
Exploring and Evaluating Deep
Hashing Methods within Vision

Foundation Model Feature Spaces
for Similarity Search and Privacy

Preservation

Bachelor Thesis

Bachelor of Science in Information Systems

Peiyao Mao

September 4, 2024

Supervisor:

1st: Prof. Dr. Christian Ledig
2nd: Francesco Di Salvo, M.Sc.

Chair of Explainable Machine Learning
Faculty of Information Systems and Applied Computer Sciences
Otto-Friedrich-University Bamberg

Abstract

In the digital age, the burgeoning use of images across various applications, from
social media to medical diagnostics, necessitates advancements in efficient data re-
trieval and robust privacy preservation techniques. This thesis investigates the effi-
cacy of hashing methods applied to image embeddings derived from state-of-the-art
Vision Transformer (ViT) models, focusing on both the semantic preservation be-
tween original image embeddings and hashed image embeddings and the strength-
ening of data privacy.

The study begins by generating high-dimensional image embeddings using a ViT-
B/16 encoder, known for its effectiveness in capturing complex visual patterns.
These embeddings serve as a baseline to assess the initial retrieval performance us-
ing the K-Nearest Neighbors (KNN) algorithm. Subsequent experiments involve the
application of various deep supervised hashing techniques, including both pairwise
and triplet methods, to transform these embeddings into compact, hashed represen-
tations. The performance of these hashed embeddings is again evaluated using KNN
to draw comparisons with the baseline results, providing a comprehensive analysis
of each method’s impact on accuracy and efficiency.

A key aspect of this research is the emphasis on privacy preservation. By convert-
ing raw image data into hashed forms, this work explores how advanced hashing
techniques can obscure original data features, thereby enhancing privacy without
substantially compromising the utility for tasks such as medical image retrieval.
This dual focus addresses the critical challenge of using sensitive image data in
environments where privacy concerns are important.

i

Abstract

Im digitalen Zeitalter erfordert die zunehmende Verwendung von Bildern in ver-
schiedenen Anwendungen, von sozialen Medien bis hin zur medizinischen Diagnos-
tik, Fortschritte bei der effizienten Datenabfrage und robusten Techniken zum Schutz
der Privatsphäre. Diese Arbeit untersucht die Wirksamkeit von Hashing-Methoden,
die auf Bildeinbettungen angewandt werden, die von modernen Vision-Transformer-
Modellen (ViT) abgeleitet sind, und konzentriert sich dabei sowohl auf die semantis-
che Bewahrung zwischen ursprünglichen Bildeinbettungen und gehashten Bildein-
bettungen als auch auf die Stärkung des Datenschutzes.

Die Studie beginnt mit der Erzeugung hochdimensionaler Bildeinbettungen unter
Verwendung eines ViT-B/16-Encoders, der für seine Effektivität bei der Erfas-
sung komplexer visueller Muster bekannt ist. Diese Einbettungen dienen als Aus-
gangsbasis für die Bewertung der anfänglichen Abrufleistung mit dem K-Nächste-
Nachbarn-Algorithmus (KNN). Bei den anschließenden Experimenten werden ver-
schiedene überwachte Hashing-Verfahren angewendet, darunter sowohl paarweise als
auch triolische Methoden, um diese Einbettungen in kompakte, gehashte Darstel-
lungen umzuwandeln. Die Leistung dieser gehashten Einbettungen wird wiederum
mit KNN bewertet, um Vergleiche mit den Basisergebnissen zu ziehen und eine um-
fassende Analyse der Auswirkungen jeder Methode auf Genauigkeit und Effizienz
zu erhalten.

Ein Schlüsselaspekt dieser Forschung ist die Betonung der Wahrung der Privat-
sphäre. Durch die Umwandlung von Rohbilddaten in gehashte Formen wird in dieser
Arbeit untersucht, wie fortschrittliche Hash-Verfahren die ursprünglichen Daten-
merkmale verschleiern können, wodurch die Privatsphäre verbessert wird, ohne
dass der Nutzen für Aufgaben wie die Suche nach medizinischen Bildern wesentlich
beeinträchtigt wird. Mit diesem doppelten Schwerpunkt wird die kritische Heraus-
forderung der Verwendung sensibler Bilddaten in Umgebungen angegangen, in denen
der Schutz der Privatsphäre eine wichtige Rolle spielt.

ii

Acknowledgements

I would like to extend my heartfelt gratitude to Prof Dr.Christian Ledig for the
opportunity to complete my bachelor thesis at his chair. My initial attendance at
his seminar introduced me to the intriguing field of Explainable AI (xAI), sparking
a profound interest that has significantly influenced my academic journey.

I am especially indebted to my supervisor, Francesco Di Salvo, whose invaluable
advice, guidance, and insights have been instrumental in the successful completion
of this thesis. His expertise and thoughtful mentorship have not only helped me
navigate this complex topic but have also greatly enriched my learning experience.

Lastly, I must express my deepest appreciation to my parents, whose endless support
and encouragement have been my anchor throughout this journey. Thank you for
believing in me and standing by my side every step of the way.

iii

Contents

List of Figures vi

List of Tables x

List of Algorithms xi

List of Acronyms xii

1 Introduction 1

1.1 Context and Motivation . 1

1.2 Related Work . 2

1.3 Contribution . 4

2 Theoretical Foundations 5

2.1 Deep Neural Networks . 5

2.2 K-Nearest Neighbors Algorithm(KNN) 6

2.3 Deep Hashing Algorithms . 9

2.3.1 Overview . 10

2.3.2 Pairwise Loss Functions . 12

2.3.3 Triplet Loss Functions . 16

2.3.4 Pointwise Methods . 16

2.3.5 Quantization . 17

3 Methods 18

3.1 Feature Extraction . 18

3.2 Hashing Techniques . 20

3.2.1 Pairwise Methods . 20

3.2.2 Triplet Methods . 31

3.2.3 Triplet Center Loss in Deep Hashing 37

3.3 Evaluation Metrics . 40

4 Experiments and Results 41

4.1 Datasets . 41

4.2 System Setup Parameters for Experiments 42

4.3 Results and Analysis . 42

iv

4.3.1 General Results of KNN on Image Embedding 42

4.3.2 Results Comparison for different Supervised Deep Hashing
Methods . 43

4.3.3 Results for Triplet Methods 45

4.3.4 Computation Efficiency of TCL over Triplet Methods 47

5 Discussion 49

6 Conclusion 50

A Appendix 52

Bibliography 53

v

List of Figures

1 Basic Framework of Deep Supervised Hashing with Pairwise Similar-
ity Measurement.The hash codes are produced by a hashing network.
Afterwards, the pairwise similarity information of hash codes and
ground truth is matched and thus get similarity preserving loss. (Luo
et al. (2023)) . 6

2 Visualization of KNN. (Navlani (2018)) 8

3 The basic idea of pairwise loss and triplet loss (Singh and Gupta
(2022)). A: Anchor; P: Positive examples; N: Negative examples.
Pairwise loss considers the distance between ⟨A,P ⟩ and ⟨A,N⟩ sepa-
rately, while triplet loss treat ⟨A,P,N⟩ as a whole. 13

4 Illustration of our proposed approach. Firstly, the image embeddings
are generated though ViT-B/16 image encoder. KNN is applied on
these image embeddings to evaluate accuracy as a baseline metric.
Secondly, a series of experiments were conducted to transfer the im-
age embeddings to hashed image embeddings through various deep
supervised hashing methods, mainly including pairwise and triplet
methods. We again retrieve the accuracy using KNN on these hashed
image embeddings to make a comparison between the baseline accuracy. 18

5 Vision transformer model overview (Dosovitskiy et al. (2020)). Im-
age is split into fixed-size patches, which are then linearly embedded
and combined with a position embeddings. The resulting sequence
of vectors is then fed into the transformer encoder. To perform clas-
sification, an extra learnable “classification token” is added to the
sequence. 19

6 Approach in Liu et al. (2016): The network consists of 3 convolution-
pooling layers and 2 fully connected layers. The filters in convolution
layers are of size 5 × 5 with stride 1 (32, 32, and 64 filters in the
three convolution layers respectively), and pooling over 3 × 3 patches
with stride 2. The first fully connected layer contains 500 nodes, and
the second (output layer) has k (the code length) nodes. The loss
function is designed to learn similarity-preserving binary-like codes
by exploiting discriminability terms and a regularizer. Binary codes
are obtained by quantizing the network outputs of images. 21

vi

7 Overview of two-stage method: 1. the pairwise similarity matrix S is
decomposed into a product HHT , where H is a matrix of approximate
target hash codes. 2. use a convolutional network to learn the feature
representation for the images as well as a set of hash functions. The
network consists of three convolution-pooling layers, a fully connected
layer and an output layer. The output layer can be simply constructed
with the learned hash codes in H (the red nodes). If the image tags
are available in training, one can add them in the output layer (the
black nodes) so as to help to learn a better shared representation of
the images. By inputting an test image to the trained network, one
can obtain the desired hash code from the values of the red nodes in
the output layer (Xia et al. (2014)). 23

8 DHN with a hash layer fch, a pairwise cross-entropy loss, and a
pairwise quantization loss. (Zhu et al. (2016)) 26

9 The bimodal Laplacian prior for quantization. Zhu et al. (2016) . . . 26

10 HashNet for deep learning to hash by continuation, which is com-
prised of four key components: (1) Standard CNN for learning deep
image representations, (2) a fully-connected hash layer fch for trans-
forming the deep representation into K-dimensional representation,
(3) a sign activation function for binarizing the K-dimensional rep-
resentation into K-bit binary hash code, and (4) a novel weighted
cross-entropy loss for similarity-preserving learning from sparse data
(Cao et al. (2017b)). 28

11 Plot of smoothed responses of the sign function h = sgn(z): Red is
the sign function, and blue, green and orange show functions h =
tanh(βz) with bandwidths βb < βg < βo. The key property is
limβ→∞tanh(βz) = sgn(z). (Cao et al. (2017b)) 30

12 Overview of DNNH. The input is in the form of triplets (I, I+, I−)
with a query image I being more similar to an image I+ than to
another image I−. The image triplets are first encoded into a triplet
of image feature vectors by a shared stack of multiple convolutional
layers. Then, each image feature vector in the triplet is converted to
a hash code by a divide-and-encode module. After that, these hash
codes are used in a triplet ranking loss that aims to preserve relative
similarities on images. (Lai et al. (2015)) 32

13 A divide-and-encode module. (Lin et al. (2013)) 33

14 The piece-wise threshold function. (Lin et al. (2013)) 33

vii

15 Deep Semantic Hashing with GANs framework. The input to DSH-
GANs architecture is in the form of real-synthetic image triplets and
each tuple consists of one real image as query image, one synthetic and
similar image produced with same labels of query image through gen-
erator network G, and another synthetic but dissimilar image synthe-
sized by G conditioning on different labels. A shared deep CNN is ex-
ploited for learning image representations, followed by three streams,
i.e., hash stream, adversary stream and classification stream. Hash
stream is to encode each image into hash codes with relative similar-
ity preservation measured by a triplet ranking loss. Adversary stream
is to distinguish synthetic images from real ones trained with an ad-
versarial loss. Classification stream is to characterize the semantic
structures on image and softmax loss or cross entropy loss is com-
puted for single label and multi-label classification, respectively. The
whole architecture is jointly optimized in an end-to-end fashion. (Qiu
et al. (2017)) . 35

16 A toy illustration of the distributions of deep features learned by (a)
softmax loss, (b) center loss + softmax loss, and (c) triplet-center
loss + softmax loss. Intuitively, the decision boundary of the soft-
max classifier separates the two classes elaborately. The center loss
pulls features toward their corresponding centers. The TCL pulls the
features to their corresponding centers and pushes the features away
from the other centers (He et al. (2018b)). 37

17 Diffenrent classes of PathMNIST dataset (Halder et al. (2024)). . . . 41

18 Confusion Matrix of KNN on CIFAR-10 dataset. 43

19 Confusion Matrix of KNN on PathMNIST dataset. 43

20 Accuracy on CIFAR-10 for different bit lengths compared by different
pairwise methods. 44

21 Accuracy on PathMNIST for different bit lengths compared by dif-
ferent pairwise methods. 45

22 Confusion matrix of KNN results on hashed CIFAR-10 image embed-
dings (48 bits) using HashNet. 45

23 Confusion matrix of KNN results on hashed CIFAR-10 image embed-
dings (48 bits) using CNNH. 45

24 Confusion matrix of KNN results on hashed PathMNIST image em-
beddings (48 bits) using DSDH. 46

25 Confusion matrix of KNN results on hashed PathMNIST image em-
beddings (48 bits) using DHN. 46

26 Accuracy on PathMNIST for different bit lengths compared by dif-
ferent triplet methods. 47

viii

27 Accuracy on PathMNIST for different bit lengths compared by dif-
ferent triplet methods. 47

28 Confusion matrix of KNN results on hashed PathMNIST image em-
beddings (48 bits) using DSHGAN. 48

29 Confusion matrix of KNN results on hashed PathMNIST image em-
beddings (48 bits) using TCL. 48

30 Comparison of computation cost between triplet methods (in seconds). 48

ix

List of Tables

1 A Summary of Deep Supervised Hashing Methods w.r.t the Differ-
ent Manner of Similarity Measurement (Pairwise Methods, Ranking-
based Methods, Pointwise Methods, Binarization and other skills.)
Diff. = Difference Loss, Prod. = Product Loss, and Like. = Likeli-
hood Loss, Quan. = Quantization Loss, Drop = Drop the sign oper-
ator in the neural network and treat the binary code as an approx-
imation of the network output, Two-step = Two-step optimization,
Reg. = Regression, Cla. = Classification. 20

2 Confusion Matrix. 40

3 Results of KNN with different k-values on PathMNIST image embed-
dings. 42

4 General Results of KNN on Image Embedding 43

5 Accuracy for Pairwise Methods. 44

6 Accuracy for Triplet Methods. 46

7 Summary of Symbols and Notation in Section.3. 52

x

List of Algorithms

1 KNN on Hashed Image Embeddings 9
2 Deep Supervised Hashing (DSH) . 22
3 Convolutional Neural Network Hashing (CNNH) 24
4 Learning Algorithm for Deep Pairwise Supervised Hashing (DPSH) . 25
5 Deep Hashing Network (DHN) . 28
6 Optimizing HashNet by Continuation 30
7 Deep Neural Network Hashing (DNNH) 34
8 Training DSH-GANs . 35
9 Triplet Center Loss (TCL) in Deep Hashing 38

xi

List of Acronyms

AI Artificial Intelligence
CNN Convolutional neural network
DNN Deep neural network
KNN K-nearest neighbors algorithm
ViT Vision Transformer
DSH Deep supervised hashing
CNNH Convolutional neural network hashing
DPSH Deep pairwise supervised hashing
DHN Deep hashing network
DSDH Deep supervised discrete hashing
DNNH Deep neural network Hashing
GAN Generative Adversarial network
DSHGAN Deep semantic hashing with GAN
TCL Triplet center loss
xAI Explainable AI
ML Machine learning
DL Deep learning

xii

Notation

Numbers and Arrays

a A scalar (integer or real)

a A vector

A A matrix

A A tensor

In Identity matrix with n rows and n columns

I Identity matrix with dimensionality implied
by context

e(i) Standard basis vector [0, . . . , 0, 1, 0, . . . , 0]
with a 1 at position i

diag(a) A square, diagonal matrix with diagonal en-
tries given by a

a A scalar random variable

a A vector-valued random variable

A A matrix-valued random variable

Sets and Graphs

A A set

R The set of real numbers

{0, 1} The set containing 0 and 1

{0, 1, . . . , n} The set of all integers between 0 and n

[a, b] The real interval including a and b

(a, b] The real interval excluding a but including b

A\B Set subtraction, i.e., the set containing the el-
ements of A that are not in B

G A graph

PaG(xi) The parents of xi in G

Indexing

xiii

ai Element i of vector a, with indexing starting
at 1

a−i All elements of vector a except for element i

Ai,j Element i, j of matrix A

Ai,: Row i of matrix A

A:,i Column i of matrix A

Ai,j,k Element (i, j, k) of a 3-D tensor A

A:,:,i 2-D slice of a 3-D tensor

ai Element i of the random vector a

Linear Algebra Operations

A⊤ Transpose of matrix A

A+ Moore-Penrose pseudoinverse of A

A⊙B Element-wise (Hadamard) product of A and
B

det(A) Determinant of A

Calculus
dy

dx
Derivative of y with respect to x

∂y

∂x
Partial derivative of y with respect to x

∇xy Gradient of y with respect to x

∇Xy Matrix derivatives of y with respect to X

∇Xy Tensor containing derivatives of y with respect
to X

∂f

∂x
Jacobian matrix J ∈ Rm×n of f : Rn → Rm

∇2
xf(x) or H(f)(x) The Hessian matrix of f at input point x∫

f(x)dx Definite integral over the entire domain of x∫
S
f(x)dx Definite integral with respect to x over the set

S

xiv

Probability and Information Theory

a⊥b The random variables a and b are independent

a⊥b | c They are conditionally independent given c

P (a) A probability distribution over a discrete vari-
able

p(a) A probability distribution over a continuous
variable, or over a variable whose type has not
been specified

a ∼ P Random variable a has distribution P

Ex∼P [f(x)] or Ef(x) Expectation of f(x) with respect to P (x)

Var(f(x)) Variance of f(x) under P (x)

Cov(f(x), g(x)) Covariance of f(x) and g(x) under P (x)

H(x) Shannon entropy of the random variable x

DKL(P∥Q) Kullback-Leibler divergence of P and Q

N (x;µ,Σ) Gaussian distribution over x with mean µ and
covariance Σ

Functions

f : A→ B The function f with domain A and range B

f ◦ g Composition of the functions f and g

f(x;θ) A function of x parametrized by θ. (Some-
times we write f(x) and omit the argument θ
to lighten notation)

log x Natural logarithm of x

σ(x) Logistic sigmoid,
1

1 + exp(−x)

ζ(x) Softplus, log(1 + exp(x))

||x||p Lp norm of x

||x|| L2 norm of x

x+ Positive part of x, i.e., max(0, x)

1condition is 1 if the condition is true, 0 otherwise

Sometimes we use a function f whose argument is a scalar but apply it to a vector,
matrix, or tensor: f(x), f(X), or f(X). This denotes the application of f to the
array element-wise. For example, if C = σ(X), then Ci,j,k = σ(Xi,j,k) for all valid
values of i, j and k.

xv

Datasets and Distributions

pdata The data generating distribution

p̂data The empirical distribution defined by the
training set

X A set of training examples

x(i) The i-th example (input) from a dataset

y(i) or y(i) The target associated with x(i) for supervised
learning

X The m× n matrix with input example x(i) in
row Xi,:

xvi

1 INTRODUCTION 1

1 Introduction

1.1 Context and Motivation

In recent years, the field of computer vision has experienced a remarkable surge in
both research and practical applications, driven by advancements in deep learning
techniques and the increasing availability of large-scale visual data. Among the
applications of computer vision, one of the fundamental tasks is similarity search,
where the goal is to retrieve images similar to a query from vast database. Whether
it’s for image retrieval in search engines, content-based recommendation systems, or
object recognition in surveillance systems, efficient similarity search plays a signifi-
cant roll in enhancing user experience and enabling various downstream applications.

Simultaneously, the importance of privacy preservation when dealing with visual
data cannot be overstated. As healthcare systems increasingly rely on visual in-
formation for diagnosis and treatment monitoring, the need to protect patients’
privacy has become more critical. With the proliferation of medical technologies
and electronic health record systems, concerns regarding the protection of individ-
uals’ sensitive visual data have increased. Personal images, biometric data, and
proprietary medical records must be shielded from unauthorized access, misuse, or
exploitation to uphold patient confidentiality and trust in healthcare services.

Hashing methods emerge as a promising solution to address the challenges of simi-
larity search and privacy preservation in computer vision applications. By mapping
high-dimensional feature representations extracted from images into compact bi-
nary codes, hashing enables efficient similarity retrieval while significantly reducing
storage and computational requirements (Redaoui et al. (2024)). For example, 80
million tiny images (32 × 32 pixels, of double type) cost around 600 Giga bytes, but
can be compressed into 64 bit binary codes requiring only 600 Megabytes (Wang
et al. (2015)). Moreover, hashing techniques offer inherent privacy benefits by ob-
scuring the original data while still allowing for meaningful comparisons based on
similarity metrics. Within the context of vision foundation models, such as convolu-
tional neural networks (CNNs), hashing methods play a crucial roll in leveraging the
learned feature representations for similarity search tasks. These models, trained on
large-scale visual datasets, capture complex hierarchical patterns and semantic in-
formation, which can be utilized to generate discriminative and compact hash codes
(Sarker (2021)). By exploring and evaluating various hashing methods within the
feature spaces of vision foundation models, we endeavor to enhance the advance-
ment of both theoretical understanding and practical implementations of similarity
search while ensuring robust privacy preservation.

1 INTRODUCTION 2

1.2 Related Work

In recent years, similarity search, also known as nearest neighbor search, has be-
come a prominent area of research to effectively process the ever-increasing amount
of data in real-world applications 2. It involves a collection of objects that are
characterized by a collection of relevant features and represented as points in a
high-dimensional attribute space. Given queries in the form of points in this space,
we are required to find the nearest object to the query (Gionis et al. (1999)). In
the case that the reference database is very large or that the distance computation
between the query items and the database item is costly, it is often computationally
infeasible to find the exact nearest neighbor (Wang et al. (2014)). Thus, hashing has
emerged effectively popular reducing the dimensionality and storage requirements,
making retrieval processes faster and more scalable (Gong et al. (2012)). In general,
a hashing model takes an input data point (images, document, etc.) and outputs a
sequence of bits or hash code representing that data point. These hash codes, which
is typically irreversible, are designed so that similar items in the original space are
mapped to similar or identical hash codes in the hashed space. It means that the
original data cannot easily be reconstructed from the hash code, thereby also pre-
serving the confidentiality of original data.
The first step of computing binary codes usually involves finding an intermediate
continuous embedding of the original data (Gong (2014)). In the scope of this the-
sis, we involve pre-trained models such as VGG (Simonyan and Zisserman (2014)),
ResNet (He et al. (2016)), and transformers (Vaswani et al. (2017)), as they can
provide a robust feature extraction mechanism , allowing systems to capture subtle
nuances in images that might be missed when training from scratch. This transfer
learning from large-scale pre-trained models to specific task such as similarity search
can results in higher accuracy because the model uses sophisticated, pre-learned fea-
tures as building blocks, improving the relevance of results by understanding and
comparing deep features, which can also reduce the computational cost and time
required for training (Han et al. (2021), Paaß and Giesselbach (2023)). Other prior
approaches such as methods based on randomized embeddings, which tend to be
too noisy for a smaller number of bits (Kulis and Grauman (2009), Raginsky and
Lazebnik (2009), Rahimi and Recht (2007)). For example, a popular hash function
for Locality Sensitive Hashing (LSH) that preserves dot-product similarity uses ran-
dom projections drawn from a Gaussian distribution (Andoni and Indyk (2008)).
Another choice would be use Principal Component Analysis (PCA) to reduce the
dimensions and bring out strong patterns of a dataset (Gordo et al. (2013), Jegou
et al. (2010)). Liu et al. (2012) has also developed a principled formulation for learn-
ing hash codes using kernels and category labels, which requires a limited amount of
supervised information, i.e., similar and dissimilar data pairs, and a feasible training
cost in achieving high quality hashing.

2See https://pub.towardsai.net/deep-hashing-for-similarity-search-9273aac054db

https://pub.towardsai.net/deep-hashing-for-similarity-search-9273aac054db

1 INTRODUCTION 3

After the embedding, we can use hashing to generate binarized data. General clas-
sification of hashing algorithm can be broadly divided into two categories: data
independent methods and data dependent method. If a hashing function is defined
independently of the data to be processed without involving a training process from
the data, we refer to such a hashing technique as data independent hashing (Chi
and Zhu (2017)). A hashing function is often prespecified, although some of them
may learn data distributions to improve hashing results such as locality-sensitive
hashing (LSH). LSH involves designing different hashing functions with randomized
projections or permutations, which has a very high probability to return the same
bit for similar data items (Singh and Gupta (2022); Gionis et al. (1999)). It offers
sub-linear time search by hashing highly similar examples together in a hash table.
LSH functions that accommodate Hamming distance (Indyk and Motwani (1998)),
inner products (Charikar (2002)), lp norms (Datar et al. (2004)), and normalized
partial matching (Grauman and Darrell (2007)) have been developed in prior work,
which have shown effectiveness on various image search applications. However, of-
ten long hash codes are used in LSH-based randomized techniques because of which
recall decreases. Building more than one hash tables can remove this problem, but
it increases the storage requirements and the time of query in the meantime (Wang
et al. (2015)). Additionally, as LSH does not take the properties of data into ac-
count, it shows insufficient performance in different real world applications.

To address the shortcomings of data independent methods, researchers try to get
high-quality hashing codes by learning good hash functions. As two pioneering meth-
ods, i.e., spectral hashing (Weiss et al. (2008)) and semantic hashing (Salakhutdinov
and Hinton (2009)) have been proposed, learning to hash has sparked considerable
academic interest in both machine-learning and data mining. With the development
of deep learning, obtaining hash codes through deep learning is becoming more and
more because of the ability to learn powerful representation of very complex hash
functions and achieve end-to-end hash codes, which is very useful in many applica-
tions. These data dependent methods exploit data distributions and information on
class labels from the dataset so that the nearest neighbor of any pattern in the hash
coding space is as close as possible to its neighbors in the original space (Singh and
Gupta (2022)), which can be broadly divided into two main sub categories: deep
supervised hashing and deep unsupervised hashing. In deep supervised hashing, la-
beled information about similarity between pairs of images is leveraged to generate
hash codes while learning model parameters to design advanced hash function (Zhu
et al. (2016)). The design of the deep supervised hashing method mainly includes
two parts: the design of network structure and the design of loss function (Luo
et al. (2023)). For small datasets like MNIST (LeCun et al. (1998)) and CIFAR-10
(Krizhevsky et al. (2009)), shallow architecture such as CNN-F (Chatfield et al.
(2014)) and AlexNet (Krizhevsky et al. (2017)) are widely used. While for com-
plex datasets such as NUS-WIDE (Chua et al. (2009)), deeper architecture such as
ResNet50 (He et al. (2016)) can be applied. The loss functions are designed with
the objective of maintaining similarity structures. These methods primarily focus
on minimizing the discrepancies between similarity structures in the original and

1 INTRODUCTION 4

Hamming spaces (Cao et al. (2018)). In supervised scenarios, researchers typically
derive similarities in the original space by utilizing label information. Consequently,
determining how to obtain similarities from learned hash codes is crucial for differ-
ent algorithms. The deep supervised hashing algorithms can be further classified
based on their approaches to measuring the similarities of learned hash codes into
four categories: pairwise methods, ranking-based methods, point-wise methods and
quantization (Luo et al. (2023)). Another area of research in this field is deep un-
supervised hashing, which does not require any label information. In unsupervised
learning, the semantic information is typically extracted from relationships in the
original spaces. Depending on the approach to learning this semantic information,
deep unsupervised hashing algorithms can be categorized into three types: pseudo-
label-based methods, similarity reconstruction-based methods and prediction-free
self-supervised learning methods (Luo et al. (2023)). These methods harness the
inherent structure of the data to generate meaningful hash codes without relying
on external labels, thereby facilitating the efficient retrieval and categorization of
large-scale data sets in various applications.

At retrieval time, when a new query image is given, it is necessary to calculate the
distances from that query to every image in the database. Most methods achieve
this by directly computing the Hamming distance, which counting the number of
positions at which the corresponding bits are different. It is highly efficient for
large-scale image retrieval because it requires simple bitwise operations that are
computationally inexpensive. Another computation would be asymmetric distance,
which efficiently deals with the problem when the query item might not undergo the
same transformation or might be partially transformed, if database items are stored
in a reduced dimensional space to speed up retrieval operations for instance (Gordo
et al. (2013)). One typical approach in asymmetric distance calculations is to use
different functions or metrics for the database and the query sides. For example, the
query might be processed using a more complex function due to fewer constraints
on query processing time compared to the need for extremely fast processing on the
database side.

1.3 Contribution

• The contribution of the experiment involves the transformation of image em-
beddings to hashed image embeddings using various deep supervised hashing
methods, making sure the semantic similarities are preserved and data pri-
vacy is enhanced. By comparing various deep supervised hashing methods,
including pairwise and triplet methods, the experiment try to understand and
evaluate how different approaches perform under the same conditions. It pro-
vides insights into which methods are most effective in retaining important
data characteristics after hashing. The systematic evaluation of hashing tech-
niques across different metrics like accuracy and computational efficiency helps
in benchmarking current methods.

2 THEORETICAL FOUNDATIONS 5

• We innovatively apply Triplet Center Loss (TCL) in the domain of deep hash-
ing, aiming to achieve both high performance and computational efficiency.

2 Theoretical Foundations

2.1 Deep Neural Networks

Deep neural networks (DNNs) (Samek et al. (2016)) have emerged as a cornerstone
in the field of machine learning, particularly in tasks requiring complex pattern
recognition and data representation. Originating from the idea of artificial neural
networks, DNNs consist of multiple layers of neurons, each designed to process as-
pects of the input data differently, yet collectively contributing to the final input
(LeCun et al. (2015)). This multi-layer architecture allows DNNs to learn hierar-
chical representations, making them exceptionally good at managing complex and
voluminous datasets typical in various computational tasks. The transformative im-
pact of DNNs in computer vision began with the introduction of architectures like
AlexNet (Krizhevsky et al. (2017)), which in 2012 demonstrated a profound leap
in performance on the ImageNet challenge. AlexNet’s success was attributed to its
deep structure (five convolutional layers followed by three fully connected layers)
and the use of rectified linear units, which helped the network train faster and more
effectively. Subsequently, architectures such as VGGNet (Simonyan and Zisserman
(2014)) and ResNet (He et al. (2016)) further advanced the field. VGGNet is noted
for its simplicity and depth, utilizing small receptive fields in convolutional layers to
build deeper networks. ResNet, introduced by Microsoft, brought the novel concept
of residual learning, tackling the problem of vanishing/exploding gradients in build-
ing very deeper networks by using shortcut connections to jump over some layers.

In the realm of hashing within vision foundation models, these deep architectures
have been foundational. Their ability to encode input data into compact binary
hash codes through end-to-end learning revolutionizes similarity search and privacy
preservation tasks (Wang et al. (2021)). This is particularly evident with the in-
troduction of Vision Transformer (ViT) (Dosovitskiy et al. (2020)), which deviate
from traditional convolutional approaches by applying self-attention mechanisms to
process data. This shift has allowed for even more nuanced understanding and rep-
resentation of image data, enhancing both the efficiency and accuracy of generating
hash codes. For deep supervised hashing methods, the hashing network is usually
modified from these aforementioned standard networks by replacing the classifica-
tion head with a fully-connected layer containing L units for hash code learning (Luo
et al. (2023)). To be more precise, after feature extraction, the data is flattened (if
necessary) and passed through one or more dense layers which consolidate the fea-
tures into a format suitable for the final hashing layer, which is typically a fully
connected layer with a specific number of neurons corresponding to the designed
length of the hash code. For instance, if a generation of 64-bit hash code is wanted,

2 THEORETICAL FOUNDATIONS 6

Figure 1: Basic Framework of Deep Supervised Hashing with Pairwise Similarity
Measurement.The hash codes are produced by a hashing network. Afterwards, the
pairwise similarity information of hash codes and ground truth is matched and thus
get similarity preserving loss. (Luo et al. (2023))

this layer would have 64 neurons. The outputs from the hashing layer are then
passed through a binary activation function, such as a sigmoid function followed by
a thresholding step to convert each output to 0 or 1, thereby generating a binary
hash code. The final output is a compact binary hash code representing the input
data, ready for use in similarity searches or other applications. Figure 1 shows a
representative framework of deep supervised hashing.

The architectural design of a hashing network is important in deep supervised hash-
ing, significantly influencing the accuracy of the search results and the inference
speed (Mehta and Sahni (2004)). The architecture’s complexity and depth play
dual roles: while a deeper network can increase the accuracy of hashing, it usually
adds to the computational burden, thus slowing down the inference process. This
trade-off highlights the importance of selecting an architecture that balances both
accuracy and efficiency (Luo et al. (2023)). Moreover, if the network architecture is
overly simplified—reverting to basic multilayer perceptrons (MLPs) or simple linear
projections—the advantages of deep learning are negated, reducing the approach to
traditional hashing methods. Such basic approaches do not leverage the rich, hier-
archical feature representations that more sophisticated deep learning models offer,
which are essential for effective hashing in complex, high-dimensional data spaces.
It is also crucial to align the network architecture with the specific characteristics
and complexity of the dataset. A more complex dataset, featuring high variabil-
ity in data patterns, may need a deeper and more complex network to capture the
nuanced features essential for accurate hashing. Conversely, for simpler datasets, a
less complex model might suffice, optimizing both performance and computational
efficiency (Luo et al. (2023)).

2.2 K-Nearest Neighbors Algorithm(KNN)

K-Nearest Neighbors (KNN) serves as a fundamental metric in the evaluation of
hash codes generated by deep neural networks (Xu et al. (2018)), particularly within
the domain of similarity search. As a non-parametric, instance-based learning algo-

2 THEORETICAL FOUNDATIONS 7

rithm, KNN plays a crucial role in determining how effectively the embedded feature
spaces preserves neighborhood relationships (Mitchell (1997)). This preservation is
essential for maintaining data privacy and improving the performance of retrieval
systems. By applying KNN, we can directly assess how closely the hash codes repli-
cate the spatial relationships found in the original high-dimensional feature space.
The basic concept of KNN is to identify the k most similar data points to a new data
point, referred to as the query data point. It predicts the label of the query point by
utilizing the labels of these k nearest neighbors. Similarity between two data points
in a vector space is typically determined using a distance metric, such as Euclidean,
Cosine and Manhattan distance. Euclidean distance is the most common choice:

EuclideanDistance =

√√√√ n∑
i=1

(xi − yi)2

where xi and yi are components of vectors x and y respectively.

The k data points closest to the query point are called the k-nearest neighbors
(Doerrich et al. (2024)). The choice of K is crucial as it determines the frontier of
classification and how granular the classification is. A smaller K can make the noise
have a higher influence on the result, while a larger K makes boundaries between
classes less distinct. Research has also shown that a small number of neighbors are
most flexible fit which will have low bias but the high variance and a large number
of neighbors will have a smoother decision boundary which means lower variance
but higher bias (Navlani (2018)).

A majority vote among these neighbors is then used to predict the label of the query
point 1. Optionally, the contributions of neighbors can also be weighted, which can
be done by the inverse of their distance, giving nearer neighbors greater influence
on the classification:

ypred = argmaxj(
k∑

u=1

ωi × 1(yi = j))

where ωi = 1
d(x,xi)α

. d(x, xi) is the distance from the test point x to each neighbor xi,

and 1 is the indicator function that is 1 if yi = j and 0 otherwise (Mitchell (1997)).

The process is illustrated in Figure 2.

KNN on Hashed Embeddings To apply the KNN algorithm to hashed embed-
dings, which are typically binary codes, we may need to use a distance metric that
is suitable for comparing binary data, such as Hamming distance, instead of the
Euclidean distance commonly used with continuous data.

1See https://prof-frenzel.medium.com/dear-friends-854ba66361d7

https://prof-frenzel.medium.com/dear-friends-854ba66361d7

2 THEORETICAL FOUNDATIONS 8

Figure 2: Visualization of KNN. (Navlani (2018))

Hamming distance The Hamming distance is a metric used to measure the
difference between two strings of equal length (Federici et al. (2021)). It quantifies
the number of positions at which the corresponding symbols are different, or, in
simpler terms, it counts the number of substitutions required to change one string
into the other (Waggener and Waggener (1995)). The concept was introduced by
Richard Hamming, an American mathematician and computer scientist, in 1950.
Hamming initially developed this distance metric to detect and correct errors in
data transmitted over noisy communication channels. Today, it is widely used in
various fields such as information theory, particularly in scenarios involving error
detection and correction algorithms (Robinson (2003)). Given two strings, s and
t, of equal length, the hamming distance between them, denoted as dH(s, t), is
calculated as the number of positions i at which the corresponding symbols si and
ti differ:

dH(s, t) =
n∑

i=1

[si ̸= ti]

where [si ̸= ti] is an indicator function that is 1 if si ̸= ti and 0 otherwise, and n is
the length of the strings. It provides a quick and efficient way to measure similarity
between encoded instances, making it particularly useful for applications involving
binary hash codes, where it helps in assessing the closeness of data points in a fea-
ture space.

Here is the pseudocode for applying KNN to hashed embeddings, using the hamming
distance:

2 THEORETICAL FOUNDATIONS 9

Algorithm 1 KNN on Hashed Image Embeddings

1: procedure KNN Hashed(X train hashed, y train,X q hashed, k)
2: for each x q hashed in X q hashed do
3: Initialize an empty list distances
4: for each x train hashed in X train hashed do
5: distances.append(calculate hamming distance(x q hashed,

x train hashed))
6: end for
7: indices← argsort(distances)[:k]
8: k nearest labels← select(y train, indices)
9: y pred.append(mode(k nearest labels))
10: end for
11: return y pred
12: end procedure

1. Calculate Hamming Distance. For each new data point’s hashed embedding,
calculate the Hamming distance to each training point’s hashed embedding.

2. Sort and Select Neighbors. After calculating the distances, sort them and
select the indices of the smallest distances to identify the k nearest neighbors.

3. Determine the Output. For each query data point, the output label is de-
termined by the mode of the labels associated with the k nearest training
instances.

2.3 Deep Hashing Algorithms

Learning to Hash The objective of learning-based hashing is to design hash
functions that can convert high-dimensional data into compact binary codes while
preserving the intrinsic similarities among the data points (Wang et al. (2017)).
Let’s denote the dataset D = x1, ..., xn where each xi ∈ Rd represents a high-
dimensional input vector. The goal is to learn a hash function h : Rd −→ 0, 1k that
maps each input vector to a k-dimensional binary vector for the convenience of the
nearest neighbor search (Mehta and Sahni (2004)). In the context of this article, we
focus on deep hashing methods, which is an extension of learning to hash paradigm
that incorporates deep learning techniques. In deep hashing, the hash functions
are learned using deep neural networks. The integration of deep learning allows
the hash function to not only learn from that data but also to perform feature
extraction and transformation in an end-to-end manner. This means that deep
hashing networks are capable of processing raw input data (like images or text),
extracting relevant features using layers of the network, and then transforming these
features into compact binary codes.

2 THEORETICAL FOUNDATIONS 10

2.3.1 Overview

When designing deep supervised hashing, we mainly focuses on these key pro-
cesses to ensure the system is efficient, effective, and capable of handling large-scale
datasets (Luo et al. (2023)):

1. Choosing the deep neural network architecture.

2. Designing the loss function for preserving the similarity structure.

3. Optimizing the deep neural network with the discretization problem.

4. Additional techniques to enhance performance.

As discussed above, the choice of network architecture should be capable of extract-
ing robust and discriminative features from the data that are suitable for generating
binary hash codes. For image data, CNNs are typically preferred because of their
proven ability in extracting hierarchical visual features from images, while Recurrent
Neural Networks (RNNs) or Transformers may be more appropriate for text data
due to their effectiveness in handling sequential data. Additionally, auto-encoders
(Kramer (1991)) can be used for unsupervised feature extraction followed by a su-
pervised fine-tuning for hashing.

Similarity Measurement (Luo et al. (2023)) Firstly, A clarifies the formal
notations and symbols. X = {xi}Ni=1 is denoted as the training set. The outputs
of the hashing network are represented as H = {hi}Ni=1, where hi = Ψ(xi). The
resulting binary codes are expressed as B = {bi}Ni=1. We define the similarity be-
tween pairs of items (xi,xj) in the input space and Hamming space as soij and shij
respectively. In the input space, similarity is the ground truth, primarily based on
sample distance doij and semantic labels. The sample distance, such as the Euclidean
distance ||xi − xj||2, can be computed using functions like the Gaussian function,

exp(− (doij)
2

2σ2), or the characteristic function Idoij<τ , where τ is a predetermined thresh-
old. Cosine similarity is another popular metric. Semantic similarity, which is more
relevant in deep supervised hashing, assigns a value of 1 if two examples share a
common label and 0 otherwise.
In the Hamming space, the pairwise distance dhij is naturally the Hamming distance.
For binary codes valued at 1 and 0,

dhij = ||bi − bj||1

varies from 0 to L, the similarity is expressed as:

shij =
L− dhij

L

If two items have identical hash codes, their Hamming distance is 0, making shij =
L−0
L

= 1, indicating maximum similarity. Conversely, if all bits are different (worst
case), dhij = L and shij = L−L

L
= 0, indicating no similarity.

2 THEORETICAL FOUNDATIONS 11

If the codes are valued at 1 and -1,

dhij =
1

2
(L− bT

i bj)

The inner product bT
i · bj sums the products of corresponding bits. When all cor-

responding bits in the vectors match perfectly, the product will be high (maximum
L); otherwise −L when the bits are completely opposite. L − bT

i bj calculates the
”difference” score, which is then halved by 1

2
to convert any pair of different bits

into a single count of dissimilarity, fitting the typical range of a Hamming distance
for binary codes valued between 0 and 1. This adjustment is necessary because
each pair of mismatched bits (-1 in the product) represents two bits different, hence
dividing by 2 aligns it with the traditional Hamming count where each different bit
is counted once.

The similarity is then calculated using the inner product:

shij =
bT
i · bj + L

2L

The formula leverages the inner product of the codes. By shifting and scaling, it
converts the inner product into a similarity measure. If all bits match perfectly (all
pairs of corresponding bits are either both 1 or both -1), the sum bi · bj equals L,
and the similarity shij = L+L

2L
= 1. If all bits are opposite, the sum equals −L and

similarity is 0.

This framework can be extended to a weighted scenario, where each bit is associated
with a weight λl, and for codes valued at 1 and -1, the similarity becomes

shij =
bT
i Λbj + tr(Λ)

2tr(Λ)

where Λ = diag(λ1, ..., λl) is diagonal and tr(·) denotes matrix trace. In the inner
product bT

i Λbj, each bit comparison bil · bjk (for each bit position l) is scaled by
the weight λl. The normalization is then conducted by first adding tr(Λ), which
shifts the weighted sum to ensure that the resulting similarity score is non-negative.
Then the step dividing by 2tr(Λ) normalizes the similarity score to be within range
[0, 1]. Normalization is crucial for standardizing the output of the similarity measure,
making it easier to interpret and compare across different pairs of items and different
settings.

This weighted similarity measure is particularly useful in scenarios where not all the
bits in a hash code have equal significance. For example, in image retrieval, certain
features extracted and encoded into the hash might be more crucial for identifying
similarities due to their higher discriminative power. By assigning higher weights
to these bits, the similarity measure can more effectively reflect the true likeness
between images.

2 THEORETICAL FOUNDATIONS 12

Loss Function After defining the similarity measurement, we continue with the
loss function in deep supervised hashing. Loss functions are central to the perfor-
mance of deep supervised hashing. Their primary role is to ensure that the hash
codes generated by the model accurately preserve the similarity structure of the
original data space (Athitsos et al. (2007)). This means that the algorithm should
minimize the discrepancy between how similar (or dissimilar) items are in the origi-
nal input space and their representations in the Hamming space (where hash codes
reside). The typical loss functions are pairwise loss and ranking-based loss. The
pairwise loss is often used to ensure that pairs of similar items result in similar hash
codes (small Hamming distance) and vice versa. The ranking-based loss is used to
maintain the relative order of distances in the hash code space, ensuring that an
anchor item is closer to positive items than to negatives.

Besides of maintaining similarity structures, label information can also be integrated
in multiple ways. The first way is to regress hash codes with labels (Liu et al. (2019)).
Here, the label is encoded into one-hot format matrix and regression loss, i.e.,

||Y −WH||F

are added into the loss function, where Y is the matrix of label vectors, W is a
transformation matrix, and H are the hash codes. The second way is adding a clas-
sification layer after the hashing network involves using a supervised loss function,
such as cross-entropy, to make the hash codes discriminative with respect to the
labels (Lin et al. (2015)).

Quantization loss plays a crucial role in controlling the quality of hash codes in deep
hashing models, particularly when transforming the continuous outputs of neural
networks into discrete, binary hash codes. It minimizes the differences between the
continuous outputs of the network and their nearest binary values, helping to re-
duce the gap between the ideal binary representation and the actual outputs of the
hashing network. This is crucial for the practical deployment of hashing systems
where binary codes are required for storage and retrieval efficiency. Another impor-
tant term is bit balance loss. It addresses the distribution of hash bits across the
dataset, penalizing scenarios where certain bits are always 1 or always -1, which can
lead to uninformative bits in the hash codes. Some regularization losses, such as L2
regularization, can also be added to prevent overfitting.

2.3.2 Pairwise Loss Functions

The core principle of pairwise loss is to bring the hash codes of similar class patterns
closer together while pushing those of different classes further apart. Figure 3 depicts
this fundamental concept of the pairwise approach. In this context, the pattern
of interest is termed the ”anchor.” A pattern belonging to the same class as the
anchor is referred to as ”positive,” whereas a pattern from a different class is labeled
”negative” (Singh and Gupta (2022)). The loss function processes pairs formatted
as ⟨anchor, positive⟩ to decrease the distance between their hash codes in the hash

2 THEORETICAL FOUNDATIONS 13

Figure 3: The basic idea of pairwise loss and triplet loss (Singh and Gupta (2022)).
A: Anchor; P: Positive examples; N: Negative examples. Pairwise loss considers the
distance between ⟨A,P ⟩ and ⟨A,N⟩ separately, while triplet loss treat ⟨A,P,N⟩ as
a whole.

space, or as ⟨anchor, negative⟩ to increase the distance, thereby segregating them
distinctly within the hash code space (Singh and Gupta (2022)).

L =
∑

(i,j)∈P

(yij||hi − hj||2 + (1− yij)max(0,m− ||hi − hj||2))

where hi and hj are the hash codes for the anchor and either a positive or negative
example, respectively. yij is a binary label indicating if the pair is similar (yij = 1
for anchor-positive pairs) or dissimilar (yij = 0 for anchor-negative pairs). m is a
margin that defines how far apart the dissimilar items’ hash codes should be - a
hyperparameter that can be fine-tuned.

For similar pairs (⟨anchor, positive⟩), the goal is to minimize the distance between
their hash codes (||hi − hj||2). This encourages the model to map similar patterns
(same class) closer in the hash code space (Jiao et al. (2023)), enhancing retrieval
performance by making similar items more accessible via smaller Hamming dis-
tances. For dissimilar pairs (⟨anchor, negative⟩), the model is trained to ensure
that the distance between their hash codes is at least m. This is accomplished via
the term max(0,m−||hi−hj||2), which penalizes the model if the distance between
dissimilar pairs is less than m. This helps in mapping different class patterns away
from each other, reducing false positives in retrieval tasks.

Pairwise loss function typically falls into two categories: difference-based minimiza-
tion and likelihood minimization (Luo et al. (2023)). Each approach targets a
slightly different aspect of learning how to encode similarities and dissimilarities
between pairs of data points.

2 THEORETICAL FOUNDATIONS 14

Difference-Based Minimization Difference-based minimization is a critical ap-
proach in deep hashing, aimed at reducing the discrepancies between the similarities
of data points in the original input space and the encoded Hamming space:

min
∑

(i,j)∈P

(soi,j − shi,j)
2

However, a direct optimization of binary hash codes poses significant challenges due
to the non-differentiable nature of binary operations. Do et al. (2016) replaces actual
binary codes with continuous outputs from neural networks before applying a hard
thresholding sign function.

shi,j =
hT
i hj

L

where hi and hj are continuous vectors from the neural network. Backpropagation
can then be used effectively, as the gradients can be calculated for the optimiza-
tion process. Another asymmetric similarity method involved in Wu et al. (2019)
calculates similarities using one binary and one continuous representation of data.

shi,j =
bTi hj

L

This approach helps mitigate the harsh effects of quantization (the process of con-
verting continuous output to binary) by reducing the error that typically arises when
a continuous value is forced into a binary state, providing a buffer against the loss
of information that occurs during binarization.

By transforming the difference losses into a product form and minimizing a product-
based loss that ties the original space similarities to Hamming distances, the model
directly encourages a smaller Hamming distance for items are similar in the original
space (Erin Liong et al. (2015)):

min
∑

(i,j)∈P

soi,jd
h
i,j

emphasizing that higher similarities in the original space should correspond to
smaller distances in the Hamming space. Incorporating a margin within these losses
can provides a buffer that enhances the model’s ability to differentiate between dif-
ferent classes of data more distinctly, thus further facilitating the relaxation and
convergence of the optimization process.

Likelihood Loss Minimization Likelihood loss minimization in deep hashing
involves modeling the similarity between items in a dataset probabilistically. This
approach not only considers how closely the hash codes resemble each other but also
integrates prior knowledge about the distribution of hash codes and the expected
similarities based on data characteristics. This probabilistic framework is essential

2 THEORETICAL FOUNDATIONS 15

for understanding and optimizing the semantic relationships captured by the binary
hash codes. The process starts by considering a similarity matrix S and a matrix of
binary codes B. The matrix

S = soi,j(i,j)∈P

represents known similarities between items. The relationship between the observed
similarities S and the binary hash codes B is captured through a posterior estimation
(Luo et al. (2023)):

p(B|S) ∝ p(S|B)p(B) =
∏

(i,j)∈P

p(soi,j|B)p(B)

where p(B) represents a prior distribution over the hash codes, and p(S|B) is the
likelihood of observing the similarity matrix given the hash codes. The conditional
probability p(soi,j|B) can be expressed in terms of the hash code derived similarities
shi,j:

p(soi,j|B) = p(soi,j|shi,j) =

{
σ(shi,j), if soi,j = 1

1− σ(shi,j), if soi,j = 0

where σ(x) = 1
1+ex

is the sigmoid function, transforming the hash code derived
similarity into a probability. If the similarities in the original space are larger, the
probabilistic model expects the similarities in the Hamming space also to be larger.

By transforming this into a log-likelihood gives:

logp(S|B) =
∑

(i,j)∈P

logp(soi,j|shi,j)

Substituting the conditional probabilities and simplifying, we get:

logp(S|B) =
∑

(i,j)∈P

[soi,jlogσ(shi,j) + (1− soi,j)log(1− σ(shi,j))]

To minimize the discrepancy between the predicted probabilities and the actual
observed similarities, we take the negative of this sum:

LNLL = −logp(S|B) = −
∑

(i,j)∈P

log(1 + es
h
i,j)− soi,js

h
i,j

Similarly, the hashing network usually cannot directly obtain the hash codes. Hence,
these codes B will replaced by the network outputs H to generate shi,j (Luo et al.
(2023)).

However, traditional sigmoid function are sometimes insufficient for modeling com-
plex data distributions. Alternatives like priority weighting (Cao et al. (2018)),

2 THEORETICAL FOUNDATIONS 16

Cauchy distribution (Cao et al. (2017a)) and imbalance learning (Cao et al. (2017b))
are explored to better model the probabilities and improve the robustness of the
hashing. Overall, likelihood loss minimization provides a sophisticated framework
for enhancing the quality of hash codes by probabilistically modeling the similarities
between items. This approach ensures that hash codes are not only computation-
ally efficient but also semantically meaningful, making them highly effective for tasks
involving similarity search and retrieval in massive datasets.

2.3.3 Triplet Loss Functions

Triplet loss is a powerful loss function used extensively in deep hashing where the
goal is to maintain the natural order and relationships observed in the original data
space within the constraints of a binary Hamming space (De Giacomo et al. (2020)).
It leverages the relative similarity between triplets of items to train hashing models.
A triplet typically consists of an anchor (xi), a positive item (xj), and a negative
item (xk), where the anchor is more similar to the positives than to the negatives
(soi,j > soi,k) (Duan et al. (2022)). The triplet loss can be expressed as:

LTriplet(hi, hj, hk) = max(0, dhi,j − dhi,k + m)

m is a margin parameter that enforces a buffer, ensuring the positives are not just
closer to the anchor than the negatives, but significantly closer by at least the margin
m.

List-methods go beyond the triplet comparisons and consider the rankings of entire
sets of items within the dataset, which aims to optimize global ranking metrics, mak-
ing them more comprehensive but also computationally intensive. Typical ranking
metrics can include average precision (AP) and normalized discounted cumulative
gain (He et al. (2018a)). These are sophisticated metrics used in information re-
trieval that consider the order of all retrieved items, rewarding hits at higher ranks
more than those at lower ranks. Mutual information is also utilized in Cakir et al.
(2019) to optimize the hash network by measuring and maximizing the dependency
between the input and the output hashes.

2.3.4 Pointwise Methods

Pointwise methods in deep supervised hashing provide a distinct approach from the
pairwise and triplet methods by focusing directly on individual data points and their
labels, rather than on relationships or similarities between pairs or groups of items.
This methodology is particularly useful for scenarios where precise label information
is available, allowing the hashing system to learn hash codes that directly reflect the
class or category of each item. The primary goal of pointwise methods is to ensure
that the hash codes generated for each item accurately reflect its label or category.
The method is commonly applied in settings where the labels provide significant
standalone information about the data points, such as in supervised learning tasks
with distinct class labels.

2 THEORETICAL FOUNDATIONS 17

In a typical pointwise approach, each item xi in the dataset is associated with a
label yi. The objective is to learn a function h(xi) that maps xi to a binary hash
code bi such that the hash code is indicative of yi. One straightforward method to
implement loss function that directly compares the predicted hash code with the
label is to treat each bit of the hash code as a binary classification problem (Yuan
et al. (2020)):

L(hi.yi) =
K∑
k=1

l(gk(hi), yi,k)

where K is the number of bits in the hash code, gk is a function that maps the k-th
component of the hash code to a predicted label bit. l is a suitable loss function,
such as binary cross-entropy defined as:

l(p, q) = −[qlog(p) + (1− q)log(1− p)]

which takes the predicted probability and actual label bit as input in this context.

The training process involves optimizing the parameters of the function h to mini-
mize the loss function across all training examples:

minh
1

N

N∑
i=1

L(hi, yi)

The pointwise method is conceptually simpler and more straightforward to imple-
ment compared to pairwise and triplet methods since they do not require the con-
struction of pairs or triplets of samples. However, in the mean time, this method
may not capture the relative similarities between different items as effectively, as
they focus solely on individual items and their labels. The performance is also heav-
ily dependent on the quality and correctness of the labels (Chen et al. (2007)). Any
errors or ambiguities in the labels can directly affect the quality of the learned hash
codes.

2.3.5 Quantization

Quantization technique is used to bridge the gap between the continuous features
generated by deep neural networks and the discrete binary codes needed for effi-
cient retrieval (Singh and Gupta (2022)). After generating deep features, we need
to quantize these binary features into binary hash codes. Product quantization is
a popular approach for this step, which involves partitioning the feature space into
smaller sub-spaces that can be independently quantized. We can frame the quanti-
zation loss with the objective to minimize the loss between the original deep features
and their quantized versions:

Lquant(hi, bi) = ||hi − q(bi)||2

To ensure that the quantized features preserve the semantic relationships inherent
in the data, quantization loss is often combined with other types of loss functions

3 METHODS 18

such as pairwise difference loss (Cao et al. (2018)), pairwise likelihood loss (Liu et al.
(2018a)) and triplet loss (Liu et al. (2018b)). In the work of Cao et al. (2018), DNNs
are involved in the product quantization, which might be used to dynamically de-
termine how the feature space could be partitioned for optimal quantization, based
on that data distribution learned during training. By integrating DNNs, the quanti-
zation process become more adaptive to the data, improving how well the quantized
codes represents the original features. Additionally, while traditional quantization
methods can lead to significant information loss, especially when compressing large
feature sets into small codes. DNNs can help minimize this loss by learning to
preserve essential information through more efficient encoding strategies. Hence,
the performance is improved through this end-to-end training where both feature
extraction and quantization are optimized simultaneously (Yang et al. (2014)).

3 Methods

Figure 4: Illustration of our proposed approach. Firstly, the image embeddings
are generated though ViT-B/16 image encoder. KNN is applied on these image
embeddings to evaluate accuracy as a baseline metric. Secondly, a series of exper-
iments were conducted to transfer the image embeddings to hashed image embed-
dings through various deep supervised hashing methods, mainly including pairwise
and triplet methods. We again retrieve the accuracy using KNN on these hashed
image embeddings to make a comparison between the baseline accuracy.

Fig.4 illustrates our proposed approach consisting of 1. Feature Extraction, 2. Deep
Hashing, and 3. Inference using KNN. The following section will provide an overview
of each phase.

3.1 Feature Extraction

Feature extraction is a pivotal step in our methods, enabling the transformation of
raw image data into image embeddings. In this study, we employ the Vision Trans-

3 METHODS 19

Figure 5: Vision transformer model overview (Dosovitskiy et al. (2020)). Image
is split into fixed-size patches, which are then linearly embedded and combined
with a position embeddings. The resulting sequence of vectors is then fed into the
transformer encoder. To perform classification, an extra learnable “classification
token” is added to the sequence.

former (ViT) (Dosovitskiy et al. (2020)) as our primary image encoder to extract
and subsequently store feature embeddings and their associated labels (fi, yi) ∈ F
for each labeled input image (xi, yi) ∈ X, with an associated categorical class distri-
bution C (Di Salvo et al. (2024)). The extracted feature representations fi represent
the positional information of xi within the feature space of selected feature extractor
(Di Salvo et al. (2024)). Unlike CNNs that process images through localized filters,
ViT divides an image into fixed-size patches. These patches are then flattened,
linearly embedded, and subsequently processed in a sequence-like manner akin to
tokens in a language model. Each patch is also associated with a positional encoding
to retain order information. This setup allows the transformer to leverage its self-
attention mechanism, enabling it to weight the importance of different patches as it
processes the image, thereby capturing both local and global features effectively.

We specifically rely on the DINOv2 (Oquab et al. (2023)) architecture for embedding
extraction, which is a self-supervised learning framework built upon the ViT archi-
tecture. DINOv2 leverages a self-distillation approach where the network is trained
to predict its own ouput under different views of the same image, facilitated by data
augmentation techniques. This method encourages the model to discover invariant
and discriminative features across various perturbations of the input data. The core
of DINOv2 involves two key components: a teacher network and a student network
(Doan et al. (2022)). Both networks share the same architecture but are initialized
differently. During training, the student network learns to predict the output of

3 METHODS 20

the teacher network. Importantly, the teacher network’s parameters are updated as
an exponential moving average of the student network’s parameters (Zhang et al.
(2019)), which stabilizes the learning process over time. Through this procedure,
DINOv2 effectively learns to generate embeddings that compactly represent the
essential features of the input images. These embeddings are high-dimensional vec-
tors that capture the salient characteristics of the images, making them suitable for
downstream tasks such as similarity search, where distances between embeddings
directly correlate to visual similarities between images. The embeddings generated
by DINOv2 are particularly useful for our purposes as they are designed to be robust
to variations in input data, thereby enhancing both the effectiveness and reliability
of hashing methods applied subsequently.

3.2 Hashing Techniques

In this section, we’ll introduce the hashing techniques applied in our experiments.
Table 3.2 summarizes the deep supervised hashing methods with different manner
of similarity measurements.

Approach Pairwise Ranking-based Pointwise Binarization Other skills

DSH Prod + Margin - - Quan -

CNNH Diff. - Part of Hash Codes - Two-step

DPSH Like - - Quan -

DHN Like - - Quan + Smooth -

DSDH Like - Linear Reg + L2 Quan + Alternation -

HashNet Weighted Like - - Tanh + Continuation -

DSHGAN - Triplet + Margin Cla.Layer Drop GAN

DNNH - Triplet + Margin - Piecewise Thresholding -

TCL Center-focus Triplet + Margin - Sigmoid/Thresholding Central Metric

Table 1: A Summary of Deep Supervised Hashing Methods w.r.t the Different Man-
ner of Similarity Measurement (Pairwise Methods, Ranking-based Methods, Point-
wise Methods, Binarization and other skills.) Diff. = Difference Loss, Prod. =
Product Loss, and Like. = Likelihood Loss, Quan. = Quantization Loss, Drop
= Drop the sign operator in the neural network and treat the binary code as an
approximation of the network output, Two-step = Two-step optimization, Reg. =
Regression, Cla. = Classification.

3.2.1 Pairwise Methods

Deep Supervised Hashing (DSH) Liu et al. (2016) Deep supervised hash-
ing (DSH) combines the representation learning of deep neural networks with the
efficiency of hashing-based nearest neighbor search. It builds upon the ideas from
earlier hashing techniques like Spectral Hashing (Weiss et al. (2008)) but adapts
them within a deep learning framework. This adaptation allows DSH to learn more

3 METHODS 21

complex and high-level image representations, which are more effective for image
retrieval compared to traditional methods.

Figure 6: Approach in Liu et al. (2016): The network consists of 3 convolution-
pooling layers and 2 fully connected layers. The filters in convolution layers are
of size 5 × 5 with stride 1 (32, 32, and 64 filters in the three convolution layers
respectively), and pooling over 3 × 3 patches with stride 2. The first fully connected
layer contains 500 nodes, and the second (output layer) has k (the code length)
nodes. The loss function is designed to learn similarity-preserving binary-like codes
by exploiting discriminability terms and a regularizer. Binary codes are obtained
by quantizing the network outputs of images.

DSH typically utilizes a deep convolutional neural network (CNN) structure that
includes three convolutional pooling layers and two fully connected layers. The
outputs of the DSH network are binary-like codes hi

N
i=1. The goal is to train the

network so that these codes effectively preserve the semantic similarities among the
images. The original pairwise loss function for DSH is defined as:

LDSH =
∑

(i,j)∈E

(
1

2
soijd

h
ij +

1

2
(1− sij)[ϵ− dhij]+)

where [·] denotes max(x, 0), implementing a hinge-like feature and ϵ > 0 is a thresh-
old parameter that sets a margin for dissimilar pairs. This loss function encourages
the network to map similar images to close points in the binary code space and
dissimilar images to distant points.

DSH also introduces a relaxation to the binary constraints of the output codes
by approximating them with continuous outputs of the network, which are then
regularizes towards binary values:

LDSH =
1

2
soij||hi − hj||22 +

1

2
(1− sij)[ϵ− ||hi − hj||22]+ + λ1

∑
k=i,j

|||hk| − 1||1

where λ1 is a regularization parameter that controls the strength of the penalty
pushing the hash values towards −1 or 1. The term |||hk|− 1||1 penalizes deviations
from −1 and 1, effectively regularizing the hash codes to be close to binary values.

3 METHODS 22

DSH employs end-to-end backpropagation for training, where the gradients of the
loss function are used to update the weights of the CNN. This training process
does not utilize saturating nonlinearities (like sigmoid or tanh at the final layer)
because these can potentially slow down the learning due to vanishing gradients.
For generating binary codes from the trained network, a sign activation function is
applied to the output of the network (Yang et al. (2019)). This function converts
each element in the output to −1 or 1 based on its sign, producing the final binary
hash codes (Luo et al. (2023)).

Algorithm 2 Deep Supervised Hashing (DSH)

Input: Image set X with n images; Similarity matrix S ∈ {0, 1}n×n; Number of
hash bits L; Learning parameters: learning rate η, regularization parameter λ1,
margin threshold ϵ; Maximum epochs E
Output: Binary hash codes H for all images; Trained CNN parameters Θ
procedure DSH Training: Initialize CNN with random weights Θ and binary
hash codes H ∈ Rn×L randomly

for each epoch do
for each minibatch in X do

Compute hash codes for the minibatch; Compute pairwise losses and
regularization; Update Θ by backpropagating losses

end for
end for

end procedure
procedure Generate Binary Codes

for each image in X do Compute hash code using CNN and sign function
end for

end procedure
Return H and Θ

DSH represents an early yet influential approach in the realm of deep supervised
hashing, setting foundational concepts for subsequent developments in hashing tech-
niques that leverage deep learning.

Convolutional Neural Network Hashing (CNNH) (Xia et al. (2014)) CNNH
uses the two-step strategy to address the complex challenge of learning to hash with
neural networks as illustrated in Fig.7. This strategy involves two main phases:

1. Learning approximate hash codes using coordinate descent. The goal is to
learn an initial set of binary codes that approximate the ideal binary hash
codes. This is typically achieved by minimizing an objective function that
quantifies the similarity between the learned codes and the desired semantic
relationships among the images (Choi et al. (2018)):

LCNNH = || 1
L
HHT − S||2

3 METHODS 23

Figure 7: Overview of two-stage method: 1. the pairwise similarity matrix S is
decomposed into a product HHT , where H is a matrix of approximate target hash
codes. 2. use a convolutional network to learn the feature representation for the
images as well as a set of hash functions. The network consists of three convolution-
pooling layers, a fully connected layer and an output layer. The output layer can be
simply constructed with the learned hash codes in H (the red nodes). If the image
tags are available in training, one can add them in the output layer (the black nodes)
so as to help to learn a better shared representation of the images. By inputting an
test image to the trained network, one can obtain the desired hash code from the
values of the red nodes in the output layer (Xia et al. (2014)).

where H is the matrix of hash codes for all training images, S is the simi-
larity matrix, where Sij is 1 if images i and j are similar and 0 otherwise.
L is the normalization factor, typically the number of hash bits. This objec-
tive function aims to make the inner product between the hash codes of any
two images approximate the semantic similarity defined by S. The function
penalizes deviations from this desired relationship, pushing 1

L
HHT to closely

mirror S. The optimization of this function is typically performed using a co-
ordinate descent strategy, where each coordinate (or a subset of coordinates)
is optimized iteratively while fixing the others. This process helps to converge
towards a set of hash codes that preserve semantic relationships as encoded in
S.

2. Training the CNN with hash codes. Once the approximate binary codes are
generated, the second step involves fine-tuning the convolutional neural net-
work using these hash codes. This training involves adjusting the network
weights to minimize the discrepancy between the outputs of the CNN (in the
last layer before the hashing layer) and the hash codes (Xu et al. (2018)). This
way, the CNN learns to produce feature representations that directly corre-
late with the binary codes, effectively making the process of generating binary
codes a part of the forward pass of the network in future deployments. If
class labels are available, a fully connected layer with K outputs units (corre-
sponding to the K class labels) is added to the CNN architecture (Luo et al.
(2023)). This layer is trained to perform image classification concurrently with
the hashing task. The overall loss function is then a combination of the hash-
ing loss (to ensure that the CNN’s output matches the binary codes) and the

3 METHODS 24

classification loss, allowing the network to optimize for both accurate image
retrieval and correct classification.

Algorithm 3 Convolutional Neural Network Hashing (CNNH)

Input: Training images X = {xi}Ni=1; Similarity labels S = {sij}, indicating
whether pairs (i, j) are similar
Output: Hash codes H for all images; Trained CNN parameters Θ
Initialization: Initialize CNN parameters Θ randomly; Initialize hash codes H
randomly or based on preliminary features
Training Process:
while not converged do

Select a batch of images from X
Perform forward propagation through CNN to compute features
Compute approximate binary codes for the batch
Calculate the loss function using S and the computed codes
Backpropagate the loss and update Θ

end while
Generate Hash Codes:
for each image xi in X do

Compute final binary hash code hi using the trained CNN
end for
Return Hash codes H and trained parameters Θ

The time complexity of the CNNH algorithm involves multiple factors, including the
complexity of the hashing bit learning and the CNN training. Assuming efficient
management of matrix updates, the hashing part’s complexity is O(Tnq). CNN
training complexity is largely dependent on the specific architecture but is generally
significant due to the computational cost of convolutions. Overall, complexity of
CNN training needs to be considered, especially for large-scale image datasets.

Deep Pairwise Supervised Hashing (DPSH) Li et al. (2015) DPSH utilizes
a deep convolutional neural network (CNN) as the backbone for feature extraction
and hash code generation. A common choice for the architecture is CNN-F, which is
known for its robustness in handling visual data. This network architecture typically
consists of several convolutional layers followed by pooling layers and fully connected
layers, culminating in a hashing layer that produces the hash codes. In DPSH,
the final output layer of the CNN is specifically designed to generate binary-like
hash codes. These codes are the embeddings that represent the input images in a
compressed binary form, facilitating efficient storage and fast retrieval.

The loss function in DPSH is composed of two main components:

3 METHODS 25

1. Likelihood loss. This loss component is defined based on the pairwise similarity
between images. It uses the standard form of likelihood loss that is modified
to suit the hashing context.

Llikelihood
DPSH = −

∑
(i,j)∈E

(soijs
h
ij)− log(1 + es

h
ij)

where soij indicates the ground truth similarity between images i and j. shij =
1
2
hT
i hj is the cosine similarity transformed output between the hash codes of

images i and j, which maps the real-valued outputs of the network to a value
that indicates the degree of similarity. This part of the loss function encourages
images that are similar (as per the label information) to have hash codes that
yield a higher dot product value, thus being closer in the Hamming space, and
vice versa.

2. Quantization loss. To ensure the outputs of the network are close to actual
binary values, quantization loss is added:

Lquant
DPSH = λ1

1

N

N∑
i=1

||hi − sgn(hi)||22

This term penalizes the deviation of the network outputs from −1 or 1, effec-
tively pushing the continuous outputs towards binary values. λ1 is a regulariza-
tion parameter that controls the trade-off between the similarity-preservation
and the binarization of the hash codes.

Algorithm 4 Learning Algorithm for Deep Pairwise Supervised Hashing (DPSH)

1: Input: Training images X = {xi}ni=1; Set of pairwise labels S = {sij}
2: Output: Parameters W, v, θ and binary codes B
3: Initialization: θ with the CNN-F model; Each entry of W and v by randomly

sampling from a Gaussian distribution with mean 0 and variance 0.01
4: repeat
5: Randomly sample a minibatch of points from X
6: for each sampled point xi do
7: Calculate ϕ(xi; θ) by forward propagation
8: Compute ui = W Tϕ(xi; θ) + v
9: Compute the binary code of xi with bi = sgn(ui)
10: Compute derivatives for point xi according to specified loss equations
11: Update the parameters W, v, θ by utilizing back propagation
12: end for
13: until a fixed number of iterations are completed

During training, DPSH learns both the deep features and the hash codes simul-
taneously through backpropagation, using the combined loss function LDPSH =

3 METHODS 26

Llikelihood
DPSH + Lquant

DPSH . This end-to-end training approach allows the network to ef-
fectively learn how to map raw image data directly to compact binary codes that
preserve semantic similarity, which is a key advantage over methods that separate
feature learning from hash code generation.

Deep Hashing Network (DHN) (Zhu et al. (2016)) Similar to other deep
learning based hashing methods such as DPSH, DHN utilizes a CNN as its backbone
for feature extraction. This CNN processes input images to extract rich feature
representations, which are then transformed into binary codes. The architecture
typically includes several layers of convolutions, pooling, and fully connected layers,
ending in a hashing layer where the actual hash codes are generated.

Figure 8: DHN with a hash layer fch, a pairwise cross-entropy loss, and a pairwise
quantization loss. (Zhu et al. (2016))

DHN employs a combination of a likelihood loss function similar to that used in
DPSH and a specially designed quantization loss, which incorporates Bayesian pri-
ors:

1. Likelihood loss. The likelihood loss is akin to the loss used in DPSH, focusing
on preserving the semantic similarities between images through their hash
codes. It aims to minimize the discrepancy between the hash codes of similar
images and maximize it for dissimilar ones, typically using a pairwise or triplet
loss formulation depending on the dataset and specific implementation details.

Figure 9: The bimodal Laplacian prior for quantization. Zhu et al. (2016)

3 METHODS 27

2. Quantization loss with bayesian prior. DHN introduces a Bayesian prior mod-
eled by a bimodal Laplacian distribution for each component of the hash code
vectors hi. This distribution is defined as

p(hi) =
1

2ϵ
exp(−||hi − 1||1

ϵ
)

where ϵ is a diversity parameter that adjusts the sharpness of the distribution
around ±1, which are the desired values for binary codes as illustrated in Fig.9.
The use of the Laplacian prior provides a probabilistic foundation to the hash-
ing process, viewing each bit in the hash code as a random variable following
the specified distribution. The quantization loss in DHN is then formulated as
the negative log-likelihood of this Bayesian prior, which effectively measures
how well the distribution of the hash codes hi aligns with the expected binary
values under the prior. The loss is given by:

LQuan = N
N∑
i=1

||hi − 1||1

The L1 norm is used here instead of the L2 norm, as it not only provides
an upper bound for the L2 norm but also promotes sparsity and pushes the
values of hi towards zero or away from it, ideally setting at ±1. By minimizing
the negative log-likelihood, the network learns to generate hash codes that
maximize the posterior probability under this distribution.

To further align the quantization loss with the Bayesian prior and make the
optimization process more tractable, DHN employs a smooth surrogate for the
L1 loss:

LQuan = N
N∑
i=1

L∑
l=1

log(cosh(|hil − 1|))

This smoothing with the log-cosh function helps in handling the optimization
challenges typically associated with the non-differentiability of the L1 norm at
zero, providing a gradient that is more stable and continuous to gradient-based
optimization methods.

DHN is trained using backpropagation with the overall loss being a combination of
the likelihood and quantization losses. The network learns to generate hash codes
that not only preserve semantic content but are also close to binary, thus reducing
the retrieval time and storage space typically required for real-valued vectors.

HashNet Cao et al. (2017b) HashNet addresses specific challenges in training
deep hashing networks, particularly focusing on the issue of training imbalance and
the non-linearity in transforming continuous activations to binary hash codes.

One of the significant challenges in deep hashing is the imbalance between similar
and dissimilar image pairs, which can skew the learning process and affect the quality

3 METHODS 28

Algorithm 5 Deep Hashing Network (DHN)

Input: Training images X = {xi}Ni=1; Pairwise similarity labels S = {sij}
Output: Binary hash codes H; Trained network parameters Θ
Initialization: Network parameters Θ with pretrained or random values; Param-
eter for Laplacian prior ϵ
Training Process:
while not converged do

Sample a minibatch from X
Perform forward propagation to compute hi for each xi

Calculate Llikelihood based on S and hi

Compute quantization loss LQuan using Laplacian prior
Total loss L = Llikelihood + LQuan

Backpropagate the total loss and update Θ
end while
Generate Binary Codes:
for each xi in X do

hi = forward pass(xi)
bi = sign(hi) ▷ Convert to binary
Store bi in H

end for
Return H and Θ

Figure 10: HashNet for deep learning to hash by continuation, which is comprised
of four key components: (1) Standard CNN for learning deep image representations,
(2) a fully-connected hash layer fch for transforming the deep representation into
K-dimensional representation, (3) a sign activation function for binarizing the K-
dimensional representation into K-bit binary hash code, and (4) a novel weighted
cross-entropy loss for similarity-preserving learning from sparse data (Cao et al.
(2017b)).

3 METHODS 29

of the generated hash codes. HashNet introduces the Weighted Maximum Likelihood
(WML) loss to handle the imbalance issue effectively as illustrated in Fig.10. For
each image pair, a weight wij is assigned based on whether the pair is similar (sij = 1)
or dissimilar (sij = 0):

wij =

{
|S|
|S1| , if sij = 1
|S|
|S0| , if sij = 0

where |S1| is the number of similar pairs and |S0| is the number of dissimilar pairs.
For multiple-label datasets, the label overlap coefficient cij is calculated based on the
overlap between the labels of the two images

yi∩yj
yi∪yj , and it equals to 1 for single-label

datasets.

HashNet modifies the sigmoid activation function used in calculating the conditional
probabilities of the hash bits:

σ(x) =
1

1 + e−αx

This adaption introduces a hyper-parameter α, which scales the input to the sigmoid
function, effectively controlling the steepness of the activation curve and allowing
the model to be more or less aggressive in classifying pairs as similar or dissimilar.
The conditional probabilities are then defined as:

P (sij|hi, hj) =

{
σ(⟨hi, hj⟩), sij = 1

1− σ(⟨hi, hj⟩), sij = 0

The WML loss incorporates these probabilities into a logistic regression framework,
adjusted for the imbalance by using weights wij for each pair:

LWML = minθ

∑
sij∈S

wij(log(1 + eα⟨hi,hj⟩)− αsij⟨hi, hj⟩)

α⟨hi, hj⟩ represents the input to the adaptive sigmoid function scaled by α, en-
hancing the model’s capacity to deal with the linear separability of the data in the
transformed feature space.

To overcome the non-differentiability of the sign function, HashNet employs a con-
tinuation method by approximating the sign function with differentiable functions
during training. The typical choice for approximation is the hyperbolic tangent func-
tion (tanh), as it provides outputs between -1 and 1, similar to the sign function,
but it is smoothly differentiable as illustrated in Fig.11. The steepness of the tanh
function can be controlled by a scaling parameter β, making tanh(βx) increasingly
steep as β increases:

limβ→∞tanh(βz) = sgn(z)

Continuation learning refers to gradually increasing the parameter β during the
training process. This technique starts with a smaller value of β, making the tanh

3 METHODS 30

Figure 11: Plot of smoothed responses of the sign function h = sgn(z): Red is
the sign function, and blue, green and orange show functions h = tanh(βz) with
bandwidths βb < βg < βo. The key property is limβ→∞tanh(βz) = sgn(z). (Cao
et al. (2017b))

function relatively flat, and gradually increases β to make it sufficiently large so that
tanh(βx) closely approximates the sgn(x) function, effectively pushing the outputs
towards -1 or 1, thus producing binary hash codes.

Algorithm 6 Optimizing HashNet by Continuation

Input: A sequence 1 = β0 < β1 < .. < βm =∞
for stage t = 0 to m do

Train HashNet(WML loss) with tanh(β) as activation
Set converged HashNet as next stage initialization

end for
Output: HashNet with sgn(z) as activation, βm →∞

The combination of these techniques - WML loss for training balance, adaptive
sigmoid for flexible activation, tanh for smooth approximation of the sign function,
and continuous learning - significantly enhances the performance of HashNet over
other deep hashing methods. These innovations lead to more robust, accurate, and
efficient image retrieval systems capable of handling large-scale datasets and complex
image distributions.

Deep Supervised Discrete Hashing (DSDH) (Li et al. (2017)) The overall
loss function in Deep Supervised Discrete Hashing (DSDH) includes several terms
designed to address different objectives:

1. Pairwise similarity loss, which is modeled using a logistic regression-based
approach:

Lsimilarity = −
∑

(i,j)∈E

(soijs
h
ij − log(1 + es

h
ij))

where soij is the ground truth similarity and shij = 1
2
hT
i hj represents the simi-

larity derived from the hash codes.

3 METHODS 31

2. Quantization loss, which encourages the outputs of the network hi to approx-
imate binary values:

Lquant = λ1
1

N

N∑
i=1

||hi − sgn(hi)||22

3. Linear regression loss, which utilizes label information for guiding the hash
codes:

Lregression = λ2||Y −W TB||
Here, Y represents the matrix of one-hot encoded labels, B is the matrix of
binary codes for the images, and W is a learnable transformation matrix. This
term aligns the hash codes with the label space, enhancing the label-specific
discriminative power of hash codes.

4. Regularization on transformation matrix, which prevents overfitting:

Lregularization = λ3||W ||F

The term adds a Frobenius norm (||W ||F :=
√∑∑

|wij|2) regularization on
the matrix W .

The optimization mechanisms in DSDH involve gradient descend for continuously
updating parameters such as the transformation matrix W and intermediate contin-
uous outputs hi, and discrete cyclic coordinate descent, which is specially employed
for updating the binary codes B directly, ensuring that despite the linear regression
model, the discreteness of the hash codes is maintained. This approach cyclically
optimizes each bit of the hash codes while fixing others, effectively handling the
discrete nature of the problem.

DSDH’s strategy to simultaneously leverage label and pairwise similarity informa-
tion allows it to outperform many traditional and some deep learning-based hashing
methods, especially in scenarios where label information is rich and indicative of
underlying semantic structures. The integration of linear regression with traditional
hashing loss components helps in creating more semantically meaningful and com-
pact binary hash codes, significantly enhancing retrieval accuracy and efficiency.

3.2.2 Triplet Methods

Deep Neural Network Hashing (DNNH) (Lai et al. (2015)) DNNH is
built around the idea of triplet ranking objective (Norouzi et al. (2012)), a method
that considers the relative similarity between triplets of samples. This method
ensures that the learned binary codes reflect the relative semantic similarities among
the samples, enhancing the efficacy of the retrieval system. The DNNH model is
composed of three primary components: 1. Sub-network with convolution-pooling
layers, 2. Divide-and-Encode module, and 3. Triplet ranking loss layer as illustrated
in Fig.12.

3 METHODS 32

Figure 12: Overview of DNNH. The input is in the form of triplets (I, I+, I−) with
a query image I being more similar to an image I+ than to another image I−. The
image triplets are first encoded into a triplet of image feature vectors by a shared
stack of multiple convolutional layers. Then, each image feature vector in the triplet
is converted to a hash code by a divide-and-encode module. After that, these hash
codes are used in a triplet ranking loss that aims to preserve relative similarities on
images. (Lai et al. (2015))

In the sub-network, the architecture generally follows the ”Network in Network”
(NiN) model (Lin et al. (2013)), which includes additional 1× 1 convolution layers
(pointwise convolution) inserted after traditional convolutions. These 1 × 1 con-
volutions act as per-channel linear transformations of the input maps, introducing
additional non-linearity and capacity to the model. Instead of fully connected layers,
an average pooling layer concludes the sub-network. This choice reduces overfitting
and decreases the number of learnable parameters, focusing on capturing the most
significant features. The sub-network is shared across all three images in the triplet,
significantly reducing the number of parameters and ensuring that the network learns
a unified representation across different but related images.

After processing through the sub-network, the image features are divided into slices.
The division process partitions the output feature vector into equal segments, with
each segment corresponding to one bit of the final hash code. For example, if the
target hash code length is q bits then the feature vector from the pooling layer is 50q
dimensions, the vector is divided into q slices, each of 50 dimensions. Each sliced
segment undergoes a transformation, which is crucial as it aggregates the information
from each segment, ensuring that each bit of the hash code encapsulates a distinct
aspect of the feature vector, thereby reducing redundancy across the bits. After
dimension reduction, each output is passed through a sigmoid activation function.
The sigmoid function normalizes the output to a range between 0 and 1, making

3 METHODS 33

Figure 13: A divide-and-encode module.
(Lin et al. (2013))

Figure 14: The piece-wise threshold
function. (Lin et al. (2013))

it suitable for thresholding. A piece-wise threshold function then processes these
sigmoid outputs to enforce binary values:

g(s) =


0, s < 0.5− ϵ

s, 0.5− ϵ < s < 0.5 + ϵ

1, s > 0.5 + ϵ

where ϵ is a small positive hyper-parameter that defines the sensitivity of the thresh-
olding around 0.5, effectively creating a ”soft” binary transition region around this
midpoint.

The loss function used in DNNH is designed to handle triplets of data points. Given
a triplet (xi, xj, xk), where xi is considered the anchor, xj is a positive sample, and
xk is a negative sample. The goal is to ensure that the hash codes for xi is closer to
the hash code for xj than to the hash code for xk:

LDNNH(hi, hj, hk) = max(0, 1 + dhij − dhik)

By substituting the Euclidean distance for the Hamming distance, the loss function
is made convex:

LDNNH(hi, hj, hk) = max(0, 1 + ||hi − hj||22 − ||hi − hk||22)

This convex formulation allows for straightforward optimization through gradient-
based methods, facilitating effective learning in the neural network.

Approximate time complexity analysis: The forward pass through the CNN is
the most computationally intensive part. The complexity depends on the number of
layers, the size of the filters, and the dimensions of the input images. For simplicity,
if we consider all layers to have roughly equal computational load, and each layer
operates in O(n) time for one image, then processing one triplet would be 3×O(n).

3 METHODS 34

Algorithm 7 Deep Neural Network Hashing (DNNH)

Input: Training triplets of images (xi, xj, xk)
Output: Binary hash codes for images
Initialize parameters of CNN
Training Process:
while not converged do

for each triplet (xi, xj, xk) in the training set do
hi, hj, hk ← forward pass of xi, xj, xk through CNN
bi, bj, bk ← divide-and-encode module on hi, hj, hk

Compute triplet loss L = max(0, 1 + ∥bi − bj∥2 − ∥bi − bk∥2)
Backpropagate loss and update CNN parameters

end for
end while
Return binary hash codes for all images

If the output vector has m elements and we divide it into q slices, the complexity
of processing each slice can be considered O(m/q). Processing all slices for one
image thus contributes O(m), and for a triplet, it’s 3 × O(m). The triplet loss
involves calculating the squared Euclidean distances between the hash codes of three
images and then applying the loss formula. Computing the distance between two
vectors of length q is O(q), so for the two distances needed in the triplet loss, the
time complexity is 2× O(q) = O(q) for each triplet. Combining all parts, the time
complexity per training iteration for a single triplet is dominated by the forward pass
through the CNN and the divide-and-encode module, roughly approximating to 3×
O(n)+3×O(m)+O(q). If n and m are of similar magnitude and significantly larger
than q, the overall per-triplet complexity in each iteration can be approximated as
O(n). In training, the total computational load will depend on the number of triplets
processed, which typically scales with the size of the training dataset.

Deep Semantic Hashing with GAN (DSH-GAN) Qiu et al. (2017) Deep
Semantic Hashing with GAN (DSH-GAN) is a complex and innovative method that
integrates Generative Adversarial Networks (GANs) into the hashing process for
image retrieval tasks. The system consists of the key components: (1). Shared
CNN for learning image representations, which captures the deep features of im-
ages, forming the backbone for the other components. (2). Adversary Stream for
distinguishing between synthetic and real images. (3). Hash Stream for encoding
images into binary hash codes. (4). Classification Stream, which utilizes class labels
to enforce semantic integrity in the hashing process.

3 METHODS 35

Figure 15: Deep Semantic Hashing with GANs framework. The input to DSH-GANs
architecture is in the form of real-synthetic image triplets and each tuple consists
of one real image as query image, one synthetic and similar image produced with
same labels of query image through generator network G, and another synthetic but
dissimilar image synthesized by G conditioning on different labels. A shared deep
CNN is exploited for learning image representations, followed by three streams,
i.e., hash stream, adversary stream and classification stream. Hash stream is to
encode each image into hash codes with relative similarity preservation measured
by a triplet ranking loss. Adversary stream is to distinguish synthetic images from
real ones trained with an adversarial loss. Classification stream is to characterize
the semantic structures on image and softmax loss or cross entropy loss is computed
for single label and multi-label classification, respectively. The whole architecture
is jointly optimized in an end-to-end fashion. (Qiu et al. (2017))

Algorithm 8 Training DSH-GANs

Input: Set of real images with labels, number of epochs, batch size
Output: Trained generator G and discriminator D
Initialize parameters of generator G and discriminator D
Pre-train G on labeled and unlabeled data (if applicable)
for each epoch do

for each batch do
Xreal, labels← sample real images(batch size)
Xsyn ← G.generate(Xreal)
Train Discriminator: D loss← compute D loss(Xreal, Xsyn, labels)
Update D to minimize D loss
Minimizing adversarial and classification loss
Train Generator: G loss← compute G loss(Xreal, Xsyn, labels)
Update G to minimize G loss
Minimizing triplet ranking loss and fooling D

end for
end for

The semi-supervised GANs setup in DSH-GAN includes a generator G and a dis-
criminator D. The generator in DSH-GAN plays a crucial role by creating synthetic
images. It combines a noise vector (randomly generated) with a label embedding

3 METHODS 36

to produce images that both look realistic and maintain semantic properties consis-
tent with the label. The discriminator’s objective is twofold: accurately distinguish
between real and synthetic images and correctly classify the semantic labels of all
images. The training of DSH-GAN involves feeding the network with triplets of
images: a real image x, a synthetic image generated with the same label as the real
image x+

syn, and a synthetic image generated with a different label x−
syn. Given the

triplet (x, x+
syn, x

−
syn), the adversarial loss for the discriminator, aimed at correctly

identifying the source of an image is defined as:

l̂a(x, x
+
syn, x

−
syn) =

1

3
(la(x), la(x

+
syn), la(x

−
syn))

where the log-likelihood adversarial loss la for each image is defined as:

la =

{
−logP (S = real|x), ifx ∈ real images

−logP (S = synthetic|x), ifx ∈ synthetic images

In converse, the generator is trained to fool the discriminator by maximizing the
adversarial loss, producing synthetic images that the discriminator misclassifies,
enhancing the realism and semantic accuracy of generated outputs.

Hash Stream learns a hash function H to preserve the similarity relations in the
real-synthetic triplets through the triplet ranking loss:

l̂triplet = max(0, 1 + ||H(x)−H(x−
syn)||22 − ||H(x)−H(x+

syn)||22)

ensuring that the hash code of x is more similar to x+
syn than to x−

syn.

Classification Stream This component leverages label information to ensure hash
codes mirror semantic similarities, minimizing the classification error across real and
synthetic images as:

l̂c(x, x
+
syn, x

−
syn) =

1

3
(lc(x), lc(x

+
syn), lc(x

−
syn))

where lc is computed using softmax loss in single label classification and cross entropy
loss in multi-label classification.

Optimization The overall training of DSH-GAN involves minimizing a combined
loss function that includes the triplet ranking loss, adversarial loss, and classification
loss, balancing the need to create discriminative and generative capabilities within
the model. The optimization of DSH-GAN uses a classic minimax mechanism com-
mon in GANs. The discriminator aims to maximize its classification accuracy by
minimizing the term:

l̂CNN =
∑

Triplets

(l̂triplet + l̂c(x) + l̂a(x))

where the shared CNN is trained to reserve the relative similarity ordering in the
real-synthetic triplets and simultaneously recognize both correct sources and class

3 METHODS 37

labels of images in the triplets. While the generator’s loss, designed to fool the
discriminator while maintaining semantic accuracy, is defined as:

l̂G =
∑

Triplets

(l̂triplet + l̂c(x)− l̂a(x))

as the lc(x) helps to produce semantically correct images and −la(x) effectively
minimize the likelihood that the discriminator makes correct predictions. During
the training process, both the discriminator and the generator update their weights
concurrently. The discriminator improves its ability to distinguish real from fake,
while the generator improves its ability to create convincing fakes. Training iterates
until the generator achieves deception efficacy such that the discriminator classifies
synthetic images as real at a rate equivalent to random guessing, signifying a state
of equilibrium where neither model can improve unilaterally.

3.2.3 Triplet Center Loss in Deep Hashing

Figure 16: A toy illustration of the distributions of deep features learned by (a)
softmax loss, (b) center loss + softmax loss, and (c) triplet-center loss + softmax
loss. Intuitively, the decision boundary of the softmax classifier separates the two
classes elaborately. The center loss pulls features toward their corresponding centers.
The TCL pulls the features to their corresponding centers and pushes the features
away from the other centers (He et al. (2018b)).

Although triplet loss is widely used for training deep neural networks on tasks that
require learning fine-grained similarity distinctions, it still has several limitations.
The effectiveness of triplet loss heavily depends on the selection of triplets. Poorly
chosen triplets can lead to slow convergence or sub-optimal performance. While
triplet loss drives apart different classes, it doesn’t inherently ensure that all exam-
ples of a single class are close together in the embedding space, as it only considers
relative distances within selected triplets. As the number of classes grows, the po-
tential combinations of triplets explode exponentially, making it computationally
expensive to find the most informative triplets.

Thus, to further enhance the feature discrimination capability of hashing methods,
particularly in terms of managing intra-class compactness and inter-class separability

3 METHODS 38

Algorithm 9 Triplet Center Loss (TCL) in Deep Hashing

Input: Training dataset {(xi, yi)}Ni=1, where xi are samples and yi are labels,
Number of classes |Y |, feature dimension d
Output: Trained model parameters, class centers {c1, c2, . . . , c|Y |}
Initialize neural network parameters fθ, class centers {cy}|Y |

y=1 randomly in Rd

Define loss functions:
Define squared Euclidean distance D(fi, cy) = 1

2
∥fi − cy∥2 and margin m

Training Process:
while not converged do

for each mini-batch {(xi, yi)} do
Compute features fi = fθ(xi) for all xi in the batch
Compute distances to corresponding centers and nearest negative centers
for each fi in the batch do

cyi ← center for the class yi
cqi ← nearest negative center not equal to yi
Compute Ltci = max(0, D(fi, cyi) + m−minj ̸=yi D(fi, cj))

end for
Compute total loss Ltc =

∑
Ltci

Backpropagate Ltc and update fθ and {cy}
end for

end while
Return trained model and class centers

more effectively, we utilize the triplet center loss (TCL) (He et al. (2018b)) in deep
hashing. TCL addresses the aforementioned limitations by incorporating concepts
from both triplet loss and center loss. This hybrid approach retains the benefits
of using triplets to define relative distances while also ensuring that each class’s
features are tightly clustered around a central point.

• Intra-class: By defining a center for each class and minimizing the distance
from each data point to its respective class center, TCL systematically pulls
all members of a class toward a common point.

• Inter-class: TCL not only minimizes the distance to the class center but
also maximizes the distance to the nearest non-matching class center by a
predefined margin. This dual focus goes beyond typical triplet loss by embed-
ding an explicit mechanism to push classes apart, thus reinforcing inter-class
boundaries more robustly.

Hence, assuming each class y has a center cy in a d-dimensional space, each sample
xi with label yi is mapped by the neural network fθ(·) into a feature fi. The set

3 METHODS 39

of all class centers is C = {c1, c2, ..., c|Y |}, where |Y | is the total number of classes.
Given a batch of training data with M samples, TCL is defined as:

LTCL =
M∑
i=1

max(D(fi, cyi) + m−minj ̸=yiD(fi, cj), 0)

where D(fi, cyi) is the squared Euclidean distance between the feature fi and its
class center cyi defined as:

D(fi, cyi) =
1

2
||fi − cyi ||22

m is the margin that enforces fi should be closer to its own class center cyi than
any other class center by at least m. To train the model with TCL, we compute
the gradients for backpropagation. The gradient of the loss LTCL with respect to
the feature embedding fi is influenced by the distance to the correct center and the
closest incorrect center:

∂LTCL

∂fi
= (cqi − cyi) · 1[L̃i > 0]

where qi = argminj ̸=yiD(fi, cj) is an integer index which indicates the nearest nega-

tive center of i-th sample and L̃i represents the individual component of the TCL for
the i-th sample, which activates the gradient update only if L̃i > 0. This expression
highlights that the gradient directs the update to increase the distance from the
incorrect center and decrease the distance from the correct center, but only when
the current configuration does not satisfy the margin requirement. The gradient
with respect to class center cj adjusts the position of the center cj based on the
aggregate of vectors pointing towards or away from cj , weighted by whether the
sample contributes to the TCL being positive. The update aims to optimize the
position of cj to better represent its class while maximizing separation from closely
competing classes.

By incorporating centers into the loss function, TCL helps stabilize and guide the
learning process, reducing the dependence on the specific selection of triplets. Addi-
tionally, TCL reduces reliance on the direct computation of pairwise distances among
all possible triplets, which can be more scalable and computationally efficient. The
center-based approach simplifies the need to calculate and compare vast numbers of
triplet combinations, making it more suitable for large-scale applications.

In the work of He et al. (2018b), TCL can be combined with softmax loss for
enhanced discrimination:

Ltotal = λLTCL + Lsoftmax (1)

where softmax loss serves as a stabilizer, especially when centers cy are initialized
randomly and updated based on mini-batches. It helps guide the learning towards
effective class centers, while TCL focuses more on maintaining correct relative dis-
tances.

3 METHODS 40

3.3 Evaluation Metrics

The storage requirements for deep hashing algorithms depend solely on the length
of the hash codes generated (Luo et al. (2023)). Since the codes are binary, each
bit represents a piece of information about the data. To ensure a fair comparison
of different hashing algorithms, the length of these hash codes is typically kept
constant (Zhao et al. (2017)). The compactness of these codes allows for efficient
use of memory. The search efficiency of these algorithms is largely influenced by the
architecture of the neural networks used to generate the hash codes. The efficiency
is often measured in terms of the average search time it takes for a query to return
results. Complex neural architectures might provide more accurate hash codes but
could also increase search time.

Accuracy In our experiments, we use accuracy as a metric to evaluate the perfor-
mance of KNN on image embeddings and hashed image embeddings. It measures the
proportion of test image embeddings for which the model’s predicted label matches
the correct label (Sammut and Webb (2011)). It is calculated as:

Accuracy =
Number of correct predictions

Total number of predictions

In more formal terms:

Accuracy =
TP + TN

TP + TN + FP + FN

where TP (True Positive) denotes the number of correctly predicted positive in-
stances, TN (True Negative) is the number of correctly predicted negative instances,
FP (False Positives) is the number of incorrectly predicted positive instances, and
FN (False Negatives) is the number of incorrectly predicted negative instances.

Confusion matrix The confusion matrix provides a comprehensive summary of
the prediction results by comparing the actual labels with the predicted labels for
each class (Sammut and Webb, 2011). A confusion matrix is a square matrix that
breaks down the performance of a classification model by showing the counts of true
positive, true negative, false positive, and false negative predictions for each class:

Actual Predicted Positive Predicted Negative

Positive TP FN

Negative FP TN

Table 2: Confusion Matrix.

The confusion matrix is particularly valuable for understanding the performance of
a classifier in situations where the classes are imbalanced or we need to distinguish
between different types of errors (e.g., false positives versus false negatives). By
analyzing the confusion matrix, we can gain deeper insights into how the KNN
model performs across different classes.

4 EXPERIMENTS AND RESULTS 41

4 Experiments and Results

4.1 Datasets

CIFAR-10 The CIFAR-10 dataset is a labeled subset of the 80 million tiny images
dataset, curated by Krizhevsky et al. (2009). CIFAR-10 consists of 60,000 32 × 32
color images in classes, with 6,000 images per class. The dataset is divided into
50,000 training images and 10,000 test images. The classes are mutually exclusive
and include categories such as airplane, automobile, bird, cat, horse, ship and truck.
The training and test sets are predefined, ensuring that the evaluation of models
is standardized and that the results are comparable across different studies. The
images in CIFAR-10 are taken from a larger dataset called the ”80 million tiny
images” dataset, created by web scraping in 2008 (Torralba et al. (2008)). These
images were collected from various online sources intended to represent a broad
range of real-world conditions. The images were manually reviewed for quality and
relevance and were labeled with the assistance of a human workforce. The selection
process aimed to balance the dataset across the classes. The CIFAR-10 dataset has
been instrumental in many state-of-the-art advancements in image classification.
Research papers often report accuracy measures on CIFAR-10 to demonstrate the
effectiveness of new models or techniques.

Figure 17: Diffenrent classes of PathMNIST dataset (Halder et al. (2024)).

PathMNIST PathMNIST, part of the larger MedMNIST v2 dataset, is designed
to serve as a benchmark for machine learning models in the field of biomedical image
classification (Yang et al. (2023)). PathMNIST focuses on pathology images, specif-
ically on colorectal cancer histology slides. The dataset contains 107,180 images
derived from hematoxylin and eosin (H & E) stained slides, which are typical in
medical histology for distinguishing cellular components (Kather et al. (2019)). The
images are sourced from the NCT-CRC-HE-100K and CRC-VAL-HE-7K datasets,
which provide non-overlapping image patches from colorectal cancer histology slides
and a validation set from a different clinical center, respectively (Kather et al.
(2018)). PathMNIST includes nine distinct tissue types, categorized for multi-class

4 EXPERIMENTS AND RESULTS 42

classification challenges. Images originally of size 3×224×224 pixels are resized to
3×28×28 to create a uniform, small-scale dataset suitable for quick processing and
analysis. The dataset is split into training (89,996), validation (10,004), and test
(7,180) sets with a standard ratio, promoting fair and consistent model evaluations
across different machine learning approaches. The dataset, along with other MedM-
NIST datasets, is publicly available for research and educational use, encouraging
widespread adoption and innovation in the biomedical imaging domain.

4.2 System Setup Parameters for Experiments

Parameters for TCL As indicated by loss function of TCL in Eq.1, the margin
parameter m and λ may affect the final combination of losses. We adopt m = 5
and λ = 0.01 as these hyper-parameters achieve the best results shown in He et al.
(2018b).

k-value for KNN approach

• If not stated otherwise, the experiments on CIFAR-10 dataset were conducted
with hyperparameter k = 7. Euclidean Distance was used on the image em-
beddings, while Hamming Distance was used on hashed image embeddings.

• For PathMNIST dataset, we conduct an experiment on image embeddings to
fine-tune the hyperparameter k, which is then used on infer hashed image
embeddings. Based on the results in Fig.3, we adopt k = 7 in the following
experiments on PathMNIST dataset.

Table 3: Results of KNN with different k-values on PathMNIST image embeddings.

k-value 3 5 7 10 15

Accuracy 0.75 0.76 0.77 0.77 0.77

Hash bits Output dimension of the hashed image embeddings are 12/24/36/48.

4.3 Results and Analysis

4.3.1 General Results of KNN on Image Embedding

The achieved accuracies of KNN on CIFAR-10 and PathMNIST image embeddings
are summarized in table.4.3.1.

4 EXPERIMENTS AND RESULTS 43

Image Encoder Dataset Accuracy

ViT-B/16
CIFAR-10 98.7

PathMNIST 75.6

Table 4: General Results of KNN on Image Embedding

Figure 18: Confusion Matrix of KNN on
CIFAR-10 dataset.

Figure 19: Confusion Matrix of KNN on
PathMNIST dataset.

4.3.2 Results Comparison for different Supervised Deep Hashing Meth-
ods

Results for Pariwise Methods This section provides a detailed comparison and
analysis of pairwise hashing methods evaluated on the CIFAR-10 and PathMNIST
datasets. The accuracy results are tabulated in 4.3.2 for different hash code lengths:
12, 24, 36, and 48 bits.

Observations:

• The performance across all methods is generally lower on PathMNIST com-
pared to CIFAR-10, reflecting the dataset’s complexity and the challenges in
medical image hashing.

• There is a noticeable upward trend in performance as the bit length increases,
indicating that higher bit lengths capture more relevant information for accu-
rate hashing.

• Label information helps to increase the performance of deep hashing. This
point can be shown from the fact that DSDH outperforms DPSH (Luo et al.
(2023)).

4 EXPERIMENTS AND RESULTS 44

CIFAR-10 PathMNIST

Method 12bits 24bits 36bits 48bits 12bits 24bits 36bits 48bits

DSH 88.78 88.93 88.99 91.03 51.54 52.89 51.62 57.20

CNNH 97.88 98.05 98.08 98.14 23.40 26.64 26.72 27.89

DPSH 88.74 91.43 92.28 95.56 66.74 67.91 69.02 69.56

DHN 87.13 93.07 93.96 95.19 69.09 69.64 69.98 69.80

HashNet 97.74 98.81 97.90 97.98 31.31 33.24 47.44 49.79

DSDH 97.73 98.05 98.04 98.03 68.19 69.33 69.81 70.15

Table 5: Accuracy for Pairwise Methods.

Figure 20: Accuracy on CIFAR-10 for different bit lengths compared by different
pairwise methods.

• Methods like CNNH perform exceptionally well on CIFAR-10 but falter on
PathMNIST, highlighting the need for dataset-specific adaptations or consid-
erations in method design.

• DSDH demonstrate a degree of robustness across both datasets, suggesting
that these methods have potential applications in diverse scenarios beyond
standard image datasets.

Following are confusion matrices of classification results of KNN on hashed image
embeddings.

4 EXPERIMENTS AND RESULTS 45

Figure 21: Accuracy on PathMNIST for different bit lengths compared by different
pairwise methods.

Figure 22: Confusion matrix of KNN re-
sults on hashed CIFAR-10 image embed-
dings (48 bits) using HashNet.

Figure 23: Confusion matrix of KNN re-
sults on hashed CIFAR-10 image embed-
dings (48 bits) using CNNH.

4.3.3 Results for Triplet Methods

Observations:

• Triplet methods generally perform better on both datasets and all bit length.

4 EXPERIMENTS AND RESULTS 46

Figure 24: Confusion matrix of KNN re-
sults on hashed PathMNIST image em-
beddings (48 bits) using DSDH.

Figure 25: Confusion matrix of KNN re-
sults on hashed PathMNIST image em-
beddings (48 bits) using DHN.

CIFAR-10 PathMNIST

Method 12bits 24bits 36bits 48bits 12bits 24bits 36bits 48bits

DNNH 98.21 98.32 98.31 98.29 72.32 72.85 72.86 72.92

DSHGAN 98.65 98.68 98.71 98.73 75.75 75.85 76.77 77.89

TCL+softmax loss 98.51 98.67 98.74 98.78 75.57 75.67 75.50 76.55

Table 6: Accuracy for Triplet Methods.

• KNN can perform better on hashed image embeddings than original image
embeddings. Two reasons may play important roles: (1). Hashed embed-
dings typically reduce the dimensionality of the original data, which may
lead to noise reduction and overfitting reduction as hashing move redundant
and less informative features and lower-dimensional data helps in mitigat-
ing overfitting. (2). Triplet methods may enhance discriminative power as
learning-based hashing techniques aim to embed higher semantic information
into lower-dimensional spaces.

• The consistency across bit sizes for each method indicates robustness in their
hashing techniques.

• DSHGAN and TCL with softmax loss generally offer superior performance over
DNNH, particularly on PathMNIST. This suggests that methods incorporating
generative components or composite methods may better capture the complex
patterns present in specialized datasets.

4 EXPERIMENTS AND RESULTS 47

Figure 26: Accuracy on PathMNIST for different bit lengths compared by different
triplet methods.

Figure 27: Accuracy on PathMNIST for different bit lengths compared by different
triplet methods.

Following are confusion matrices of computing DSH-GAN and TCL+softmax loss
on PathMNIST datasets.

4.3.4 Computation Efficiency of TCL over Triplet Methods

Traditional triplet loss requires comparisons across triplets of samples (anchor, pos-
itive, negative). For each training sample, finding and evaluating suitable triplets

4 EXPERIMENTS AND RESULTS 48

Figure 28: Confusion matrix of KNN re-
sults on hashed PathMNIST image em-
beddings (48 bits) using DSHGAN.

Figure 29: Confusion matrix of KNN re-
sults on hashed PathMNIST image em-
beddings (48 bits) using TCL.

involves significant computational overhead, particularly in terms of distance calcu-
lations. TCL, by focusing on distances to fixed class centers rather than pairwise
or triplet comparisons, significantly reduces the number of distance computations
required per training instance. In TCL, each class has a single center that is updated
during training. The distance from each sample to its class center (and potentially
to the nearest other class center) is typically all that is needed to compute the
loss. This is usually less computationally intensive than evaluating distances across
multiple potential triplets. Hence, want to infer that TCL is computationally more
efficient than other triplet methods.

Figure 30: Comparison of computation cost between triplet methods (in seconds).

5 DISCUSSION 49

We can observe that:

• The trend in computational cost generally exhibits an increase when increasing
hash bits.

• TCL is generally more computation efficient than other two triplet methods.

5 Discussion

In this work, empirical experiments are conducted on nine state-of-art deep super-
vised hashing methods on two benchmark datasets. Experiment setup and loss
function construction are inspired by the framework in each proposed paper of each
method and the overall framework in Luo et al. (2023). Sources for all datasets
are identical. Image embeddings produced by ViT-B/16 serve as input to the deep
hashing methods. This section delves into the critical analysis of the performance
of various deep hashing methods applied to CIFAR-10 and PathMNIST datasets,
focusing on the influence of hash bit lengths on accuracy.

The hashing methods generally achieved high accuracy on CIFAR-10 dataset, par-
ticularly notable in CNNH and HashNet. CNNH’s approach starts with generating
approximate binary codes using a coordinate descent strategy which optimizes the
similarity matrix representation. This helps in forming a preliminary structure of the
data in a binary format which is crucial for capturing essential features in images.
In the second step, CNNH refines these binary codes using a deep CNN, further
training the network to align these hash codes with the actual labels of the images.
This method leverages the power of deep learning to enhance the discriminative
ability of the hash codes. By incorporating class labels into the final training of
the CNN, CNNH directly ties the hash codes to the class-discriminative features of
the data, making it highly effective for datasets like CIFAR-10 which have distinct
and well-separated classes. HashNet addresses the imbalance in training data (more
similar than dissimilar pairs) by using Weighted Maximum Likelihood (WML) loss.
This weighting ensures that each pair, whether similar or dissimilar, contributes
appropriately to the learning process, preventing the model from bias towards more
frequent pair types.

However, both CNNH and HashNet may struggle with medical datasets because
their method of generating and refining hash codes might not capture the intricate,
less visually obvious patterns present in medical images. Medical images can also
suffer from issues like label imbalance and fewer examples per class, complicating
the training process for methods that heavily rely on balanced data and clear class
separation. Both methods might require modifications to better handle the nuances
of medical imaging. For instance, tuning the parameters of HashNet’s adaptive
sigmoid or adjusting the CNN architecture in CNNH to focus on features relevant
to medical images could potentially improve performance.

Label information helps to increase the performance of deep hashing as DSDH out-
performs DPSH on both datasets. DSDH incorporates label information through

6 CONCLUSION 50

linear regression. Linear regression loss directly ties the hash codes to the actual
labels of the data. And the inclusion of an L2 regularization term on the weights
W (used in the linear regression) encourages the model to find a simpler, more gen-
eralizable mapping from hash codes to labels, preventing overfitting to the training
data. DPSH, while also utilizing a deep learning framework for hashing, primar-
ily relies on similarity information and a quantization loss to shape its hash codes.
Thus, the integration of label information through linear regression helps in aligning
the hash codes more closely with the class-specific features, thereby enhancing the
discriminative power of the generated hashes.

The triplet methods generally perform better than pairwise methods on both two
datasets. Method like DSHGAN that incorporate GANs might incur higher com-
putational costs but could offer scalability benefits through generative approach.
TCL, while achieving an ideal performance, is also computationally balanced. By
using class centers as reference points, TCL provides direct feedback on how well
the embeddings are aligning with the conceptual centers of the classes. It requires
fewer pairwise distance calculations per sample, as distances are calculated rela-
tive to class centers and not every possible negative sample. This reduction in the
number of required operations can lead to faster training times and lower computa-
tional overhead. Incorporating the center loss component also simplifies the training
regime by reducing the dependency on the hard triplet mining process, which can
be challenging to tune and implement effectively. Additionally, TCL is versatile and
can be applied across a variety of domains where deep learning is used for feature
extraction and similarity learning, as the case we use it in this work in domain of
deep hashing.

6 Conclusion

This bachelor thesis make a novel evaluation between various deep supervised hash-
ing methods.

Firstly, the image embeddings are generated though ViT-B/16 image encoder. KNN
is applied on these image embeddings to evaluate accuracy as a baseline metric. Sec-
ondly, a series of experiments were conducted to transfer the image embeddings to
hashed image embeddings through various deep supervised hashing methods, mainly
including pairwise and triplet methods. We again retrieve the accuracy using KNN
on these hashed image embeddings to make a comparison between the baseline ac-
curacy. KNN’s reliance on distance or similarity metrics makes it a suitable method
to test how well the hashing preserves the necessary information for tasks like clas-
sification. Hence, the goals of privacy preservation and reduction of computational
costs are achieved as converted binary codes are designed to not only preserve se-
mantic similarity but also reduce the possibility of recovering any original image
data. The binary nature and the compactness of these hashes make it computa-
tionally infeasible to reverse-engineer the original embeddings or the raw images,
thereby enhancing privacy.

6 CONCLUSION 51

The key findings of this work as following:

• Label information helps increase the performance of deep hashing.

• Methods incorporating adaptive weighting mechanisms are more adept at han-
dling datasets with class imbalance.

• Adopting TCL in deep hashing is an innovative way to balance trade-off be-
tween high performance and computational efficiency.

• Computation costs generally increase as hash bits increase.

Future Research Future research could focus on developing new hashing algo-
rithms that offer even better trade-offs between data compression, privacy preser-
vation, and accuracy. Algorithms that incorporate recent advancements in neural
architectures or unsupervised learning techniques could provide new insights and ca-
pabilities. Combining different types of hashing techniques, such as integrating deep
unsupervised or semi-supervised hashing methods, might yield models that leverage
the strengths of both cluster approach and deep learning-based approaches.

As datasets continue to grow, optimizing hashing algorithms for scalability and ef-
ficiency becomes crucial. Research could also focus on algorithms that reduce com-
putational complexity and enhance processing speed without compromising hashing
quality.

Developing methods that support real-time hashing of image data would be benefi-
cial for applications in security and real-time surveillance, where quick processing is
critical. Tailoring hashing methods to specific application domains such as medical
imaging or autonomous driving could be explored. Each domain comes with unique
challenges that might be better addressed by specialized hashing techniques. How-
ever, challenges may also remain in explain-ability in AI, as people may not accept
a black-box when it comes to safety-related issue.

A APPENDIX 52

A Appendix

If needed for supplementary material, such as detailed description of data collection,
tables, or figures.

Symbol Description

xi(X) input images (in matrix form)

bi(B) output hash codes (in matrix form)

hi(H) network outputs (in matrix form)

yi(Y) one-hot image labels (in matrix form)

Ψ(·) hashing network

N the number of input images

L hash code length

E a set of pair items

soij the similarity of item pair in the input space

shij the similarity of item pair in the Hamming space

doij the distance of item pair in the input space

dhij the distance of item pair in the Hamming space

ϵ margin threshold parameter

W weight parameter matrix

Θ set of neutral parameters

Table 7: Summary of Symbols and Notation in Section.3.

BIBLIOGRAPHY 53

Bibliography

Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Communications of the ACM, 51(1):117–122,
2008.

Vassilis Athitsos, Marios Hadjieleftheriou, George Kollios, and Stan Sclaroff. Query-
sensitive embeddings. ACM Transactions on Database Systems (TODS), 32(2):
8–es, 2007.

Fatih Cakir, Kun He, Sarah Adel Bargal, and Stan Sclaroff. Hashing with mutual
information. IEEE transactions on pattern analysis and machine intelligence, 41
(10):2424–2437, 2019.

Yue Cao, Mingsheng Long, Jianmin Wang, and Shichen Liu. Deep visual-semantic
quantization for efficient image retrieval. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 1328–1337, 2017a.

Yue Cao, Mingsheng Long, Bin Liu, and Jianmin Wang. Deep cauchy hashing for
hamming space retrieval. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1229–1237, 2018.

Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S Yu. Hashnet: Deep
learning to hash by continuation. In Proceedings of the IEEE international con-
ference on computer vision, pages 5608–5617, 2017b.

Moses S Charikar. Similarity estimation techniques from rounding algorithms. In
Proceedings of the thiry-fourth annual ACM symposium on Theory of computing,
pages 380–388, 2002.

Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Return
of the devil in the details: Delving deep into convolutional nets. arXiv preprint
arXiv:1405.3531, 2014.

Chi-hau Chen et al. Signal and image processing for remote sensing. CRC/Taylor
& Francis, 2007.

Lianhua Chi and Xingquan Zhu. Hashing techniques: A survey and taxonomy. ACM
Computing Surveys (Csur), 50(1):1–36, 2017.

Yoo Jin Choi, Mostafa El-Khamy, and Jungwon Lee. Method and apparatus for
neural network quantization, April 19 2018. US Patent App. 15/697,035.

Tat-Seng Chua, Jinhui Tang, Richang Hong, Haojie Li, Zhiping Luo, and Yantao
Zheng. Nus-wide: a real-world web image database from national university of
singapore. In Proceedings of the ACM international conference on image and video
retrieval, pages 1–9, 2009.

BIBLIOGRAPHY 54

Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab S Mirrokni. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
twentieth annual symposium on Computational geometry, pages 253–262, 2004.

Giuseppe De Giacomo, Alejandro Catala, and Bistra Dilkina. ECAI 2020: 24th Eu-
ropean Conference on Artificial Intelligence, 29 August–8 September 2020, Santi-
ago de Compostela, Spain–Including 10th Conference on Prestigious Applications
of Artificial Intelligence (PAIS 2020), volume 325. IOS Press, 2020.

Francesco Di Salvo, David Tafler, Sebastian Doerrich, and Christian Ledig. Privacy-
preserving datasets by capturing feature distributions with conditional vaes. arXiv
preprint arXiv:2408.00639, 2024.

Thanh-Toan Do, Anh-Dzung Doan, and Ngai-Man Cheung. Learning to hash with
binary deep neural network. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part V 14, pages 219–234. Springer, 2016.

Khoa D Doan, Jianwen Xie, Yaxuan Zhu, Yang Zhao, and Ping Li. Coophash:
Cooperative learning of multipurpose descriptor and contrastive pair generator
via variational mcmc teaching for supervised image hashing. arXiv preprint
arXiv:2210.04288, 2022.

Sebastian Doerrich, Tobias Archut, Francesco Di Salvo, and Christian Ledig. In-
tegrating knn with foundation models for adaptable and privacy-aware image
classification. arXiv preprint arXiv:2402.12500, 2024.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image
recognition at scale. arXiv preprint arXiv:2010.11929, 2020.

Jiali Duan, C-C Jay Kuo, et al. Bridging gap between image pixels and seman-
tics via supervision: a survey. APSIPA Transactions on Signal and Information
Processing, 11(1), 2022.

Venice Erin Liong, Jiwen Lu, Gang Wang, Pierre Moulin, and Jie Zhou. Deep
hashing for compact binary codes learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 2475–2483, 2015.

Lorenzo Federici, Alessandro Zavoli, and Guido Colasurdo. Evolutionary optimiza-
tion of multirendezvous impulsive trajectories. International Journal of Aerospace
Engineering, 2021(1):9921555, 2021.

Aristides Gionis, Piotr Indyk, Rajeev Motwani, et al. Similarity search in high
dimensions via hashing. In Vldb, volume 99, pages 518–529, 1999.

Yunchao Gong. Large-scale image retrieval using similarity preserving binary codes.
2014.

BIBLIOGRAPHY 55

Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. Iterative
quantization: A procrustean approach to learning binary codes for large-scale
image retrieval. IEEE transactions on pattern analysis and machine intelligence,
35(12):2916–2929, 2012.

Albert Gordo, Florent Perronnin, Yunchao Gong, and Svetlana Lazebnik. Asym-
metric distances for binary embeddings. IEEE transactions on pattern analysis
and machine intelligence, 36(1):33–47, 2013.

Kristen Grauman and Trevor Darrell. Pyramid match hashing: Sub-linear time
indexing over partial correspondences. In 2007 IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–8. IEEE, 2007.

Arindam Halder, Sanghita Gharami, Priyangshu Sadhu, Pawan Kumar Singh,
Marcin Woźniak, and Muhammad Fazal Ijaz. Implementing vision transformer
for classifying 2d biomedical images. Scientific Reports, 14(1):12567, 2024.

Xu Han, Zhengyan Zhang, Ning Ding, Yuxian Gu, Xiao Liu, Yuqi Huo, Jiezhong
Qiu, Yuan Yao, Ao Zhang, Liang Zhang, et al. Pre-trained models: Past, present
and future. AI Open, 2:225–250, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

Kun He, Fatih Cakir, Sarah Adel Bargal, and Stan Sclaroff. Hashing as tie-aware
learning to rank. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4023–4032, 2018a.

Xinwei He, Yang Zhou, Zhichao Zhou, Song Bai, and Xiang Bai. Triplet-center
loss for multi-view 3d object retrieval. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1945–1954, 2018b.

Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors: towards re-
moving the curse of dimensionality. In Proceedings of the thirtieth annual ACM
symposium on Theory of computing, pages 604–613, 1998.

Herve Jegou, Matthijs Douze, and Cordelia Schmid. Product quantization for near-
est neighbor search. IEEE transactions on pattern analysis and machine intelli-
gence, 33(1):117–128, 2010.

Licheng Jiao, Zhongjian Huang, Xiaoqiang Lu, Xu Liu, Yuting Yang, Jiaxuan Zhao,
Jinyue Zhang, Biao Hou, Shuyuan Yang, Fang Liu, et al. Brain-inspired remote
sensing foundation models and open problems: A comprehensive survey. IEEE
Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
2023.

Jakob Nikolas Kather, Niels Halama, and Alexander Marx. 100,000 histological
images of human colorectal cancer and healthy tissue (v0.1). Zenodo, 2018.

BIBLIOGRAPHY 56

Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom Luedde, Es-
ther Herpel, Cleo-Aron Weis, Timo Gaiser, Alexander Marx, Nektarios A Valous,
Dyke Ferber, et al. Predicting survival from colorectal cancer histology slides
using deep learning: A retrospective multicenter study. PLoS medicine, 16(1):
e1002730, 2019.

Mark A Kramer. Nonlinear principal component analysis using autoassociative neu-
ral networks. AIChE journal, 37(2):233–243, 1991.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification
with deep convolutional neural networks. Communications of the ACM, 60(6):
84–90, 2017.

Brian Kulis and Kristen Grauman. Kernelized locality-sensitive hashing for scalable
image search. In 2009 IEEE 12th international conference on computer vision,
pages 2130–2137. IEEE, 2009.

Hanjiang Lai, Yan Pan, Ye Liu, and Shuicheng Yan. Simultaneous feature learning
and hash coding with deep neural networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3270–3278, 2015.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436–444, 2015.

Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. Deep supervised discrete hashing.
Advances in neural information processing systems, 30, 2017.

Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. Feature learning based deep
supervised hashing with pairwise labels. arXiv preprint arXiv:1511.03855, 2015.

Kevin Lin, Huei-Fang Yang, Jen-Hao Hsiao, and Chu-Song Chen. Deep learning of
binary hash codes for fast image retrieval. In Proceedings of the IEEE conference
on computer vision and pattern recognition workshops, pages 27–35, 2015.

Min Lin, Qiang Chen, and Shuicheng Yan. Network in network. arXiv preprint
arXiv:1312.4400, 2013.

Bin Liu, Yue Cao, Mingsheng Long, Jianmin Wang, and Jingdong Wang. Deep
triplet quantization. In Proceedings of the 26th ACM international conference on
Multimedia, pages 755–763, 2018a.

BIBLIOGRAPHY 57

Bin Liu, Yue Cao, Mingsheng Long, Jianmin Wang, and Jingdong Wang. Deep
triplet quantization. In Proceedings of the 26th ACM international conference on
Multimedia, pages 755–763, 2018b.

Haomiao Liu, Ruiping Wang, Shiguang Shan, and Xilin Chen. Deep supervised
hashing for fast image retrieval. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pages 2064–2072, 2016.

Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. Supervised
hashing with kernels. In 2012 IEEE conference on computer vision and pattern
recognition, pages 2074–2081. IEEE, 2012.

Xingbo Liu, Xiushan Nie, and Yilong Yin. Mutual linear regression-based discrete
hashing. arXiv preprint arXiv:1904.00744, 2019.

Xiao Luo, Haixin Wang, Daqing Wu, Chong Chen, Minghua Deng, Jianqiang Huang,
and Xian-Sheng Hua. A survey on deep hashing methods. ACM Transactions on
Knowledge Discovery from Data, 17(1):1–50, 2023.

Dinesh P Mehta and Sartaj Sahni. Handbook of data structures and applications.
Chapman and Hall/CRC, 2004.

Tom M Mitchell. Machine learning, volume 1. McGraw-hill New York, 1997.

Avinash Navlani. Knn classification using scikit-learn. Data Camp, August, 2018.

Mohammad Norouzi, David J Fleet, and Russ R Salakhutdinov. Hamming distance
metric learning. Advances in neural information processing systems, 25, 2012.

Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-
Nouby, et al. Dinov2: Learning robust visual features without supervision. arXiv
preprint arXiv:2304.07193, 2023.

Gerhard Paaß and Sven Giesselbach. Foundation Models for Natural Language Pro-
cessing: Pre-trained Language Models Integrating Media. Springer Nature, 2023.

Zhaofan Qiu, Yingwei Pan, Ting Yao, and Tao Mei. Deep semantic hashing with
generative adversarial networks. In Proceedings of the 40th international ACM
SIGIR conference on research and development in information retrieval, pages
225–234, 2017.

Maxim Raginsky and Svetlana Lazebnik. Locality-sensitive binary codes from shift-
invariant kernels. Advances in neural information processing systems, 22, 2009.

Ali Rahimi and Benjamin Recht. Random features for large-scale kernel machines.
Advances in neural information processing systems, 20, 2007.

Adil Redaoui, Amina Belalia, and Kamel Belloulata. Deep supervised hashing by
fusing multiscale deep features for image retrieval. Information, 15(3):143, 2024.

BIBLIOGRAPHY 58

Derek JS Robinson. An introduction to abstract algebra. Walter de Gruyter, 2003.

Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. International Journal
of Approximate Reasoning, 50(7):969–978, 2009.

Wojciech Samek, Alexander Binder, Grégoire Montavon, Sebastian Lapuschkin, and
Klaus-Robert Müller. Evaluating the visualization of what a deep neural network
has learned. IEEE transactions on neural networks and learning systems, 28(11):
2660–2673, 2016.

Claude Sammut and Geoffrey I Webb. Encyclopedia of machine learning. Springer
Science & Business Media, 2011.

Iqbal H Sarker. Deep learning: a comprehensive overview on techniques, taxonomy,
applications and research directions. SN Computer Science, 2(6):420, 2021.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Avantika Singh and Shaifu Gupta. Learning to hash: A comprehensive survey of
deep learning-based hashing methods. Knowledge and Information Systems, 64
(10):2565–2597, 2022.

Antonio Torralba, Rob Fergus, and William T Freeman. 80 million tiny images: A
large data set for nonparametric object and scene recognition. IEEE transactions
on pattern analysis and machine intelligence, 30(11):1958–1970, 2008.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances
in neural information processing systems, 30, 2017.

Bill Waggener and William N Waggener. Pulse code modulation techniques. Springer
Science & Business Media, 1995.

Jingdong Wang, Heng Tao Shen, Jingkuan Song, and Jianqiu Ji. Hashing for simi-
larity search: A survey. arXiv preprint arXiv:1408.2927, 2014.

Jingdong Wang, Ting Zhang, Nicu Sebe, Heng Tao Shen, et al. A survey on learning
to hash. IEEE transactions on pattern analysis and machine intelligence, 40(4):
769–790, 2017.

Jun Wang, Wei Liu, Sanjiv Kumar, and Shih-Fu Chang. Learning to hash for
indexing big data—a survey. Proceedings of the IEEE, 104(1):34–57, 2015.

Xunguang Wang, Zheng Zhang, Guangming Lu, and Yong Xu. Targeted attack and
defense for deep hashing. In Proceedings of the 44th International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 2298–
2302, 2021.

BIBLIOGRAPHY 59

Yair Weiss, Antonio Torralba, and Rob Fergus. Spectral hashing. Advances in neural
information processing systems, 21, 2008.

Dayan Wu, Qi Dai, Jing Liu, Bo Li, and Weiping Wang. Deep incremental hashing
network for efficient image retrieval. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 9069–9077, 2019.

Rongkai Xia, Yan Pan, Hanjiang Lai, Cong Liu, and Shuicheng Yan. Supervised
hashing for image retrieval via image representation learning. In Proceedings of
the AAAI conference on artificial intelligence, volume 28, 2014.

Xiang Xu, Xiaofang Wang, and Kris M Kitani. Error correction maximization for
deep image hashing. arXiv preprint arXiv:1808.01942, 2018.

BS Yang, ZH Zhou, Z Gong, ML Zhang, and SJ Huang. Advances in knowledge
discovery and data mining. In Proceedings, volume 405. Springer, 2014.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter
Pfister, and Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for
2d and 3d biomedical image classification. Scientific Data, 10(1):41, 2023.

Zhan Yang, Osolo Ian Raymond, Wuqing Sun, and Jun Long. Deep attention-guided
hashing. IEEE Access, 7:11209–11221, 2019.

Li Yuan, Tao Wang, Xiaopeng Zhang, Francis EH Tay, Zequn Jie, Wei Liu, and Ji-
ashi Feng. Central similarity quantization for efficient image and video retrieval.
In Proceedings of the IEEE/CVF conference on computer vision and pattern recog-
nition, pages 3083–3092, 2020.

Shifeng Zhang, Jianmin Li, and Bo Zhang. Semantic cluster unary loss for efficient
deep hashing. IEEE Transactions on Image Processing, 28(6):2908–2920, 2019.

Juan-Juan Zhao, Ling Pan, Peng-Fei Zhao, and Xiao-Xian Tang. Medical sign
recognition of lung nodules based on image retrieval with semantic features and
supervised hashing. Journal of Computer Science and Technology, 32:457–469,
2017.

Han Zhu, Mingsheng Long, Jianmin Wang, and Yue Cao. Deep hashing network for
efficient similarity retrieval. In Proceedings of the AAAI conference on Artificial
Intelligence, volume 30, 2016.

Declaration of Authorship

Ich erkläre hiermit gemäß §9 Abs. 12 APO, dass ich die vorstehende Abschlussarbeit
selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmit-
tel benutzt habe. Des Weiteren erkläre ich, dass die digitale Fassung der gedruckten
Ausfertigung der Abschlussarbeit ausnahmslos in Inhalt und Wortlaut entspricht
und zur Kenntnis genommen wurde, dass diese digitale Fassung einer durch Soft-
ware unterstützten, anonymisierten Prüfung auf Plagiate unterzogen werden kann.

Place, Date Signature

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Context and Motivation
	Related Work
	Contribution

	Theoretical Foundations
	Deep Neural Networks
	K-Nearest Neighbors Algorithm(KNN)
	Deep Hashing Algorithms
	Overview
	Pairwise Loss Functions
	Triplet Loss Functions
	Pointwise Methods
	Quantization

	Methods
	Feature Extraction
	Hashing Techniques
	Pairwise Methods
	Triplet Methods
	Triplet Center Loss in Deep Hashing

	Evaluation Metrics

	Experiments and Results
	Datasets
	System Setup Parameters for Experiments
	Results and Analysis
	General Results of KNN on Image Embedding
	Results Comparison for different Supervised Deep Hashing Methods
	Results for Triplet Methods
	Computation Efficiency of TCL over Triplet Methods

	Discussion
	Conclusion
	Appendix
	Bibliography

