
± 3.65 ± 1.56 ± 8.71 ± 8.48 ± 44.67 ± 37.69

Table 10: Average execution times and their standard deviations in milliseconds
(ms).

5.4 Qualitative Evaluation

The following investigations enable the examination of CMDA preserving content,
aligning with the target modality distribution, as well as retaining medical image in-
tegrity. All experiments shown in this Section are conducted with the ADNI/RSNA
dataset. To see results of the same experiments conducted with the TCGA-BLCA
dataset, please refer to Appendix A.2.2. Implementations of the following experi-
ments with exact parameters used can be found in the corresponding GitHub repos-
itory.

5.4.1 Experimental Setup

GLCM features The experimental setup begins by taking two datasets, one from
the original modality (DO) and one from the target modality (DT ). DO is then
randomly split into two distinct datasets (DO

O , DA
O) of the same size, such that

size(DO) = size(DO
O) + size(DA

O). DA
O is special in that it is augmented from the

original modality to the target modality by CMDA with given intensities ranging
from 0% to 100%, rising by 10% each run, resulting in eleven runs. A run starts
by augmenting DA

O and calculating the mentioned GLCM features for each element
in each dataset and creating a mean GLCM feature vector with five values for
every dataset (VDO

O
, VDA

O
, VDT

). These vectors are now Z-score standardized to avoid

high values dominating, as afterward the Euclidean distances ||VDA
O
− VDO

O
|| and

||VDA
O
− VDT

|| are calculated. The two distances are saved which ends a run. After
all runs are completed, the results are plotted on a diagram, allowing for a direct
visual comparison. The hypothesis is that with rising augmentation intensities the
Euclidean distance ||VDA

O
−VDO

O
|| should increase while ||VDA

O
−VDT

|| should decrease.
This experiment is conducted six times, once for each possible distinct combination
of implemented modalities.

https://github.com/juliustutz00/cross-modality-data-augmentation
https://github.com/juliustutz00/cross-modality-data-augmentation
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FID The experiment protocol is extremely similar to that of the GLCM features.
It differs only in that instead of calculating the GLCM features, the Inception-v3
model is used to extract features fDO

O
, fDA

O
, fDT

for each dataset, whereupon the FIDs

d2(fDA
O
, fDO

O
) and d2(fDA

O
, fDT

) are calculated. The hypothesis is adapted as with

rising intensities d2(fDA
O
, fDO

O
) should increase while d2(fDA

O
, fDT

) should decrease.

PCA Once again, this experimental setup uses DO
O , DA

O, and DT , where DA
O is one

non-augmented and once augmented with intensity 100%. However, this time a PCA
to three dimensions is carried out for each image in each dataset. The corresponding
lower-dimensional data is then plotted into one joint 3D plot with different symbols
and colors depending on the current dataset, resulting in lots of data points. In the
end, it is expected that with rising intensity the lower-dimensional data produced
by DA

O moves closer to the data points of DT and further away from DO
O . Again,

the experiment is conducted six times, once for each possible distinct combination
of implemented modalities.

VAE The experiment starts with loading a dataset DO
O with images from the

original modality as well as a dataset DT with images from the target modality.
Additionally, DO

O is augmented by CMDA with 100% intensity, creating a new aug-
mented dataset DA

O. Next, two independent VAEs (VAEO, VAEA) are created with
input size 256x256, size of the hidden layer being 400, and size of the latent space
being 20. VAEO is then trained on DO

O , while VAEA is trained on DA
O, both with a

learning rate of 0.001 and for 50 epochs. Finally, both VAEs are evaluated on DT .
The hypothesis is that, in comparison to VAEO, all three metrics decrease when
VAEA is evaluated on DT . This would indicate that VAEA is better at image recon-
struction and provides more accurate latent space representations. The experiment
is again repeated six times.

OOD-Sample Detection This experiment used the pytorch-ood library from
Kirchheim et al. (2022) to create an energy-based OOD-detector detOOD proposed
by Liu et al. (2020).
The experimental protocol begins by loading a dataset Dtrain&val of the original
modality and then splitting it into training (Dtrain) and validation (Dval) set, using
a 70%/15%/15% split. Next, the test set Dtest is created by merging another dataset
DID

test of the original modality with a dataset DOUT
test of the target modality. Now a run

starts by training an untrained ResNet-18 model and an untrained ViT on Dtrain&val

for 25 epochs, using a learning rate of 0.001 and a batch size of 32. detOOD then
tests both models on Dtest for their OOD-detection capabilities.
This run is performed five times with random train/val splits and then takes the
average for each of the measured metrics to implement some kind of cross-validation.
The whole procedure is conducted six times, where Dtrain is not augmented, or
augmented by imgaug, Albumentations, v2, RandAugment, or CMDA. To prove
CMDA’s capabilities of aligning images with the distribution of the target modality,

https://github.com/kkirchheim/pytorch-ood
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it is expected that AUROC, AUPR-IN, and AUPR-OOD decrease while FPR95TPR
increases for both the ResNet-18 and the ViT model when Dtrain is augmented with
CMDA. This is meant in comparison to all other data augmentations and the non-
augmented case.

5.4.2 Results

GLCM features Figure 21 presents the Euclidean distances ||VDA
O
− VDO

O
|| and

||VDA
O
− VDT

|| for a range [0, 1] (intensities [0%, 100%]) of augmentation ratios

(intensities) that CMDA has been applied with to DA
O. The orange graph displays

the distances ||VDA
O
− VDT

|| to the target (Output) modality while the blue graph

illustrates the distances ||VDA
O
− VDO

O
|| to the original (Input) modality.

It can be observed that for Ratio = 0.0, distance ||VDA
O
− VDT

|| is constantly higher
than for Ratio = 1.0. Furthermore, some cases also show that the smallest distance
might as well be achieved at medium intensities. Complementary, for Ratio =
0.0, distance ||VDA

O
− VDO

O
|| is constantly lower than for Ratio = 1.0. Thus, this

experiment’s hypothesis is supported by the presented findings.
The exact distances can be taken from Table 13 in Appendix A.2.1.

PET to MRI PET to CT

MRI to PET MRI to CT
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CT to PET CT to MRI

Figure 21: Euclidean distances between GLCM features of augmented dataset to
original and target modality dataset. The X-axis shows the augmentation intensity
applied to a set of images from the original modality. The Y-axis displays the
distance of this augmented set to a set of images from the original modality (blue
graph) and the target modality (orange graph). The captions display the translation
direction.

FID The FIDs d2(fDA
O
, fDO

O
) and d2(fDA

O
, fDT

), where DA
O has been augmented

by CMDA with ratio [0, 1], are illustrated in Figure 22. Again, the orange graph
displays the distances d2(fDA

O
, fDT

) to the target (Output) modality whereas the

distance d2(fDA
O
, fDO

O
) to the original (Input) modality is shown by the blue graph.

Similar to the graphs of the GLCM features, it can be seen that for Ratio = 0.0,
distance d2(fDA

O
, fDT

) (d2(fDA
O
, fDO

O
)) is constantly higher (lower) than for Ratio =

1.0. However, it should be noted that the largest decreases in d2(fDA
O
, fDT

) are
attained with target modality PET while the other transformations produce rather
small improvements. Nevertheless, the results shown are still supportive of the
formulated hypothesis.
The exact FIDs can be taken from Table 14 in Appendix A.2.1.

PET to MRI PET to CT
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MRI to PET MRI to CT

CT to PET CT to MRI

Figure 22: FIDs of augmented dataset to original and target modality dataset. The
X-axis shows the augmentation intensity applied to a set of images from the original
modality. The Y-axis displays the distance of this augmented set to a set of images
from the original modality (blue graph) and the target modality (orange graph).
The captions display the translation direction.

PCA The results illustrated in Figure 23 and the other Figures 32, 33, 34, 35, 36
located in Appendix A.2.1, provide visual support of the set hypothesis. They show
that for almost all transformations the three most influential principal components
of DA

O seem to align with those of DT when DA
O is augmented by CMDA with the

corresponding target modality and an intensity of 100%. Meanwhile, they align with
DO

O ’s principal components if not augmented (intensity 0%). The only exception to
this is the transformation with original modality MRI and target modality CT, where
the principal components seem to stay similar to those of the original modality, no
matter how heavy DA

O is augmented.

VAE As hypothesized, substantial results supporting the formulated claim are
achieved by this experiment. The metrics listed in Table 11 demonstrate that Test
Loss and RMSE are consistently lower for the VAEA trained with DA

O. The MAE
follows that schema, only deviating for original modality PET and target modality
MRI, where it is slightly lower for VAEO.
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CT to MRI 0% augmented

CT to MRI 100% augmented

Figure 23: Comparison of 3D-PCAs for CT dataset augmented to MRI. The upper
image shows a PCA with a dataset of CT images, one of MRI images, and one
of CT images that should be augmented. The lower image shows a PCA with the
same datasets, just that the second CT dataset has been augmented by CMDA with
target modality MRI and intensity 100%.
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Modalities
VAEO VAEA

Test Loss MAE RMSE Test Loss MAE RMSE
PET to MRI 22492 0.0779 0.1409 17492 0.0791 0.1377
PET to CT 61032 0.1289 0.2616 26607 0.1217 0.2505

MRI to PET 13321 0.0750 0.1376 10812 0.0472 0.0924
MRI to CT 28423 0.1333 0.2685 27847 0.1279 0.2665
CT to PET 15072 0.1050 0.1611 10764 0.0401 0.0836
CT to MRI 22287 0.1507 0.2223 19441 0.0954 0.1664

Table 11: Test Losses, MAEs, and RMSEs for the VAE experiment.

OOD-Sample Detection Table 12 summarizes the collected results of this ex-
periment by calculating the mean and standard deviation of each metric across all
possible combinations of original and target modalities. It can be noted that all
data augmentations can reduce the number of detected OOD-samples in the test
set. Although the best values are distributed evenly across all data augmentations,
CMDA is always close to the winning value if not winning itself. Additionally, per-
formed t-tests showed that five of eight values are significantly better for CMDA
in comparison to None, especially the experiments performed with the ViT-B/16
model (α = 0.05, n = 30). The full data for each combination of original and target
modalities is provided in Tables 15, 16, 17, 18, 19, 20 further shows that while other
augmentations perform very well for a single combination of modalities, CMDA per-
forms well across the board. Apart from the transformations with CT as original
modality, the results also back the formulated hypothesis.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

AUROC
ResNet-18 0.477 0.456 0.463 0.480 0.455 0.454

ViT-B/16 0.600 0.466 0.640 0.441 0.719 0.539

AUPR-IN
ResNet-18 0.495 0.530 0.515 0.547 0.491 0.507

ViT-B/16 0.582 0.471 0.634 0.456 0.683 0.519

AUPR-OUT
ResNet-18 0.538 0.541 0.512 0.551 0.537 0.522

ViT-B/16 0.648 0.528 0.652 0.529 0.742 0.584

FPR95TPR
ResNet-18 0.870 0.844 0.905 0.881 0.842 0.940

ViT-B/16 0.780 0.889 0.826 0.877 0.728 0.875

Table 12: OOD-detection metrics with multiple data augmentations. The calculated
numbers represent the means over all possible combinations of original and target
modality. The best values for each row are highlighted by color while CMDA-values
that are significantly better than None-values are put in bold.
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6 Discussion

6.1 Limitations and Obstacles

During the development of CMDA, many challenges arose, affecting and sometimes
limiting the progress that was achieved.

Datasets As already outlined in Section 1, medical data is scarce. This was im-
mediately noticeable in the early stages of development as there was a severe lack
of suitable datasets. The challenge of finding labeled PET, MRI, and CT scans
of the same anatomical structure lead to the first programming experiments being
conducted with MedMNIST v2 (Yang et al., 2023) or other, modality-incomplete
datasets. Eventually, the decision was made to build a custom dataset. This was
achieved by combining the ADNI dataset containing PET and MRI (ADNI, 2022)
with the RSNA dataset containing CT images (A. Stein, 2019). Finding a second
labeled dataset with an equal anatomical structure and all three modalities included
was needed to prove the generalization capabilities of CMDA. However, with TCGA-
BLCA (Kirk et al., 2016), it was even harder to find than the first datasets.
Although the datasets used, provide the current, to best knowledge, most appropri-
ate options, they still pose limitations. The combination of ADNI and RSNA led
to the creation of a new classification task ”healthy” / ”not healthy” as the initial
tasks did not align. This made it substantially harder for NNs to find patterns in
the data. The in Section 5 presented results are also not easily reproducible because
the ADNI subset cannot be shared for legal reasons. Additionally, test sets with
distinct subjects had to manually be built for ADNI and TCGA-BLCA as no test
sets were provided. The small size (∼300 images per modality) of all datasets also
made it hard to train models, even though the size of the ADNI/RSNA dataset
could be increased (∼900 images per modality) during the end of development.

Image Processing Despite DICOM being the industry standard, medical images
were provided in various image formats such as .npz, .npy, .nii, .tiff, .png, or .jpg,
leading to challenging formatting work. Some datasets also imposed cropping of
images to get uniform dimensions across the data, or modality-specific operations
like converting CT scans from HU to gray-scale.

Engineering of CMDA The final state of CMDA is the result of many tried and
tested approaches, some of which were unsuccessful, especially regarding texture
manipulation. The attempt of computing various textural features using related
techniques such as local binary pattern (LBP) (Ojala et al., 2002), histogram of
oriented gradients (HOG) (Dalal and Triggs, 2005), Gabor filter (Mehrotra et al.,
1992), fast Fourier transform (FFT) (Cooley and Tukey, 1965), or Haar-Wavelet
transforms (Haar, 1910) ultimately turned out to not be useful for the transfor-
mation itself. This is because the computed features could be altered but not be
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reversed to images again, which was the initial idea. Their only use in this scenario
was for evaluation purposes as can be seen for the GLCM features.
In the beginning, there were also doubts about whether the overall idea of CMDA
made sense. Different modalities capture different disease patterns in different de-
tail, which cannot be translated to other modalities, leading to augmented images
lacking realism. However, it was concluded that a rough modality representation is
sufficient as models can still use the augmented images to learn about the charac-
teristics of each modality.

(a) Faulty histogram
matching of a CT image.

(b) GUI for CMDA that was developed under wrong
assumptions and later discarded.

Figure 24: Challenges during the development of CMDA. The left image shows
the results of faulty histogram matching where the blank space around the head is
transformed as well. The right image illustrates a GUI for the usage of CMDA that
was developed and later discarded.

The augmentations themselves had to be implemented, ensuring their effectiveness
across gray-scale and color images as added custom modalities might provide RGB
images. The color augmentation was specifically tricky as it should only operate on
the anatomical structure present in the scan, avoiding the remaining blank space
around it. If ignored, this caused augmentations to look as illustrated in Figure 24a,
where the color of the blank space is transformed as well.

Due to missing knowledge about existing data augmentations and their functioning,
the early development also saw a graphical user interface (GUI) being built to make
CMDA’s usage easier. This happened under to assumption that the augmentations
are performed before rather than during runtime and can be seen in Figure 24b.

Similar to other data augmentations, the final version of CMDA works as intended
but rarely still produces poor visual results. A collection of faulty augmentations
can be found in Figure 25.
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Figure 25: Various images of human brain scans with faulty augmentations by
CMDA that were created when augmenting a large number of images. They include
images from all possible modality combinations.

Experiments Both the implementation, as well as the results of the experiments
conducted as part of the evaluation have partially caused problems. At one point,
the final evaluation used an energy-based OOD-detector, but first setups used a
self-implemented softmax-based detection that did not work correctly.
However, the biggest experimental challenge was the quantitative evaluation assess-
ing the generalization performance of CMDA. Different experimental setups tried
with various predefined weights, generalization tests, modality combinations, and
regularization techniques, but no experiment achieved the results hypothesized to
satisfaction. It was furthermore tested if a reduced size of the dataset would boost
CMDA’s performance in comparison to no data augmentation used, but the min-
imal boost in augmentation metrics that was achieved could not be proven to be
significant.

6.2 Analysis and Interpretation

The presented outcomes of the conducted evaluation provide valuable insights into
the effectiveness of CMDA within the medical imaging domain. The qualitative
experiments produced the expected good results across all measures implemented.
This demonstrates CMDA’s capabilities to effectively align the image distributions
from a given to a target modality. These achievements strongly suggest that it suc-
cessfully preserves medical image integrity and addresses the cross-modality shift.
While certain combinations of given and target modalities may yield better results
than others in certain experiments, a broader analysis shows that the performances
tend to balance out across all experiments. The quantitative experiments however
only demonstrated satisfactory execution times but indicated poor improvements in
models’ generalization performance. These results suggest efficient resource utiliza-
tion on the one hand. Yet, they raise questions about its utility in helping models to
generalize to unseen domains and improving their understanding of certain modali-
ties on the other.
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This discrepancy between qualitative success and quantitative deficits is surprising
and unexpected. The augmented images seem to look like those from the target
modality but strangely enough, do not help during training. That said, these find-
ings could be explained by the necessary combination of datasets with different
classification tasks, where Alzheimer’s disease has completely different visual char-
acteristics than intracranial hemorrhage. The translation might thus not help the
model to generalize across domains as it might learn about the characteristics of the
target modality but not about those of the disease itself. Moreover, the small dataset
size may have caused insufficient data diversity, hindering the training process of the
models and leading to non-representative results. Future evaluations could therefore
use more extensive datasets including a greater variety of images that all examine
the same disease, potentially mitigating the issues observed in this study.
Another unforeseen finding is that the qualitative experiments conducted on the
TCGA-BLCA dataset yielded worse results in comparison to the ADNI/RSNA
dataset, which might imply that CMDA is better suited for brain imaging than
for other anatomical structures. Nonetheless, the OOD-experiments still indicate
its general applicability across all anatomical contexts.
Direct comparisons to related results are challenging due to CMDA’s novel approach
of runtime cross-modality augmentation. Nevertheless, the discussed findings con-
tribute to the broader context of demonstrating the effectiveness of modality-specific
data augmentations. Furthermore, CMDA advances the current state of the art
through a runtime data augmentation technique in the medical domain. Although
it does not improve the generalization performance of deep learning algorithms as
expected, it can accomplish cross-modality translation to generate new training
samples that closely resemble the target modality’s distribution.
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7 Conclusion

This paper introduced CMDA, a novel cross-modality-wise data augmentation that
enables real-time image translation between medical imaging modalities. It can
seamlessly be integrated with existing data augmentations and works for the brain
and bladder, indicating that it might be applicable to all anatomical structures. The
evaluation carried out highlights substantial capabilities of CMDA addressing the
cross-modality shift by aligning image distributions across modalities. This holds
true despite observed discrepancies when it comes to generalization improvements
of NNs. These results suggest that, while CMDA can effectively produce visually
similar and realistic images of the target modality, it may not enhance a model’s
generalization performance across unseen domains. At least, this limitation appears
to be relevant with different diseases being present.
The significance of this work lies in its potential to advance modality-specific data
augmentations in the medical domain that can be used during runtime. Further-
more, it supports the creation of more diverse training data to facilitate more robust
models. Still, the results show that larger and more homogeneous datasets are re-
quired to fully realize CMDA’s potential in improving models’ abilities to generalize
to novel modalities.
Building on these insights, future research could focus on refining and further evalu-
ating the current state of CMDA. To be exact, implementing additional modalities,
or algorithms to sample more diverse reference images could help the data aug-
mentation to create an even greater variety of data. To enhance the performance
assessment of CMDA, more experiments in which it is combined with other data
augmentations could be conducted. Additionally, its application across various dis-
eases could be explored. This has the potential to provide deeper insights into which
medical conditions might be more sensitive to modality translation than others.
In conclusion, this work contributes to the ongoing discourse on addressing the data
scarcity present in the medical imaging domain. Therefore, it provides an idea and
foundation for further exploration of real-time cross-modality translation.
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A Appendix

A.1 Sample augmentations

PET to MRI

Figure 26: Randomly CMDA-augmented samples with zero to four possible applied aug-
mentations, where each augmentation is equally likely to appear with an intensity between
0% and 100%. Here, healthy and unhealthy PET images of the human brain (ADNI, 2022)
and bladder (Kirk et al., 2016) are transformed to target modality MRI.



A APPENDIX 51

PET to CT

Figure 27: Randomly CMDA-augmented samples with zero to four possible applied aug-
mentations, where each augmentation is equally likely to appear with an intensity between
0% and 100%. Here, healthy and unhealthy PET images of the human brain (ADNI, 2022)
and bladder (Kirk et al., 2016) are transformed to target modality CT.



A APPENDIX 52

MRI to PET

Figure 28: Randomly CMDA-augmented samples with zero to four possible applied aug-
mentations, where each augmentation is equally likely to appear with an intensity between
0% and 100%. Here, healthy and unhealthy MRI images of the human brain (ADNI, 2022)
and bladder (Kirk et al., 2016) are transformed to target modality PET.
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MRI to CT

Figure 29: Randomly CMDA-augmented samples with zero to four possible applied aug-
mentations, where each augmentation is equally likely to appear with an intensity between
0% and 100%. Here, healthy and unhealthy MRI images of the human brain (ADNI, 2022)
and bladder (Kirk et al., 2016) are transformed to target modality CT.
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CT to PET

Figure 30: Randomly CMDA-augmented samples with zero to four possible applied aug-
mentations, where each augmentation is equally likely to appear with an intensity between
0% and 100%. Here, healthy and unhealthy CT images of the human brain (A. Stein, 2019)
and bladder (Kirk et al., 2016) are transformed to target modality PET.
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CT to MRI

Figure 31: Randomly CMDA-augmented samples with zero to four possible applied aug-
mentations, where each augmentation is equally likely to appear with an intensity between
0% and 100%. Here, healthy and unhealthy CT images of the human brain (A. Stein, 2019)
and bladder (Kirk et al., 2016) are transformed to target modality MRI.
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A.2 Further Qualitative Evaluation Metrics

A.2.1 Brain Dataset

Modalities Distance 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PET to MRI
||VDA

O
− VDT

|| 4.86 4.85 4.99 4.95 4.70 4.46 3.86 3.38 3.22 3.33 3.62

||VDA
O

− VDO
O
|| 0.42 0.79 2.73 2.67 2.82 2.92 3.46 4.06 4.80 4.93 5.06

PET to CT
||VDA

O
− VDT

|| 4.79 4.48 4.48 4.37 4.15 3.83 3.44 3.18 3.09 3.11 3.06

||VDA
O

− VDO
O
|| 0.18 0.58 0.63 0.92 1.37 1.94 2.68 3.31 3.84 3.97 4.06

MRI to PET
||VDA

O
− VDT

|| 4.96 2.98 2.98 2.95 3.37 3.74 4.23 4.52 4.73 4.88 4.85

||VDA
O

− VDO
O
|| 1.00 4.05 4.29 4.32 3.99 3.72 3.44 3.39 3.50 3.69 3.76

MRI to CT
||VDA

O
− VDT

|| 4.61 4.64 4.64 4.63 4.53 4.54 4.30 4.06 4.04 4.11 4.11

||VDA
O

− VDO
O
|| 0.46 2.22 2.05 1.65 1.43 1.95 1.89 2.37 2.64 2.82 2.90

CT to PET
||VDA

O
− VDT

|| 4.36 2.71 2.55 2.63 2.75 2.82 3.16 3.37 3.48 3.83 4.01

||VDA
O

− VDO
O
|| 0.81 3.52 4.15 4.21 4.21 4.18 4.01 3.90 3.82 3.68 3.63

CT to MRI
||VDA

O
− VDT

|| 4.25 3.84 3.71 3.54 3.74 3.32 3.30 3.10 2.91 2.64 2.99

||VDA
O

− VDO
O
|| 1.27 1.85 3.56 3.71 3.66 3.93 4.03 4.13 4.33 4.59 4.63

Table 13: Tabular overview of the exact Euclidean distances between GLCM features
of augmented, original, and target modality datasets displayed in Figure 21. It shows
that the CMDA-augmented dataset aligns with the target modality by an average of
22%, demonstrating CMDA’s effectiveness in aligning images with the distribution
of the target modality.

Modalities Distance 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

PET to MRI
d2(fDA

O
, fDT

) 379.6 351.6 347.2 370.5 355.9 334.9 334.0 343.1 358.1 370.4 377.1

d2(fDA
O
, fDO

O
) 59.2 116.1 247.5 317.7 303.0 295.1 300.8 306.8 325.2 348.1 358.1

PET to CT
d2(fDA

O
, fDT

) 422.4 367.5 328.5 321.7 340.5 362.7 350.7 357.6 369.1 352.1 349.3

d2(fDA
O
, fDO

O
) 59.2 354.1 308.6 285.3 314.2 344.1 358.9 382.1 392.6 393.1 403.2

MRI to PET
d2(fDA

O
, fDT

) 383.3 304.3 264.7 268.1 260.1 242.1 222.8 208.8 207.7 208.4 215.0

d2(fDA
O
, fDO

O
) 76.0 120.7 206.1 242.0 244.6 244.4 247.8 248.2 247.0 252.4 254.1

MRI to CT
d2(fDA

O
, fDT

) 366.5 354.4 352.8 350.3 364.0 361.6 362.9 358.7 354.8 355.5 351.8

d2(fDA
O
, fDO

O
) 76.0 109.6 116.2 124.3 138.2 167.2 178.3 185.8 191.8 202.0 210.0

CT to PET
d2(fDA

O
, fDT

) 401.1 337.7 307.2 306.0 303.4 295.7 289.1 268.0 252.3 230.2 231.5

d2(fDA
O
, fDO

O
) 162.7 192.0 226.7 244.0 259.4 269.6 271.1 276.6 285.8 291.7 297.0

CT to MRI
d2(fDA

O
, fDT

) 334.6 351.2 363.8 378.8 373.7 371.8 364.0 360.5 353.0 349.0 334.4

d2(fDA
O
, fDO

O
) 162.7 169.6 176.9 194.5 199.9 213.0 221.0 241.6 250.1 274.9 280.5

Table 14: Tabular overview of the exact FIDs between augmented, original, and tar-
get modality datasets displayed in Figure 22. It shows that the CMDA-augmented
dataset aligns with the target modality by an average of 25%, successfully demon-
strating CMDA’s effectiveness in aligning images with the distribution of the target
modality.
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PET to MRI 0% augmented

PET to MRI 100% augmented

Figure 32: Comparison of 3D-PCAs for PET dataset augmented to MRI. The top
image shows PCA for PET, MRI, and PET images to be augmented. The bottom
image shows PCA for the same datasets, but the PET dataset is augmented by
CMDA with target modality MRI at 100% intensity. The augmented data points
in the bottom PCA align better with the target modality, demonstrating CMDA’s
effectiveness in aligning images with the distribution of the target modality.
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PET to CT 0% augmented

PET to CT 100% augmented

Figure 33: Comparison of 3D-PCAs for PET dataset augmented to CT. The top
image shows PCA for PET, CT, and PET images to be augmented. The bottom
image shows PCA for the same datasets, but the PET dataset is augmented by
CMDA with target modality CT at 100% intensity. The augmented data points
in the bottom PCA align better with the target modality, demonstrating CMDA’s
effectiveness in aligning images with the distribution of the target modality.
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MRI to PET 0% augmented

MRI to PET 100% augmented

Figure 34: Comparison of 3D-PCAs for MRI dataset augmented to PET. The top
image shows PCA for MRI, PET, and MRI images to be augmented. The bottom
image shows PCA for the same datasets, but the MRI dataset is augmented by
CMDA with target modality PET at 100% intensity. The augmented data points
in the bottom PCA align better with the target modality, demonstrating CMDA’s
effectiveness in aligning images with the distribution of the target modality.
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MRI to CT 0% augmented

MRI to CT 100% augmented

Figure 35: Comparison of 3D-PCAs for MRI dataset augmented to CT. The top
image shows PCA for MRI, CT, and MRI images to be augmented. The bottom
image shows PCA for the same datasets, but the MRI dataset is augmented by
CMDA with target modality CT at 100% intensity. The augmented data points
in the bottom PCA do not align better with the target modality, not supporting
CMDA’s statements of aligning images with the distribution of the target modality.
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CT to PET 0% augmented

CT to PET 100% augmented

Figure 36: Comparison of 3D-PCAs for CT dataset augmented to PET. The top
image shows PCA for CT, PET, and CT images to be augmented. The bottom image
shows PCA for the same datasets, but the CT dataset is augmented by CMDA with
target modality PET at 100% intensity. The augmented data points in the bottom
PCA align better with the target modality, demonstrating CMDA’s effectiveness in
aligning images with the distribution of the target modality.
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Metric Model no imgaug albumentations v2 RandAugment CMDA

AUROC
ResNet-18 0.572 0.339 0.398 0.426 0.585 0.397

ViT-B/16 0.695 0.241 0.692 0.315 0.848 0.736

AUPR-IN
ResNet-18 0.594 0.451 0.541 0.583 0.588 0.505

ViT-B/16 0.751 0.401 0.725 0.424 0.890 0.776

AUPR-OUT
ResNet-18 0.551 0.382 0.429 0.437 0.629 0.379

ViT-B/16 0.695 0.347 0.679 0.390 0.807 0.624

FPR95TPR
ResNet-18 0.825 0.959 0.918 0.939 0.698 0.991

ViT-B/16 0.652 0.948 0.705 0.921 0.641 0.934

Table 15: OOD-detection metrics for ResNet and Vision Transformer models with
different data augmentations for PET to MRI. The best values for each row are
highlighted by color. Although imgaug performs best, CMDA is often close to the
winning result, demonstrating CMDA’s effectiveness in aligning images with the
distribution of the target modality.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

AUROC
ResNet-18 0.424 0.268 0.275 0.207 0.588 0.229

ViT-B/16 0.702 0.418 0.535 0.412 0.910 0.824

AUPR-IN
ResNet-18 0.575 0.486 0.522 0.514 0.654 0.459

ViT-B/16 0.737 0.506 0.603 0.494 0.941 0.883

AUPR-OUT
ResNet-18 0.425 0.341 0.322 0.284 0.624 0.279

ViT-B/16 0.700 0.409 0.553 0.481 0.864 0.680

FPR95TPR
ResNet-18 0.873 0.943 0.988 1.000 0.650 0.796

ViT-B/16 0.621 0.909 0.750 0.820 0.502 0.797

Table 16: OOD-detection metrics for ResNet and Vision Transformer models with
different data augmentations for PET to CT. The best values for each row are
highlighted by color. Although v2 performs best, CMDA is often close to the winning
result, demonstrating CMDA’s effectiveness in aligning images with the distribution
of the target modality.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

AUROC
ResNet-18 0.615 0.716 0.639 0.636 0.461 0.621

ViT-B/16 0.516 0.588 0.658 0.648 0.547 0.447

AUPR-IN
ResNet-18 0.528 0.684 0.518 0.536 0.450 0.575

ViT-B/16 0.418 0.476 0.682 0.629 0.442 0.384

AUPR-OUT
ResNet-18 0.700 0.779 0.720 0.725 0.551 0.682

ViT-B/16 0.608 0.646 0.618 0.683 0.659 0.604

FPR95TPR
ResNet-18 0.790 0.636 0.717 0.767 0.893 0.793

ViT-B/16 0.919 0.887 0.955 0.858 0.816 0.839

Table 17: OOD-detection metrics for ResNet and Vision Transformer models with
different data augmentations for MRI to PET. The best values for each row are
highlighted by color. Although RandAugment performs best, CMDA is often close
to the winning result, demonstrating CMDA’s effectiveness in aligning images with
the distribution of the target modality.



A APPENDIX 63

Metric Model None imgaug Albumentations v2 RandAugment CMDA

AUROC
ResNet-18 0.476 0.539 0.621 0.698 0.441 0.422

ViT-B/16 0.648 0.546 0.634 0.326 0.693 0.537

AUPR-IN
ResNet-18 0.543 0.601 0.702 0.780 0.533 0.480

ViT-B/16 0.673 0.595 0.697 0.419 0.681 0.567

AUPR-OUT
ResNet-18 0.473 0.501 0.547 0.690 0.412 0.404

ViT-B/16 0.604 0.517 0.579 0.381 0.672 0.484

FPR95TPR
ResNet-18 0.916 0.938 0.912 0.696 0.984 0.981

ViT-B/16 0.859 0.888 0.862 0.949 0.790 0.942

Table 18: OOD-detection metrics for ResNet and Vision Transformer models with
different data augmentations for MRI to CT. The best values for each row are
highlighted by color. Although v2 performs best, CMDA is often close to the winning
result, demonstrating CMDA’s effectiveness in aligning images with the distribution
of the target modality.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

AUROC
ResNet-18 0.311 0.450 0.410 0.412 0.287 0.534

ViT-B/16 0.448 0.496 0.676 0.530 0.677 0.667

AUPR-IN
ResNet-18 0.314 0.424 0.384 0.381 0.348 0.456

ViT-B/16 0.349 0.375 0.543 0.388 0.579 0.557

AUPR-OUT
ResNet-18 0.510 0.614 0.542 0.584 0.505 0.623

ViT-B/16 0.638 0.663 0.775 0.680 0.747 0.759

FPR95TPR
ResNet-18 0.934 0.796 0.952 0.897 0.934 0.935

ViT-B/16 0.867 0.819 0.740 0.821 0.826 0.766

Table 19: OOD-detection metrics for ResNet and Vision Transformer models with
different data augmentations for CT to PET. The best values for each row are
highlighted by color. Overall, the non-augmented case performs the best. These
results do not support CMDA’s statements of aligning images with the distribution
of the target modality.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

AUROC
ResNet-18 0.465 0.524 0.434 0.501 0.368 0.523

ViT-B/16 0.593 0.508 0.649 0.412 0.637 0.664

AUPR-IN
ResNet-18 0.418 0.533 0.427 0.491 0.376 0.470

ViT-B/16 0.562 0.472 0.653 0.382 0.571 0.691

AUPR-OUT
ResNet-18 0.572 0.630 0.511 0.586 0.520 0.567

ViT-B/16 0.643 0.588 0.680 0.543 0.701 0.658

FPR95TPR
ResNet-18 0.883 0.791 0.944 0.889 0.887 0.943

ViT-B/16 0.865 0.883 0.845 0.899 0.795 0.908

Table 20: OOD-detection metrics for ResNet and Vision Transformer models with
different data augmentations for CT to MRI. The best values for each row are
highlighted by color. Overall, v2 performs the best. These results do not support
CMDA’s statements of aligning images with the distribution of the target modality.
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A.2.2 Bladder Dataset

PET to MRI PET to CT

MRI to PET MRI to CT

CT to PET CT to MRI

Figure 37: This experiment was conducted with the TCGA-BLCA bladder dataset.
Euclidean distances between GLCM features of augmented, original, and target
modality datasets. It shows that the CMDA-augmented dataset aligns with the tar-
get modality by an average of 14%, reasonably successfully demonstrating CMDA’s
effectiveness in aligning images with the distribution of the target modality, even
across other anatomies than the brain.
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PET to MRI PET to CT

MRI to PET MRI to CT

CT to PET CT to MRI

Figure 38: This experiment was conducted with the TCGA-BLCA bladder dataset.
FIDs of augmented, original, and target modality datasets. It shows that the CMDA-
augmented dataset aligns with the target modality by an average of 7%, reasonably
successfully demonstrating CMDA’s effectiveness in aligning images with the distri-
bution of the target modality, even across other anatomies than the brain.
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PET to MRI 0% augmented

PET to MRI 100% augmented

Figure 39: This experiment was conducted with the TCGA-BLCA bladder dataset.
Comparison of 3D-PCAs for PET dataset augmented to MRI. The top image shows
PCA for PET, MRI, and PET images to be augmented. The bottom image shows
PCA for the same datasets, but the PET dataset is augmented by CMDA with target
modality MRI at 100% intensity. The augmented data points in the bottom PCA
do not align better with the target modality, not supporting CMDA’s statements
of aligning images with the distribution of the target modality, at least not across
other anatomies than the brain.
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PET to CT 0% augmented

PET to CT 100% augmented

Figure 40: This experiment was conducted with the TCGA-BLCA bladder dataset.
Comparison of 3D-PCAs for PET dataset augmented to CT. The top image shows
PCA for PET, CT, and PET images to be augmented. The bottom image shows
PCA for the same datasets, but the PET dataset is augmented by CMDA with
target modality CT at 100% intensity. The augmented data points in the bottom
PCA do partially align better with the target modality, reasonably successfully
demonstrating CMDA’s effectiveness in aligning images with the distribution of the
target modality, even across other anatomies than the brain.
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MRI to PET 0% augmented

MRI to PET 100% augmented

Figure 41: This experiment was conducted with the TCGA-BLCA bladder dataset.
Comparison of 3D-PCAs for MRI dataset augmented to PET. The top image shows
PCA for MRI, PET, and MRI images to be augmented. The bottom image shows
PCA for the same datasets, but the MRI dataset is augmented by CMDA with target
modality PET at 100% intensity. The augmented data points in the bottom PCA
align minimally better with the target modality, however not enough to support
CMDA’s statements of aligning images with the distribution of the target modality,
at least not across other anatomies than the brain.
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MRI to CT 0% augmented

MRI to CT 100% augmented

Figure 42: This experiment was conducted with the TCGA-BLCA bladder dataset.
Comparison of 3D-PCAs for MRI dataset augmented to CT. The top image shows
PCA for MRI, CT, and MRI images to be augmented. The bottom image shows
PCA for the same datasets, but the MRI dataset is augmented by CMDA with target
modality CT at 100% intensity. The augmented data points in the bottom PCA
do not align better with the target modality, not supporting CMDA’s statements
of aligning images with the distribution of the target modality, at least not across
other anatomies than the brain.
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CT to PET 0% augmented

CT to PET 100% augmented

Figure 43: This experiment was conducted with the TCGA-BLCA bladder dataset.
Comparison of 3D-PCAs for CT dataset augmented to PET. The top image shows
PCA for CT, PET, and CT images to be augmented. The bottom image shows
PCA for the same datasets, but the CT dataset is augmented by CMDA with target
modality PET at 100% intensity. The augmented data points in the bottom PCA
align minimally better with the target modality, however not enough to support
CMDA’s statements of aligning images with the distribution of the target modality,
at least not across other anatomies than the brain.
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CT to MRI 0% augmented

CT to MRI 100% augmented

Figure 44: This experiment was conducted with the TCGA-BLCA bladder dataset.
Comparison of 3D-PCAs for CT dataset augmented to MRI. The top image shows
PCA for CT, MRI, and CT images to be augmented. The bottom image shows
PCA for the same datasets, but the CT dataset is augmented by CMDA with target
modality MRI at 100% intensity. The augmented data points in the bottom PCA
do partially align better with the target modality, reasonably successfully demon-
strating CMDA’s effectiveness in aligning images with the distribution of the target
modality, even across other anatomies than the brain.
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Modalities
VAEO VAEA

Test Loss MAE RMSE Test Loss MAE RMSE
PET to MRI 4847216 0.2770 0.3525 3683450 0.2816 0.3557
PET to CT 3834369 0.2124 0.3414 9156919 0.2152 0.3454

MRI to PET 801581 0.3057 0.3266 998985 0.3734 0.3904
MRI to CT 904223 0.1632 0.2386 1067878 0.1651 0.2701
CT to PET 761608 0.2882 0.3252 771650 0.2923 0.3271
CT to MRI 1395642 0.2134 0.2712 1273842 0.1953 0.2449

Table 21: This experiment was conducted with the TCGA-BLCA bladder dataset.
Test Losses, MAEs, and RMSEs for the VAE experiment. The results across both
VAEs are quite similar, balancing out values that differ. Therefore, they do not
support CMDA’s statements of aligning images with the distribution of the target
modality, at least not across other anatomies than the brain.

Metric Model None imgaug Albumentations v2 RandAugment CMDA

AUROC
ResNet-18 0.249 0.271 0.277 0.340 0.450 0.210

ViT-B/16 0.979 0.966 0.977 0.961 0.969 0.729

AUPR-IN
ResNet-18 0.440 0.430 0.479 0.504 0.522 0.393

ViT-B/16 0.982 0.966 0.977 0.960 0.961 0.729

AUPR-OUT
ResNet-18 0.504 0.485 0.509 0.503 0.571 0.421

ViT-B/16 0.979 0.967 0.978 0.963 0.969 0.754

FPR95TPR
ResNet-18 0.876 0.866 0.824 0.785 0.757 0.947

ViT-B/16 0.116 0.076 0.093 0.118 0.114 0.545

Table 22: This experiment was conducted with the TCGA-BLCA bladder dataset.
OOD-detection metrics with multiple data augmentations. The calculated numbers
represent the MAEns over all possible combinations of original and target modality.
The best values for each row are highlighted by color. Here, CMDA noticeably
performs best across all metrics, demonstrating CMDA’s effectiveness in aligning
images with the distribution of the target modality, even across other anatomies
than the brain.
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A.3 Code Availability

CMDA’s source code, conducted experiments, more elaborate information, permit-
ted parameter values, examples, and a detailed explanation regarding the use of
custom reference images can be taken from the corresponding GitHub repository.
All code is open source and can be used for data augmentation pipelines or further
research.

https://github.com/juliustutz00/cross-modality-data-augmentation
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of simpleitk. Frontiers in neuroinformatics, 7:45, 2013.

Junyan Lyu, Yiqi Zhang, Yijin Huang, Li Lin, Pujin Cheng, and Xiaoying Tang.
Aadg: Automatic augmentation for domain generalization on retinal image seg-
mentation. IEEE Transactions on Medical Imaging, 41(12):3699–3711, 2022.
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