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Abstract

News about financial events is often a driving factor for stock prices. Therefore,
leveraging Large Language Models (LLMs) to create a profitable trading strategy
appears promising. However, traditional sentiment analysis approaches fall short
when applied to stock market predictions. This is due to the complexity of the mar-
ket, which is influenced by various factors, and news having contradictory outcomes
depending on the involved companies.

This research addresses the critical gap between textual sentiment and actual market
movement by introducing an innovative approach to predicting market sentiment.
The study involves crawling a dataset containing financial news titles from various
publishers. Instead of relying on human-annotated labeling, the research focuses
on historical price data to connect news events with price developments. By ex-
amining approaches from the financial domain, such as FExcess Return, it attempts
to isolate external market factors from the impact of news. The dataset contains
news involving multiple stocks, where the same news event can have divergent mar-
ket sentiment outcomes depending on the specific company perspective, making it
ready for stock-aware market sentiment predictions.

To overcome data imbalance challenges inherent in financial market datasets, the
research utilizes augmentation methods. This includes evaluating various textual
augmentation techniques, ranging from traditional approaches to advanced LLM-
assisted methods. By applying these techniques and using the carefully constructed
dataset, a model was trained that yields comparable results in predicting stock
price development directions, matching the performance of other machine learning-
assisted trading approaches.



Abstract

Nachrichten iiber Finanzereignisse sind oft ein treibender Faktor fiir Aktienkurse.
Daher erscheint die Nutzung von Large Language Models (LLMs) zur Entwick-
lung einer profitablen Handelsstrategie vielversprechend. Herkommliche Ansétze
der Stimmungsanalyse greifen jedoch zu kurz, wenn sie auf Vorhersagen fiir den
Aktienmarkt angewendet werden. Dies liegt an der Komplexitat des Marktes, der
von verschiedenen Faktoren beeinflusst wird, und an den Nachrichten, die je nach
den betroffenen Unternehmen zu widerspriichlichen Resultaten fiihren.

Diese Forschungsarbeit beleuchtet die kritische Liicke zwischen den textuellen Sen-
timent und der tatsachlichen Marktbewegung, indem sie einen innovativen Ansatz
zur Vorhersage der Marktstimmung einfithrt. Die Studie umfasst das Crawlen
eines Datensatzes, der Finanznachrichten von verschiedenen Herausgebern enthélt.
Anstatt sich auf menschlich annotierten Zielvariablen zu verlassen, konzentriert sich
die Forschung auf historische Kursdaten, um Nachrichtenereignisse mit Kursentwick-
lungen zu verbinden. Durch die Untersuchung von Ansatzen aus dem Finanzbere-
ich, wie z. B. den Excess Return, wird versucht, externe Marktfaktoren von den
Auswirkungen der Nachrichten zu isolieren. Der Datensatz enthélt Nachrichten, die
mehrere Aktien betreffen, wobei ein und dasselbe Nachrichtenereignis je nach der
spezifischen Unternehmensperspektive zu unterschiedlichen Ergebnissen in Bezug
auf die Marktstimmung fithren kann, so dass er sich fiir aktienspezifische Markt-
stimmungsvorhersagen eignet.

Zur Behebung von Datenungleichgewichten in Finanzmarktdatensatzen werden in
der Studie Augmentierungsmethoden eingesetzt. Dazu gehort die Auswertung ver-
schiedener Textanreicherungstechniken, die von traditionellen Ansétzen bis zu fort-
geschrittenen LLM-gestiitzten Methoden reichen. Durch die Anwendung dieser
Techniken und die Verwendung des erstellten Datensatzes wurde ein Modell trainiert,
das vergleichbare Ergebnisse bei der Vorhersage von Aktienkursentwicklungen liefert
und der Leistung anderer, durch maschinelles Lernen unterstiitzter Handelsansatze
entspricht.
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1 INTRODUCTION 1

1 Introduction

When it comes to outperforming the market, approximately 90% of traders fail
to achieve this goal'] A frequently cited reason for this failure is the influence of
emotions, which often lead traders to deviate from strict trading rules (Fairchild,
2014). To mitigate this issue, trading companies like hedge funds employ algo-
rithmic trading strategies. The movement of stock prices is influenced by several
factors, including the current state of the economy, represented in macroeconomic
indicators such as GDP, national income, unemployment, and inflation, as well as
microeconomics like price movements of the certain stock and technical indicators
such as the Simple Moving Average (SMA) and Relative Strength Index (RSI). All
these factors can be quantified numerically, excluding emotional influences from the
market. Training complex regression models on extensive historical datasets of these
numerical indicators helps hedge funds overcome the emotional biases that can affect
human decision-making.

While this might help with avoiding humane error sources based on emotions, emo-
tions can often be a driving factor for the stock price. The sentiment of a newly
published news can have a big impact on the value of a company, if its information
is crucial. Whether published on news platforms or social media portals, these texts
can depict a different strength of sentiment and emotions. Understanding and an-
alyzing this textual information, without being fooled by its emotions, is essential
for successful stock market predictions.

When trying to make decisions about the price movement based on news articles,
it stands to reason that the task of Sentiment Analysis is being used. This involves
usually classifying the sentiment of a text into categories such as positive, neutral,
and negative. In the terminology of financial markets, sentiment is often referred to
as bullish, sideways, and bearish. This leads to the first challenge when developing
a sentiment model for the financial domain: good sentiment does not necessarily
translate to a bullish market. Some news articles may have an overall positive
sentiment but could still have a direct negative impact on the stock prices.

"ECB increases interest rate to 5%”

For example, consider the scenario where the European Central Bank (ECB) in-
creases the interest rate to 5%. The average person might perceive this message
positively, as it implies they will earn more interest on their savings. For companies,
on the other hand, such a change will most likely lead to a decrease in stock prices,
since it results in a more expensive refinancing.

Even when assuming that sentiments unrelated to the stock markets can be disre-
garded, there remain instances where the meaning can be ambiguous. When asking

"https://www.spglobal.com/spdji/en/documents/spiva/spiva-us-year-end-2019.pdf -
Research showing that 89% of fund managers were outperformed by the S&P 500 index over a
decade


https://www.spglobal.com/spdji/en/documents/spiva/spiva-us-year-end-2019.pdf
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the question ”What impact will this news have on the stock market?”, it is neces-
sary to define what is meant by the stock market in this context. Considering the
following news title, it seems evident that it may influence the stock market (Chee,
2024). Whether the effect will be bullish or bearish depends on which company is
the focus of interest.

Spotify wins lawsuit against Apple

This shows it is important to take additional cautious steps when wanting to utilize
an existing sentiment model for the financial domain. The textual sentiment of
financial news and the subsequent stock price development are not always aligned.
Therefore, the aim of this work is not to extract the sentiment of the texts but to
predict subsequent price changes triggered by a news event, a concept we refer to
as market sentiment.

For this purpose, several posts about financial news will be acquired for a new
dataset. Its target values will be generated based on the subsequent price develop-
ment, while also considering the excess return of the stock to isolate it from other
factors and influences. Different augmentation methods for text data will be evalu-
ated to overcome overfitting.

1.1 Related Work

This section provides a concise overview of sentiment analysis and its historical de-
velopment. Additionally, it examines a work applying sentiment analysis in the
context of financial news. Since the focus of this work is more on the market sen-
timent than the textual sentiment, various studies are reviewed that aim to predict
the market movement, using news as well as alternative inputs such as historical
price data.

1.1.1 Early Approaches to Sentiment Analysis

Sentiment Analysis is a task in Natural Language Processing (NLP) that involves
extracting the emotional tone conveyed by a text (Pang et al. 2002). In its early
years, it gained popularity in analyzing customer reviews for opinion mining. With
advancements in NLP, it has also become widely applied in other areas, such as news
and social media, which introduce additional challenges like complex texts and irony
(Hamborg et al., 2021; [Zhang et al.| 2019).

In the first years of Sentiment Analysis, the focus was primarily based on the po-
larities of single words in the text rather than the semantics of the full text. One
of the pioneering works in this area was by |Hu and Liu (2004), who published with
their approach a top-cited sentiment scoring method with the aim of summarizing
customer reviews. By applying lexical categorizing, a subset of relevant words is
determined consisting mainly of adjectives. Using a lexicon, mapping each of these
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words to a predetermined sentiment score, an overall sentiment score will be calcu-
lated by its sum, where negative words are annotated as negative numbers. Eight
years later the author of the same work published the book [Liu (2012), gathering
the then-known state-of-the-art methods of sentiment analysis. Despite the intro-
duction of new techniques such as considering word negations and utilizing SVM,
word counting of polarities continued to play a crucial role in sentiment classifica-
tion. This approach did not warrant a comprehensive semantic understanding of
entire sentences but rather focused on the polarity of individual words. While this
method delivers good performance for simple texts like social media posts, it is still
insufficient for the complex texts of financial news. These kinds of texts often tend
to have a more complex sentence structure and a dry nature.

1.1.2 Advancements in Word Embeddings: Word2Vec and GloVe

A way of having a more enhanced contextual representation of a word in a sentence
can be achieved through word embeddings, which provide dense vector representa-
tions of words in a continuous vector space. These vectors are constructed such that
words with similar meanings are located close to each other, capturing the context
in which words frequently occur (Jurafsky,|2000). The theory behind this is the con-
text of a word is defined by the set of words that appear nearby, following the idea
of (Firth, (1957, page 11) famous quote: ”You shall know a word by the company
it keeps”. Using this approach, the comprehensibility of sentiment analysis can be
enhanced by capturing subtle meaning and semantic relationships in complex texts.

One framework that marked a significant advancement in fitting documents to such
word embeddings is Word2Vec (Mikolov, 2013). It learns word associations from
large text datasets, based on the center words in the documents and their rela-
tionship with its outside words. Based on the model variant, there are different
approaches to computing the probability of these words relative to each other. For
Skip-grams the probability of the surrounding words given a specific center word is
calculated. While when optimizing the model using the Continuous Bag of Words
approach, the center word is predicted based on a bag of outside words. The goal is
to maximize the probabilities of the likelihood function, effectively placing similar
words close to each other in the vector space. Using gradient descent, the objec-
tive function, which is the average negative log-likelihood, is minimized. Though
Word2Vec enhances the understanding of complex texts through contextual repre-
sentation, it does not scale well with large corpora and relies solely on the local
context.

A more sophisticated approach leveraging global statistical information from the
entire corpus is GloVe (Pennington et al., 2014). Inspired from other count-based
approaches (Deerwester et al., [1990; Bullinaria and Levy, 2007) it constructs a co-
occurrence matrix, representing how frequently a pair of words appear together in a
defined window length. Otherwise than Word2Vec, the matrix of GloVe provides a
comprehensive view of word relationships across the entire dataset. This matrix will
be factorized to predict the logarithm of the probabilities of word co-occurrences.
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By doing this, it combines the advantages of count-based and prediction-based ap-
proaches, enabling efficient training on large corpora, while also capturing complex
patterns exceeding word similarity.

Building on these word embeddings and their approaches paved the way for making
more context-aware predictions in sentiment analysis for complex texts (Rakshit and
Sarkar] 2024; Wang et al., 2016; Tang et al., 2015b.a).

1.1.3 BERT

These word embeddings were an important step for the foundations of many trans-
former models (Vaswani et al., [2017). The input of the model is first transformed
to word embeddings before it is passed to the transformer in combination with a
positional encoding. Using this positional encoding and its attention mechanism en-
ables the model to have an even more enhanced textual understanding of sentences,
even in longer documents.

One implementation of such a transformer is done in the paper Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., [2019). It, along with its
variations, is widely used in the field of sentiment analysis and is still delivering
state-of-the-art results on multiple benchmarks (Csanady et al., |2024; Xie et al.,
2020; Heinsen, [2022).

1.1.4 FinBERT

An important landmark study in the financial field of sentiment analysis is the work
of |Araci| (2019). They build their model based on Google’s bidirectional transformer
BERT (Devlin et al., [2019). The specialization involved three components: pre-
training, classification, and regression. For each of these tasks, a different dataset
was used.

For additional pre-training of the model, the TRC2-financial dataset was employed.
This dataset is a subset of Reuters CorporaP] filtered by financial keywords. This
financial selection from the TRC2 dataset includes 46,143 news articles ranging from
2008 to 2010. The purpose of this dataset in the training process is to enhance the
BERT model’s literacy in reading texts within the financial domain. However, they
could not conclude that domain pre-training has a significant advantage for the
downstream task performance. The training for the sentiment analysis downstream
task was conducted and evaluated as both a classification and a regression task.

For the classification task, the Financial PhraseBank (Malo et al.,2014) dataset was
used. It consists of 4,845 sentences randomly picked from financial news found in
the LexisNexis database. The target data is human-annotated by 16 persons with
a financial background. They had to label each sentence based on their expertise
regarding how they believed the information might affect the stock price of the in-
volved company. These labels are expressed as negative neutral and positive.

’https://trec.nist.gov/data/reuters/reuters.html - needs to be requested


https://trec.nist.gov/data/reuters/reuters.html
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The dataset was published in multiple subsets based on the levels of agreement
among the authors. On the datasets without any sentences with contradictive an-
notations, the FinBERT model was able to reach an accuracy of 97%, outperforming
other state-of-the-art models available at that time.

The regression task was trained on the dataset for Task 1 of the WWW ’18 conference
financial opinion mining and question answering challenge (Maia et al., [2018). Its
instances consist of a mix of 1,174 financial news headlines and tweets. The target,
expressing the sentiment score, is a continuous number ranging between -1 and 1.
In comparison to the previous state-of-the-art results, FinBERT outperforms them

in both MSE and RZ2.

Overall, this paper demonstrates that BERT is not data-hungry for training on
downstream tasks and is already capable of delivering state-of-the-art results using
only 1,000 to 5,000 observations. Unfortunately, there was no evaluation of how the
model would perform on the stock market executing trading decisions based on its
prediction outcomes. Its training was indeed conducted on a dataset designed to
resemble potential stock market movements (Malo et al.,[2014). However, it was not
evaluated how well the estimate of the experts correlates with the actual subsequent
price movements.

1.1.5 Predicting Stock Price Movements

Although FinBERT is specialized in working with financial texts and determining
their sentiment, it is not optimized for predicting stock price movements. While
an accuracy of 97% is impressive, there is no evaluation of how these predictions
translate into assumptions about the stock market development. To gain a better
understanding of possible results through Al-assisted trading methods, a few works
are presented here. For the sake of comparability, studies that use a direction accu-
racy as an evaluation metric were specifically chosen. Contrary to the accuracy used
in FinBERT, this accuracy assess whether the model predicted the right direction
of the subsequent price movement, rather than the sentiment class. Hereby not only
models interacting with textual data are considered, but also those incorporating
other data types, such as historical price movements.

With Galformer Ji et al.| (2024) presents a model based on |Vaswani et al. (2017)’s
Transformer architecture. Different than its original use cases, it does not handle
NLP but is trained on a time series of daily adjusted close prices. Galformer fore-
casts over multiple days, which is optimized by a hybrid loss function, aimed at
achieving both precise and trend-following predictions. This approach has led to
an improvement in the direction accuracy of traditional transformers from 50.86%
to 52.69%. [Ismail et al.| (2020) focused in their approach primarily on predicting
the direction of the next day. They evaluated a variety of approaches, including
Random Forests, logistic regression, SVM, and artificial neural networks. For each
model, they calculated the accuracy for the years between 2001 and 2017. Utilizing
persistent homology, they achieved long-term accuracies of up to 67.15%.
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A multi-modal approach that combines textual information with price information
as input is demonstrated by Sawhney et al. (2020). After processing both inputs
through their respective decoders, a Graph Attention Network is employed to predict
the movement of the stock price. With this approach, they achieved to surpass the
previous baseline of the StockNet benchmark datasetrﬂ with an accuracy of 60.8%.
Another study focused on predicting stock price movements using financial news
by employing a fine-tuned contextual embedding recurrent neural network (FT-
CE-RNN)(Chen| 2021). They utilized BERT to train a contextual embedding on
Bloomberg’s proprietary News datasetlﬂ. Passing these embeddings to a RNN, en-
abled them to achieve accuracy results between 56.6% and 74.5% depending on the
proportion of the test set.

3https://paperswithcode.com/sota/stock-market-prediction-on-stocknet - Bench-
marks on the StockNET dataset(Xu and Cohen, 2018)
“https://www.bloomberg.com/professional/product/event-driven-feeds/
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2 Background

2.1 Financial Domain

This section provides background knowledge about financial markets to help the
reader understand how stock prices are determined. It also explains the charac-
teristics of stocks, including how they are grouped and identified. Furthermore, it
presents an approach for isolating external factors in the price development of a
stock.

2.1.1 Stock Market

The concept of a stock market describes the process of different actors arranging the
exchange of shares of companies or other securities between two parties (Teweles and
Bradley, [1998). For such a process, a minimum of two actors are necessary, including
a buyer and seller of the asset. This trade can be executed solely between these two
participants, however, most trades involve a stock exchange as a second party. Stock
exchanges are regulated platforms for managing and executing orders from traders.
Originally, orders were settled face-to-face on the trading floor through a process
called open outcry. Although most of these systems nowadays operate online and
automated, there are still market hours restricting when trades are possible, which
are generally between 9:30 AM to 4:00 PM. Some of the most prominent stock
exchanges include the New York Stock Fxchange, the NASDAQ, the London Stock
Exchange, and the Frankfurt Stock Fxchange. Due to regulatory requirements, acting
on these exchanges is restricted to licensed brokers or authorized participants. To
also enable individual investors access, brokers act as intermediaries between the
investors and the market against a commission.

One task of stock markets is the price discovery, where the market value of an
asset is determined by considering the willingness of the traders to sell or buy for
a certain price. These prices are called bid price on the buyer’s side and ask price
on the seller’s side. If both of them align, the exchange’s order matching system
will fulfill the corresponding orders. All remaining offers are kept in what is known
as an order book, which keeps track of the prices and sizes of unfilled orders. This
system is used to identify the current best price for buying (lowest ask) and best
price for selling (highest bid). The gap between them is referred to as spread, whose
size varies depending on the liquidity provided by market makers.

2.1.2 Stocks and Assets

A stock represents the share of the ownership of a company. The sum of the value
of all shares, also called market capitalization depicts the overall value of the asset.
In common parlance, stocks refer to publicly traded companies, which are listed
on stock exchanges. Companies issue shares primarily to secure flexible funding
without having to pay interest. In return, the investors profit from the growth of
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these companies and may receive dividends as a share of the company’s earnings.
Depending on the company’s choice, stocks can also grant the shareholder voting
rights on corporate decisions.

To have a short and unique identifier for addressing securities on stock exchanges,
ticker symbols are used. These symbols consist of 1 to 5 uppercase letters, often
abbreviating the company’s name, and are unique within each exchange. In some
cases, companies can be represented with two tickers on the same stock exchange.
Alphabet Inc., the parent company of Google, chose to offer shares in two different
stocks, which primarily differ in voting rights. This structure enables the company
to issue new shares of GOOG to raise capital, without diluting control over the
company, which is managed by the also publicly traded GOOGL shares.

2.1.3 Stock Market Index

Stock market indices are used as a measure of the performance of a certain segment
of the stock market. In this way, the overall direction of the market can be tracked
and compared to historical trends. It does not only serve as a metric but can also be
invested in through FEzchange Traded Funds (ETFs). This financial instrument is
realized by fund managers, who determine the index’s composition based on a factor
like the stock’s market capitalization. To reflect the price change of the index, the
institutions replicate the index by holding the stocks that make up the index.

The composition of an index can be guided by various factors, such as regional-based
selection, like the DAX or MSCI Emerging Markets, or exchange-based, as in the
NASDAQ-100. With including the 100 largest non-financial companies listed on
the NASDAQ stock exchange, NASDAQ-10(f| represents one of the currently most
important sectors of the stock market. Given that the tech companies featured on
this index have proven growth potential and high media presence, the selection of
stocks for consideration is focused on this index.

2.1.4 Price Trends

Price charts are usually displayed using candlestick charts. Each candlestick rep-
resents an interval, which can range from seconds to hours (referred to as intraday
candlesticks), or from days to months. The price characteristics within one candle-
stick are represented in a box-plot similar structure, which can be seen in Figure [1}
The range of the box is defined by the OPEN and CLOSE prices, while the LOW
and HIGH prices are represented by the extreme values of the whiskers. The col-
oring of the candlestick is determined by the relation of the CLOSE price to the
OPEN price.

When working with historical price charts it is common to use an adjusted closing
price, which considers dividends but also other corporate actions. Especially for

Shttps://www.nasdaq.com/solutions/nasdaq-100 - NASDAQ-100 Index
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Figure 1: Example of two Candlesticks representing a decreasing and increasing
Trend of an Interval.

stock splits it is important, where the amount of shares is modified while main-
taining the same market capitalization. In a two-for-one split, for example, every
shareholder would receive twice as many shares, while also the price is reduced to
its half value. When not using an adjusted close price, such events could appear like
a sudden significant change in the value of the stock.

Price movements indicating a positive trend are termed bullish, whereas negative
trends are described as bearish.

2.1.5 Slippage

Slippage is a financial term, describing the difference between the expected price and
the actual realized price. Slippage can occur due to various factors, including the
rapid changes in prices, which means that the price at the time of decision-making
can already be outdated. Another factor is the spread between the bid and ask
prices, representing the prices on the buyers and sellers side. Besides that, there
are also other factors, like high volume trades during low liquidities and possible
trading fees.

2.1.6 Excess Return

The net gain or loss of an investment can be expressed as the Rate of Return (RoR).
It expresses the entire value change of the position over its period as a percentage
of its initial amount (see Eq [L).

Final Value — Initial Value

RoR = Initial Value (1)

Often, a company’s price change is not only impacted by information about the com-
pany itself but also by other extrinsic factors. Some of these factors can overshadow
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the event of the news to such an extent that information, which would otherwise
have been positively priced in, leads to a stock price decrease. Since our selection of
the stocks is determined by the NASDAQ 100 index, these factors can be involved by
events regarding US politics or the technology sector. A relevant event in US politics
could be a monetary policy change, such as adjustments to the interest rates by the
Federal Reserve System (Sellin) [2001). Another macroeconomic influence can be the
announcement of rising inflation, as it often leads to reduced consumer spending.
Events regarding the technology sector could include regulatory changes, such as
stricter data privacy laws, which affect a large amount of tech stocks.

A common practice in the field of financial markets to evaluate investments isolated
from other market factors is to consider the excess return. This metric represents the
return of an investment exceeding the expected return of a benchmark, effectively
separating the actual total return from external factors. A popular implementation
of this concept is Jensen’s Alpha (Jensen, [1968), which is traditionally used for
measuring the difference between the return of a portfolio in relation to the overall
market. In this way, it assesses the performance of a portfolio while accounting for
the current risk of the market. This isolated risk can be viewed as the external
factors influencing the stock price. For a given asset, it calculates the return of this
security (Eq [p) and subtracts the corresponding CAPM value.

MarketRiskPremium(t;) = Return(QQQ), t;) — RiskFreeRate(t;) (2)
CAPM(a, t;) = RiskFreeRate(t;) + 8, x MarketRiskPremium(t;) (3)
ExcessReturn(a, t;) = Return(a, t;) — CAPM(a, t;) (4)

CAPM The foundation of the Capital Asset Pricing Model (CAPM) formula was
introduced by [Sharpe (1964) and Lintner| (1975). CAPM is a commonly used frame-
work in financial analysis for determining whether a security is fairly priced based
on its systemic risk. It calculates the expected return of an asset by combining the
return of a risk-free investment with an adjustment for the asset’s risk relative to
the market, based on its beta and a market risk premium (Eq .

Beta The beta value of a stock describes how its price is expected to fluctuate in
relation to overall market movements. When the beta value is higher than 1, the
stock’s price is more volatile than the overall market. For example, a stock with a
beta value of 1.5 would be expected to experience 50% stronger movements than its
benchmark index. This applies in both directions, meaning that when the market
rises by 5%, the stock’s value is expected to increase by 7.5%; similarly, a market
decline of 5% would result in a 7.5% decrease in the stock’s price. In contrast, a beta
value of less than 1 indicates that the stock’s price movements are slower and less
volatile than the overall market. A higher beta is generally associated with higher
risks. The beta value is derived from statistical measures of historical data.
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Market Risk Premium The market risk premium represents the additional ex-
pected return over the risk-free rate (Eq. It quantifies the compensation investors
expect for taking on additional market risk compared to investing in a bond consid-
ered risk-free.

Risk Free Rate A risk-free rate represents the annual rate of an investment that is
considered free of financial risk(Weil, [1989). Typically, these are modeled by bonds
with an assured interest rate, which is paid regardless of market conditions. For
fixed-rate bonds, this rate is set at issuance and remains guaranteed until maturity.
In the case of floating-rate bonds, the interest rate is periodically adjusted to reflect
current market conditions, approximating the rate of a bond issued at that moment.
In the domain of financial markets, US Treasury Bonds are predominantly used as a
proxy for the risk-free rate, due to their perceived safety and reliability(Damodaran,
2008). Depending on the period of the planned investment, different Treasury Bills
may be appropriate. For short-term investment — what our intention for trades
based on news article is — it is common to use a 1 Year US Treasury Bond. It is
important that the investment period does not exceed the bond’s maturity to ensure
the expected risk-free return is maintained.

2.1.7 Efficient-Market Hypothesis

The Efficient Market Hypothesis (EMH) (Fama, [1970) implies that all available in-
formation is fully and immediately reflected in an asset price, as soon as it becomes
publicly known. This includes information about the current state of the company,
macroeconomic factors, expected risk, as well as anticipated events and future cash
flows. This is due to the high competition among traders and investors, who con-
stantly analyze prices and information, driving prices toward equilibrium. The EHM
does not claim, that it is impossible to make profits by trading, but rather that, in
an efficient market, it is not possible to consistently achieve excess returns.

It is distinguished between public information, which can be accessed by outsiders,
and private information, reserved for insiders of the company. Which information
is incorporated by the market, depends on the degree of market efficiency. In its
weakest form, it is still possible to profit from public information such as news, as the
efficiency regards only the reflection of historical price movements. Consequently,
long-term profitable trading strategies assisted by regression models trained solely
on historical price data are not possible. The semi-strong form assumes that public
information is rapidly priced in, to an extent that trading based on these events
becomes unprofitable in the long term as well. The strongest form covers all kinds
of information, including both public and private, into asset prices. In this scenario,
no investor could consistently outperform the market, regardless of having insider
information. In reality, private information is rather priced in slowly, which results
from its confidentiality and strict regulations for insiders.

The form which is most applicable to real-world markets is the semi-strong form.
Even though it has its flaws and is not always consistent (Malkiel, [2003; Titan,[2015),
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it can be observed that particular publicly known information is quickly priced in.
This does not completely eliminate the possibility of profiting from this information,
but it requires prompt action to compete with the market.

2.2 Technical Background

This section outlines the fundamentals concepts and techniques of sampling, aug-
mentation, and transformers, providing a basis for the subsequent sections, which
will delve into their implementation and application.

2.2.1 Sampling Strategies

Sampling describes the process of selecting observations for a subset from a larger
set of all available observations. The goal may either be to represent the original
population as closely as possible, or to shift the imbalance to a more favorable
distribution for training.

There are multiple strategies available for sampling. One of the most basic is Simple
Random Sampling (SRS). By randomly selecting, every observation has the same
chance of being picked, reducing the selection bias. The subset resulting from SRS
is representative of the population.

Stratified Sampling offers a more structured approach. As a prerequisite step, the
population is divided into subgroups, based on common criteria. From each of these
strata a sample is drawn, ensuring that all parts of the population will be considered.
Stratified sampling methods themselves can vary in their implementation, includ-
ing how strata are defined and the sample sizes are drawn from each group. The
definition of the strata could be categorical labels for classification tasks or defined
ranges of a target variable in regression tasks. These ranges could be pre-defined by
borders or divided into n equal-sized intervals. The sampling of these groups could
be targeted to achieve a uniform distribution or to represent the original population.

Oversampling is a technique used to address class imbalance, particularly in situa-
tions where traditional methods sampling methods would result in insufficient repre-
sentation of the minority classes. Its implementation can be as simple as randomly
duplicating instances from the minority class. While this method helps mitigate the
bias towards the majority class, it also carries the risk of overfitting the model, most
notably when the maximum allowed ratio is chosen too generously. This is because
inserting duplicate instances does not introduce any new variance to the minority
class, leading to poorer generalization performance during the training. Approaches
like SMOTE (Chawla et al.,[2002) and ADASYN (He et al., |2008) are developed to
overcome this challenge. They create synthetic data points by interpolating between
existing observations of the minority groups. However, these methods are not ap-
plicable for text data unless it has been transformed into embedding, which comes
with limitations, such as the need to decide on a model up front.
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2.2.2 Transformers

The approach of transformers (Vaswani et al.; 2017) offers a different strategy than
Recurrent Neural Networks (Hochreiter, [1997; |Chung et al., 2014) for implementing
complex sequence modeling tasks.

Since transformers operate without the need for recurrence, they require an alter-
native method to consider the position of the tokens. This is realized by combining
the word embeddings with a positional encoding. Through a sinusoidal function,
consisting of a sine and shifted cosine function, the positional encoding creates a
unique identifier for each position, providing the means to distinguish the sequential
order of tokens.

A technique contributing to transformers’ ability to parallelize computation and
long-term textual understanding is the attention mechanism. Using it the model is
able to determine relevant parts of the text to focus on, even over longer sequences.
The computation of the attention mechanism consists mainly of three components:
query, key, and value. The query represents the information the mechanism seeks
to focus on. The keys are representations of the input elements, indicating their
relevance to the query. Every key has an assigned value, which holds corresponding
semantical information for the token for further processing. By calculating the dot
product of the query with the key, the importance of each token is determined,
indicating whether its corresponding value should be considered. The resulting
attention scores, when multiplied with the values, produce a weighted sum that
provides a contextually aware representation of the input sequence.

Multiple of these attention layers are stacked to a multi-head attention layer, en-
abling each layer to concentrate on a different part of the text. The computation of
their attention scores can be done in parallel.

The model architecture, which is shown in Figure [2| consists of N encoder and
decoder layers. The encoder layer, having the task of extracting the information of
the text to create a more abstract representation, consists of a multi-head attention
and feed-word layer. Each of these layers has its own fitted fully-connected feed-
forward network for feature extraction, which independently processes each position
to prepare the input for the next layer. For its original purpose of text generation,
their output is passed to the decoder network of the transformer, to generate an
output sequence. The decoder layers are built similar to the encoder layers, with
the exception of having an additional multi-head attention layer interacting with
the output of the encoder, thereby adding an encoder-decoder attention mechanism,
besides the self-attention. For other down-stream tasks, like sentiment analysis, the
decoder network can be omitted.

2.2.3 BERT

BERT (Bidirectional Encoder Representations from Transformers) is a language
representation model widely used in the field of NLP, which was introduced by
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Figure 2: The Transformer - model architecture by |Vaswani et al.| (2017)

Google researchers in 2018 (Devlin et al., 2019). One of its contributions is the
innovative bidirectional pre-training of the encoder. BERT’s architecture is based
on the transformer model, which uses self-attention mechanisms to process input
text efficiently and capture intricate dependencies between words. Contrary to its
original approach, BERT only uses the encoder network.

Former traditional models used to be trained on predicting the next token, based on
the previous tokens to the left. Using a so called Masked Language Modeling (MLM)
the model learns to predict masked tokens within a sentence, while also considering
the tokens to the right as context. This facilitates BERT to a significant advantage
in generating contextual word embeddings of high quality.

Like other pre-training techniques is MLM also an unsupervised approach. The
masking of the words within the documents is applied randomly during the training,
giving the model the task of predicting the recently masked tokens. The training
corpus included the entire English Wikipedia and the BooksCorpus (Zhu et al.,|2015)
dataset, totaling 3.3 billion words. This broad dataset enables BERT to develop a
deep understanding of language context and structure.

They also demonstrated using the GLUE (General Language Understanding Eval-
uation) benchmark (Wang et al., 2019) that BERT outperforms back then state-
of-the-art models in various collections of NLP tasks, including sentiment analysis,
semantic similarity, question answering, and others. As a method for the training
on the downstream task, they only fitted one additional classification layer. Due
to its architecture and extensive pre-training BERT’s rapid convergence is capable
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of delivering these results already after three epochs. Even the smaller-sized model
BERT,s with 110 million parameters, achieved better results than the competi-
tor models. This makes BERT’s base model especially attractive for small research
teams, as it can be trained using relatively few resources, while still delivering state-
of-the-art results.

2.2.4 Pre-Trained Transformers

Pre-Trained Transformer is a framework where models are first pre-trained on a
large data set, before being specialized on a specific task. Often they are also
referred to as Generative Pre-Trained Transformer (Radford, [2018), which however
does not apply to BERT, as it misses the decoder network required for generative
tasks.

The process of training (generative) pre-trained transformers consists of two essen-
tial stages, involving an initial general pre-training on a large corpus, followed by
fine-tuning on a specific downstream task. Most models of this kind are provided
with already pre-trained weights, significantly reducing the resources required for
downstream task training. While fine-tuning is crucial for the actual task, further
pre-training can help to make it more affine on a specific domain. The pre-training
does not require any target values and is conducted as an unsupervised learning
process.

2.2.5 Overfitting

Owverfitting describes the phenomenon where a model becomes so closely adjusted
to its training data that it loses the ability to generalize to unseen data. It can have
various causes, which can either be related to the model or to the properties of the
data. Models that are too complex or trained for too long tend to exhibit over-
fitting. However, datasets lacking sufficient training data or having an imbalanced
distribution can also contribute to it.

2.2.6 Data Augmentation in NLP

A popular approach in the field of Computer Vision for avoiding overfitting is Data
Augmentation. While traditionally associated with image-related task, its appli-
cation has also gained attention in Natural Language Processing recently. Data
Augmentation is an approach for expanding the existing instances by slightly dif-
ferent versions of their originals. The reason why it mitigates overfitting is because
a bigger dataset is gained by it and constantly seeing new instances in every epoch,
will distract the model from learning just by memorizing.

The practices used to realize data augmentations differ across various fields. For the
field of Natural Language Processing Bayer et al. (2022) compares and provides an
overview of different methods for augmenting textual data. The implementations
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surveyed in this work range from conventional techniques to first approaches using
Al-assisted methods. They categorize the different strategies into a taxonomy that
distinguishes between different spaces and levels.

Most of them occur in the data space, meaning that the data has not yet been
transformed into a feature space as it would happen during the tokenization. In
these approaches, manipulations are applied directly to the text, which can happen
on different levels of granularity.

At the most granular level, Character Level text augmentation involves adding,
removing, or altering individual characters within the sentence. It can be used to
add noise by randomly inserting characters, but it can also be systematically applied
to imitate typos, such as swapping random characters with their neighbors or with
characters that are close to the original on the keyboard. This can make the model
less prone to user-introduced errors, although such issues should ideally be addressed
during the pre-training stage for LLMs.

Moving up to the next level of granularity, Word Level text augmentation alters
entire words, often including the usage of synonyms. This can affect the position
of the altered word, or it result in its removal or replacement with another word.
By introducing these variations, the model is exposed to a wider range of linguistic
expressions, improving its robustness and ability to generalize.

Another level mentioned by Bayer et al.| (2022) is the Phrase Level, which operates
on smaller segments within a sentence. This includes operations such as paraphras-
ing, reordering the sentence structure, or adding subordinate clauses.

The least granular level, applied to the entire text, is the Document Level. Here
the transformation either applies to the entire body of text or at least considers it as
context. This level is divided into the two task types of translation and generative,
usually aided by ML models, especially for the generative tasks.

Augmentations using translation are generated in a two-stage process referred to as
BackTranslation. Hereby the original text will be translated to another language
and back to its source language. The result will ideally retain the same meaning, but
may still differ in wording and structure due to nuances and variations introduced by
the intermediate language. This technique, also known as Round-trip Translation
(RTT) first gained popularity as an evaluation measure for machine translations,
indicating that sentences being similar to their original are of high quality (Chan,
2004). |Aiken and Park| (2010) assessed the efficacy of RT'T as an evaluation metric
and concluded that, while this method has predictive power, it cannot be considered
a bulletproof measure due to variations in the translations, which still maintain
the original meaning of the sentence. |[Edunov et al.| (2018), which employed back-
translation for further training of NMT models, found it to be a highly effective
method for data augmentation in the field of NLP.

According to Longpre et al. (2020) most conventional data augmentation techniques
fail to yield significant improvements when applied to LLMs. Therefore a more so-
phisticated approach - using another LLM for augmentation - is employed to address
the challenge more effectively, essentially like 'fighting fire with fire’. Ding et al.
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(2024) describes different methods of how LLM can be used for data augmentation
in the field of NLP. This includes prompting LLM models to generate similar exam-
ples of given instances (Data Creation), annotate unlabeled datasets (Data labeling),
and create contradictory examples to the original instances (Data Reformation).

The other space addressed in Bayer et al. (2022) operates in the feature space. In
the case of Transformer models, this refers to modifications made to the output of
the embedding, before it is passed to the encoder of the transformer. This can either
be done by interpolating between two instances or adding some noise. Building on
this idea, NEFTune has demonstrated significant effectiveness in enhancing model
performance by employing noise to the embedding, encouraging generalization by
introducing variations in the feature space (Jain et al., |[2023). Evaluated across var-
ious instruction fine-tuning datasets, this approach achieved performance boosts up
to 34.9 percentage points (Alpaca (Taori et al., [2023)) and an average improvement
of 15.1 percentage points.
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3 Data

The goal of this work is to have a textual dataset containing information about
events regarding traded companies so that a model can learn the impact of this
information on the market. The model should be able to predict the subsequent price
direction on the stock market, rather than merely making assumptions regarding the
emotional tone of the text. As the outcome depends on the subject of the news,
every observation should be linked to the relevant asset.

Such a dataset must include posts about topics, that address recent events relevant
to the pricing dynamics of an asset. To enable learning from this data a target vari-
able is required, representing the subsequent stock price development of the involved
company. In the optimal case, this also includes news containing references to mul-
tiple tickers, so that models could potentially be trained to capture the ambiguous
outcomes of a single event across different companies. For this, the dataset must
either already include the described target variable or contain the relevant columns
to derive the market’s subsequent reaction, such as the names of the involved com-
panies and the publication time.

Existing datasets either focused on the sentiment of the text, which does not neces-
sarily align with the market sentiment, or were limited to posts that each involved
only a single stock (Maia et al., 2018; | Xu and Cohen, 2018). Therefore, we decided
to create a dataset that fulfills all the aforementioned requirements. The following
sections outline the criteria and methods used to collect the posts, as well as the
process for generating the target variable. Additionally, they detail the sampling
and splitting procedures employed to divide the dataset into the training and testing
versions.

3.1 Data Acquisition

As sources, we considered news articles from information portals and social me-
dia posts on the platforms Reddit and X . During the data acquisition process,
we specifically targeted content related to stocks included in the index outlined in

Section [2.1.3.

3.1.1 Scraping of Social Media Posts

Social Media posts can serve as a valuable source of information for anticipating
market movements since the instantaneous form of micro-blogging provides a faster
way to react to recent events. For this purpose posts from the social media platforms
Redditﬁ and X ﬂ formerly known as Twitter, were gathered.

Shttps://www.reddit.com
"https://x.com
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To retrieve data from Reddit, the python library PRAWF|is utilized, which pro-
vides an interface to communicate with the official Reddit API. It is implemented in
compliance with Reddit’s API rules and also automatically makes further requests,
to retrieve the full pagination. To ensure financial relevance, the posts are gath-
ered from specific subreddits, which are groups focusing on financial topics. With
PRAW’s Subreddit class and its methods, a capped number of posts with each
request can be retrieved. Different search queries are employed for each asset to
maximize the scope.

A possible way to acquire posts from X is through their official API. However, the
free plan of it mainly covers the usage for posting tweets and the cheapest plan
offering search functionality starts at $5,000 per monthﬂ Alternative options had to
be evaluated, as the associated costs are economically not viable for a master’s thesis.
Additionally, the previous academic research access program has been discontinued,
except in cases mandated by Article 40 of the Digital Services Ac.

X offers a service known as Syndication, which enables the embedding of individual
tweets or timelines of users into websites. While still not giving the possibility to
search for tweets, it is able to obtain tweets based on a post identifier or username.
When requesting it for a specific user, up to 100 posts can be received. The tweets
are not sorted in chronological order but by popularity. This is useful for our case
since those tweets are probably more relevant and offer a mix of posts from a broader
time range. A user on GitHub described a way how tweets from this tool can be
programmatically extracted@, which we used in our implementation. In this way, a
dataset of relevant tweets can be assembled, when provided with a list of financial
influencers.

3.1.2 Scraping of Yahoo News article

As a source of our data, Yahoo's service yahoo/news was chosen. This service works
as an internet-based news aggregator, enabling us to fetch news articles from various
publishers on a single platform. This simplifies the data acquisition process, as the
solution for retrieving the articles has to be only implemented for a single source.
Additionally, the variety of publishers includes previews or even full text for articles,
which would otherwise have been exclusive to subscribers on the publisher’s page.
Yahoo's finance sector also incorporates the yahoo/news service with added features.
One of these features is the ”In this article” display, showcasing stocks mentioned
in the article along with their daily price changes. When a news article involves
multiple listed companies, this widget will display them all. That information is
crucial, as it is necessary for the dataset to be used for Aspect-Based Sentiment
Analysis.

8https://praw.readthedocs.io/ - The Python Reddit API Wrapper
9https://developer.x.com/en/products/x-api
Ohttps://devcommunity.x.com/t/academic-research-access/221102
Uhttps://github.com/zedeus/nitter/issues/983#issuecomment-1678942933
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The most essential data that needs to be retrieved for the dataset are the news
titles and their related assets. As first method to retrieve the articles published
on yahoo/news without overhead was using Yahoo’s API. Yahoo’s finance search
endpoint E contains besides all available quotes for the search, also relevant news
articles. While not containing the full text, the response contains all other relevant
information like the title, publisher, publication time, URL, and all related assets
of each article. However, the results are limited to the latest eight articles, which
makes this endpoint unsuitable for our purpose. Over the duration of a longer
period, it would still be possible to gather a larger dataset, which would nonetheless
not contain any historical articles, introducing a bias towards the current market
situation.

Since the API could not be used due to its limitation of limited results, we had to
resort to scraping. For this a scraper was implemented, which retrieves all available
data present on the Yahoo News page regarding the article based on a URL. In order
to retrieve these URLs search engines were utilized, as the homepage only displays
recent articles.

All the data regarding the scraping of the news articles will be persisted and pro-
cessed in an SQL database. As a database engine, SQLiteErI was selected for its abil-
ity to operate without any dependent server or service. Despite being a lightweight
database solution, its capabilities are more than sufficient for this task. The content
of SQLite databases is stored in a single file, making them highly portable. This en-
ables an easier publication of the data since the file can be easily copied and shared
across different systems. Furthermore, utilizing a database system like SQLite over
CSV files offers several advantages. One benefit is the possibility to specify schemas
with unique constraints for better integrity, ensuring that no duplicate articles will
be added. Furthermore, using a DBMS enables a more efficient updating of specific
rows, which is essential during the second stage of scraping the content. It also
supports concurrent processing, enabling parallelization of some tasks across the
multi-stage scraping workflow.

The whole scraping process involves three stages, which workflow is visualized in
Figure 3| First, the URL Crawler saves bare URLs of Yahoo News articles to the
DB, with each entry annotated with scraped=0 to indicate it has not yet been
scraped. In the next stage, the Selenium Scraper will pick up the URLs, which
are not yet scraped or marked as errors. After successful scraping all retrieved
fields will be added to the entry of the given URL in the DB. On failures, this
row will be marked in the database, so that such URLs will not be tried again.
To enhance the efficiency of this stage, a number of workers, each having their
own ScrapeWorker can be defined. The task for each URL will then equally be
distributed over each worker, using Python’s built-in ThreadPoolExecutor. The
final stage involves processing the scraped data, to make it suitable for the training
tasks. This includes fetching all successfully scraped data from the DB along with

2https://query2.finance.yahoo.com/v1/finance/search?q - Yahoo Finance’s Search End-
point
Bhttps://sqlite.org/
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some preprocessing and generating the target value for each news-asset pair. The
resulting information is then exported to a CSV file.

URL
Crawler
URLs . . Generate —_
SQLite [-Articles—», Dataset —>| —
\ 4
Selenium | A nicles .CSV
Scraper

Figure 3: Visualization of the three stages of the Crawling of News Articles.

During the development, various search engines were tested to accomplish the scrap-
ing of the URLs. Therefore it is possible to interchangeably select different platforms
for the news.url.Scraper. In order to achieve high modularity all the implemen-
tations of these services have their query be set with set_search(query) and will
return their results incrementally with next_page () until no more hits are available.

One of the used services is the Google search itself. Google Cloud Platform offers a
Programmable Search Engine, which can be used to create a custom search engine
based on Google’s index. When creating such an engine, you can specify which
websites will be included in the search scope of the engine. For our purpose, this
was set to finance.yahoo.com/news/*. As an outcome, you will receive a custom
Google Search engine that delivers results exclusively from financial Yahoo News
article. Google’s Custom Search JSON API provides an endpoint to get results
from this previously registered Programmable Search Engz'neE]. Its free contingent
includes 100 requests for each day. Given that one query can contain up to ten
URLs, this allows retrieving up to 1,000 news articles each day. Starting from the
101st request, each further call will cost half a cent, totaling 5$ for 1,000 additional
requests. Since this service is bound to a contingent, credentials are required for its
usage, which can be passed as environment variables.

To simplify the workflow with this API, we developed the wrapper GoogleCSE. A
single request to the endpoint will only return the results of one page. Therefore, the
method next_page will return the results of the current page while automatically
setting the URL for the upcoming request to the next page. Hence, by incrementally
calling this method, all available URLs can be retrieved. However, the results are
still limited to a maximum of 100 results for each query.

The open source project duckduckgo_search (DDGS) offers a Python interface to
DuckDuckGo’s search engine, without requiring any API key or Credentialﬂ. Its

14Programmable Search Engine created for this thesis only returning financial Yahoo News
articles: https://cse.google.com/cse?cx=51052ab44096d4dda

5https://developers.google.com/custom-search/vl/reference/rest/vl/cse/list

https://github.com/deedy5/duckduckgo_search - GitHub Repository for a DuckDuckGo
search interface


https://cse.google.com/cse?cx=51052ab44096d4dda
https://developers.google.com/custom-search/v1/reference/rest/v1/cse/list
https://github.com/deedy5/duckduckgo_search
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implementation already handles the pagination, therefore the next_page of our
implemented wrapper will already return the complete search result on the first call.
Depending on the search term DDGS can deliver up to 2000 results, exceeding the
maximum possible 100 of Google’s Custom Search API by far. The method name
was still retained, to ensure modularity of the search engine classes. As opposed to
Google’s custom search engine, DDGS will search the whole web. In order to also
only retrieve here financial articles from Yahoo News the following custom search
query is being used:

site:finance.yahoo.com/news/ {query}

An encountered limitation of this library is RateLimit exceptions, even when obeying
a modest usage. We documented this issue on its GitHub repository, but despite an
initial fix, the problem persists sporadically and seems to be location—dependen@.

Before starting a crawling process for URLs, the latest stocks gathered within the last
day are retrieved from the database to avoid wasting resources on already scraped
URLs. For each asset, that is not already covered in this list, a search process is
started with the selected search engine platform. The query is set to search for
the specific asset, with the option to also specify a publisher to target articles from
desired resources. Using the method next_page the URLs will incrementally be
persisted to the DB, while the table schema will prevent duplicate entries.

For the scraping of the articles, Selenium was used, which is a framework for browser
automation@. Using its Python package, the process of scraping the news pages
was implemented into a class called ScrapeWorker. Before the worker invokes a re-
quested URL, sanitization is applied first. Some URLs might include a language code
inside their subdomain. This part will be removed from the URL, as some localiza-
tions have a different website structure. After visiting the Yahoo News page for the
first time, a cookie disclaimer will be displayed. In order to retrieve the content of the
page, it has to be accepted or declined by the scraper. Since this disclaimer will not
appear anymore on subsequent visits, a method click_if_exists(class_name)
was implemented to handle it. After some delay to ensure that the page is com-
pletely loaded, its relevant content will be scraped. This is done by localizing the
elements of interest using defined class or path identifiers. In this way, the title,
publisher, publication date, and a list of related assets are extracted. For the full
text of the article, all <p> elements inside the body class will be concatenated, after
clicking a potential Read more button to collapse the content. The worker returns
this information as a DTO, enabling more convenient processing by the database
module.

"https://github.com/deedy5/duckduckgo_search/issues/213 - Documentation of Rate-
Limit issue
Bnttps://www.selenium.dev/


https://github.com/deedy5/duckduckgo_search/issues/213
https://www.selenium.dev/
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3.2 Data Preprocessing

Data Preprocessing describes the procedure in this work of transforming the crawled
observations to a state, where they can be used for training according to our task
specifications. This process is implemented by the generate_dataset.py script and
involves various steps to organize the data and generate target values for them. The
subsequent section provides a detailed description of each step in this process, as
illustrated in Figure

[Extract Ticker Names]

Y
N
Column renaming, Unifying Ticker Names
( -
Post Assets Post Asset
Spotifxwins lawsuit SPOT AAPL — Spotify wins lawsuit against Apple. SPOT
against Apple ' Spotify wins lawsuit against Apple | AAPL
\ J
, L2 .
Filter out non NASDAQ 100 Stocks
\ + J
4 )
N ‘ ALPHA
VANTAGE
Calculating Price Development (Sentiment Score)

- J

Figure 4: Visualization of generate_dataset.py preprocessing the observations and
generating their target values.

3.2.1 Extracting Ticker Names

A majority of news articles come annotated with the stock companies they mention.
For all other articles or texts from sources without such annotations, like social
media posts, this information has to be extracted during the preprocessing, as it
forms the foundation for calculating the market sentiment score. Such posts often
mention the ticker names within their text, usually represented by 2-5 uppercase
characters. When searching for them based on these criteria, it would also include
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terms that do not represent stock names. As a requirement, searches could target
terms with a $-prefix, which is typically common in microblogging. However, during
the initial evaluation of this method, it was found that only 20% of the processed
posts contained at least one match. To achieve higher coverage, an approach uti-
lizing a search-word map is employed, containing the stock selection mentioned in
Section [2.1.3. This map assigns each search word to the ticker name of the according
company. The search words are the full company and ticker names of the selected
stocks. Each text of the observations is scanned for these search words. When a
word is found, its corresponding ticker name is added to a list of identified tickers.
This list is utilized to avoid redundant searches for words, which tickers are already
identified, and is ultimately returned as the function’s output. To minimize false
positives, such as instances where the ticker name appears as part of an unrelated
word, the search is constrained by the following regular expression:

\b + re.escape(search_word) + \b

This ensures that the name is matched as a complete word and not part of any other
word, while it is still allowed to be proceeded or followed by special characters since
it is common to use writings like $AAPL, #META. Using the flag re . IGNORECASE allows
the pattern to also match words regardless of their original case. The search word
is escaped using the re library before being inserted into the pattern to prevent any
special characters from disrupting the regular expression.

3.2.2 Preparing Column Names and Values

The following step prepares the inputs to ensure they are in the correct format
and state for subsequent processing. Since the script works with different sources
of datasets, including news portals and social media, it ensures that all required
columns are present and follow the correct naming conventions. Besides that, certain
format conversions are applied, such as converting the created column to a datetime
format. Since the flat structure of the CSV file does not support nested objects, the
strings representing the assets in each row need to be parsed into arrays.

The values of these arrays need to be checked for companies having multiple ticker
names, as described in Section [2.1.2. Although these represent different stocks with
different prices, it can be assumed that the reflected percentual price change on
events is almost identical across them. Hence, to maintain consistency, such ticker
names are renamed, using a dictionary, to a unified symbol name. It is recommended
to select the ticker with higher liquidity for the unified name, ensuring smaller
spreads. While this criterion probably does not play a significant role here, for the
only company affected in our stock selection, Alphabet Inc., GOOGL was chosen as the
ticker. To make this approach expandable for future changes, the dictionary is read
from a JSON file, whose path can be passed as an environment variable. Finally,
any possible duplicate ticker names within each list are removed.
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3.2.3 Exploding Targets

Post Assets Post Assets
Spot|f¥ wins lawsuit SPOT
Spotify | against Apple
potify wins lawsuit >
against Apple SPOT, AAPL Spotify wins lawsuit AAPL

against Apple

Figure 5: Replication of posts form each associated assets.

As previously mentioned, the content of the news may involve multiple companies.
In some cases, the market sentiment scores may align, but often the price movement
of the affected stocks differ or even contradict each other. Such an example showing
opposing sentiments for each company can be seen in Figure [5l The lawsuit men-
tioned here resulted in a $2 billion fine for Apple, significantly impacting their cash
flow, and allowing Spotify to advertise their own prices for their services in the app
(Chee, [2024).

In order to reflect the sentiment of each asset, such observations must be split into
multiple news-asset pairs. This is done by using pandas explode functionality, which
replicates each element of a list column to a new row, preserving the values of the
other columns. For training models, which only consider a single asset for each
entity, it can be selected if only posts involving one company should be selected.
Instances that do not have a value assigned for the ticker will be removed, as the
required input for the computation of the sentiment score is missing. Furthermore,
all news-asset pairs not belonging to our selection of stocks will be excluded.

3.2.4 Calculation of Sentiment Scores

In addition to the scraped news articles, a set of target values is required to fine-tune
a model on it. The development of the market price, triggered by the news, will be
utilized to determine the market sentiment. This approach is automatable, eliminat-
ing the need for tedious manual labeling of the instances. It also removes potential
human emotional bias, focusing solely on the observed stock price movements.

A potential downside of using price development as an indicator for the sentiment
score is that not every positive news title necessarily results in a significant price
change. For example, headlines like "Disney Park welcomes local artists for a week-
end for creative workshops” or ”Apple unveils new eco-friendly packaging initiative”
are surely positive messages, but unlikely to cause measurable changes in stock
prices. Considering this, the previously mentioned method for calculating the sen-
timent score may seem unfitting, as such observations could lead to an inconsistent
dataset. Nevertheless, we still decided to utilize this method because the purpose
of the model is to benefit from price changes in the stock market, where market
sentiment plays a bigger role than the sentiment of the text. It is important to
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expose the model to such instances, as they will also appear in real-world scenarios.
Therefore, it was decided to keep such instances in the dataset.

The score is expressed as the percentage difference in price development between
the time periods ¢; and ¢;,1, based on the closing price at the publication time ¢,.
The formula used in the implementation relies on the Rate of Return, as shown in
Equation . The function Close(asset,t;) ideally returns the last known price of
the requested asset at the exact minute of ¢;. However, due to the opening hours of
the stock exchange, there will be instances where minute-level price data is missing.
To address these gaps, the functions Closer,s; and Closeye,; are employed. The
Closerqs function returns the last known price at the publication time, while the
Closenes: function provides the next known price of the stock after a certain time
period.

Closenegi(asset, t;yq) — Closepq,s(asset, t;)

(5)

Ret tt;) =
eturn(asset, t;) Closerqst(asset,t;)

Different lengths for these time periods were evaluated, ranging from one hour to
days. When a post contains genuinely new information, it is highly likely that the
market, following the EMH (see Section , will reflect this almost immediately
in the stock price. Considering this, it seems rational to keep these time periods
relatively short. For other types of articles, such as in-depth company analyses and
future prognoses, the sentiment of the post may be reflected over a longer duration,
potentially up to a year, making it challenging to trace the effect back to the original
post.

Another drawback of considering the return of the asset as the only factor for the
target value is that this completely ignores other market factors, as described in
Section[2.1.6. In order to prevent the models from being influenced by these factors,
a variation of the return, known as excess return is employed, which isolates the
asset-specific performance. After its role model the excess return will be calculated
by our PriceService as shown in Equation [4]

During the calculation of the CAPM (see Eq , values such as the risk-free rate,
the beta of the company, and the market risk premium, needed to be determined.
The following paragraphs outline the sources and the rationale behind the decision
made for obtaining these values.

As the source for the beta of a company, yfinance is used, instead of calculating the
prevailing beta at the specified time ourselves. This comes with the limitation that,
for historic observations, the current beta will be used, which might be outdated,
especially for companies that have undergone significant changes.

The benchmark index used for the calculation of the market risk premium is con-
figurable, where QQCH is set as a default since this resembles the NASDAQ-100
Index@®), which is the same index as we used for the selection of our assets. Its

Yhttps://finance.yahoo.com/quote/QRQ/ - QQQ ETF resembling the NASDAQ-100 In-

dex®)


https://finance.yahoo.com/quote/QQQ/
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return will be computed over the same period and in the same manner as the stock
return (Eq [f).

RiskFreeRate(t;) = (1 + AnnualRateti)(?)%e;;D;‘l) -1 (6)

Also for the risk-free rate, the period of the investment needs to be considered,
which is done by Equation [6] For this, the annual rate of a bond which is considered
risk-free is broken down to the duration of the investment. The rate considered here
is the one that was current at the time of the news publication. As a source for
the risk-free rate, either a static CSV file containing the 4 weeks coupon equivalent
treasury bill rate from 2002 until November 2024, provided by the U.S Department
of Treasur, or the 13 Week Treasury Bill ("IRX) bond accessed via yfinance. The
PriceService attempts both options as fallbacks, with the execution order specified
in a list of its constructor. Both of these bonds have a maturity of less than one
year, making them suitable for our short-term investment approach, where trades
are not expected to exceed a holding period of one day.

In Classification of financial markets influencers on Twitter |Almeida and Sabino
(2022) also relied on the market return for analyzing the sentiment of tweets of po-
tential influencer and their correlation to the price development. Unlike the previous
approach that considers excess return, this study focuses solely on the total return
of the stock, without accounting for external factors. For their calculation, they
used the timeframe of one day. This choice is likely restricted due to the limitations
of the data provided by yﬁnancﬂ which offers 7day as the most specific interval
for historical data. This also has the consequence of not being able to use the exact
time of publication for their calculations.

Missing the exact publication time of a news event can significantly affect the ac-
curacy of the market sentiment score. It is important to capture the moment of
publication as closely as possible since news tends to reflect quickly in price move-
ments (see Section [2.1.7). The largest price shifts often occur shortly after publica-
tion. Therefore, in order to isolate the effect of the news from other factors, it is
crucial to have a data source providing fine-granular price data. This data, covering
prices within one trading day, are called intraday prices and is often structured in
so called candles, containing the first (OPEN), highest (HIGH), lowest (LOW), and
last (CLOSE) price and traded volume during an interval an Hence, an ideal source
of data for this purpose should meet specific requirements, including price data at
a Imin granularity and access to historical intraday prices.

The service Alpha VantagerI offers a developer-friendly and enterprise-grade API for
financial markets. By offering free API access to a majority of its endpoints, the
Boston-based company has gained popularity, especially under academic researchers.
They are one of the only services providing historic intraday data, up to the year

2Onttps://home.treasury.gov

21Python library offering an interface to Yahoo!®finance’s market data https://pypi.org/
project/yfinance/

“’https://www.alphavantage.co/


https://home.treasury.gov
https://pypi.org/project/yfinance/
https://pypi.org/project/yfinance/
https://www.alphavantage.co/
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2000. With available intervals of Imin up to 60min it is feasible to get the exact
minute as long the market was not closed during that time. The regular trading
times are between 9:30 AM to 4:00 PM US Eastern time. By considering also trades
during the pre-market and post-market, AlphaVantage extends this range from 4:00
AM to 8:00 PM.

The intraday endpoint returns the price data in chunks, covering all available min-
utes within a specified month for a given company. For calculating the sentiment
score of a news article, only up to two of those minutes will be utilized. The re-
maining minutes are not required for the calculation, but potentially be of relevance
for other instances. To optimize performance and reduce unnecessary requests, a
cache is introduced, since the requests are the primary bottleneck in the calculation
process. This approach is particularly important in the free tier, where the number
of requests is capped.

The intraday endpoint returns the prices in chunks of all available minutes within a
specified month for a company. For the calculation of the sentiment score of a news
article, only a maximum of two minutes is required for this data. The remaining
minutes will not be considered for this calculation, but will probably be of relevance
for other instances. To avoid unnecessary requests, a cache is introduced, since the
requests are the main bottleneck of the calculation. This approach is particularly
important in the free tier, where the number of requests is capped.

In order to handle the delegation between making requests, caching, and retrieving
items from the cache, the wrapper AlphaVantageClient was implemented around the
required endpoint. Its cache is persisted in CSV files, where each asset has its own
file, which will be loaded lazily on demand. The method get_price will fetch prices
on demand if they are not cached yet. By calling is_cached the corresponding file of
the asset will be read as a pandas. DataFrame, if it exists and hasn’t been loaded yet.
As the cache is indexed by the date, a quick search for the minute of interest should
be possible. Keeping in mind that there are not prices for every minute and the
function Closeye,: and Closer s will also consider alternative minutes, the search
selection will be extended by the duration of a weekend, which is the maximum
usual time period where data will be missing When minutes within this selection
can be found, the cached data could be used. However, if none of the retrieved
candles fall within the same month as the requested minute, making an additional
request might still be useful, to gather data from the requested month.

New price data will be obtained by requesting Imin intervals from AlphaVantage’s
TIME_SERIES_ INTRADAY endpoint. After reformatting the retrieved data to the
same format as the cache, the updated cache will be persisted to the disk. Since
the returned prices are adjusted close prices, the PriceService does not need to
account for stock splits. However, when using the cached intraday prices over a
longer time, it is important to ensure that no recent stock splits have occurred for
stocks with previously saved price data. In such cases, the cached prices must either
be manually adjusted for the split or fetched again.



3 DATA 29

After taking those steps, it can now be assumed that a candle close to the requested
point in time ¢; can be found in the cache. For this the closest row to ¢; and its time
difference At is determined. If At exceeds a defined tolerance, a ValueError will be
returned. For cases where At is still tolerable, an alternative point in time will be
determined. As defined in Equation [5], the last known price will identified for ¢; and
the next known price for ¢;,; If the index of these exceeds the boundaries of the
DataFrame, a request to AlphaVantage will be performed with the expectation of
filling these gaps.

3.3 Data Cleaning and Sampling

After the previous steps, the data are ready to be tested for the first training. To
achieve more stable and reliable results, additional processing is required to ensure
this. In these steps, the data will be purified from invalid values, but also selected by
quality criteria. To produce more generalizable and balanced predictions, train-test
splitting and different sampling strategies are applied. This workflow is executed by
the data_split.py, which process is visualized in Figure [6]

[ Remove NaN Values ]

GoTTTTTTTTeTme ; """"""""""" :

Filter Publishers

& ______________________ !

[ Filter out outliers ]
Y
Train Test Split
(while maintaining same distribution)

v v v
Sample using
Sample by n Groups ] [ Augmentation Sample by Borders

Figure 6: Visualization of data_split.py filtering, splitting and sampling the ob-
servations.
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3.3.1 Data Quality

The quality of data plays a big role in how well a model is able to fit on a task.
This goes so far that poor quality of data can prevent the model from learning the
task altogether or introduce biases (Budach et al., 2022; Fiona Zhao et al., 2024).
In order to ensure a good model convergence the used training data needs to fulfill
certain quality criteria.

A key criterion for effective model convergence is the recency of the subject in the
article. Since the sentiment score is based on the subsequent price development,
it is substantial for the news to have an impact on the stock market. Hence, it is
important that the topic of the news is about recent developments and not a report
about how the stock price changed due to a prior event. Following the principle of
the Efficient-Market Hypothesis (see Section [2.1.7), it can be assumed that the new
relevant information will be reflected rapidly on the asset price, making the first hour
the most significant. Subsequently, even a one-hour delay in publication compared
to other sources can disrupt the sentiment score, as it fails to fully capture the price
development anymore. Therefore it is advisable to prioritize publishers known for
their prompt dissemination of news.

Another criterion relevant to our training purpose is that the meaning of the news
should be already recognizable by the title. Since the predictions are based solely
on the titles, these should ideally contain as much information as possible. Any
information missing there can not be considered by the model. This can be especially
fatal for news titles, that obscure, misrepresent, or overdramatize the information.
A substantial number of publisher tend to have clickbait titles to adapt their articles
for Search Engine Optimization (SEO). These titles intentionally omit important
information and are designed to attract the reader’s attention, motivating them to
visit the entire article. Consider the following examples of titles that showcase this
style of article:

e 710 Stocks You Can’t Afford to Miss”
e "Is STOCK a Buy or Sell?”

Since the crawling process for the URLs relies on a search engine, it is prone to
picking up these SEO-optimized articles. Additionally, the publisher of such articles
often has a high output. As a consequence, this kind of news represents a high share
of the crawled data.

When having a large volume of articles, manually evaluating the quality of news ti-
tles becomes challenging. To accelerate this process a model could be employed for
categorizing the news type or assessing a quality measure. Due to time constraints,
an alternative approach was chosen, relying on metadata saved alongside the gath-
ered articles for the data quality selection process. One attribute of the metadata
that is most likely to provide the highest information gain for distinguishing data
quality, besides the text, is assumed to be the publisher of the article. It can be
assumed that a publisher with high-quality articles will generally produce quality
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content, and vice versa, suggesting little variation in quality within a publisher.
When supplied with a list of publishers known for quality articles, this can serve
as a basis for selecting a high-quality dataset. During the crawling process, articles
from over 275 publishers were gathered. Evaluating the quality of their articles for
each of these publisher can be tedious. Therefore, we prioritized publishers based
on the number of articles gathered in this process. The suitability of a publisher
was manually annotated by iteratively going through a list sorted by articles per
publisher. For each publisher, several samples were viewed and rated by how well
their titles represent the actual content. Another criterion for the exclusion of pub-
lishers was articles reporting on recent price movements and their origins, as these
will no longer affect the price in most cases. This process was stopped after selecting
8 publishers, since all remaining ones had fewer than 200 gathered articles.

Additionally, quality control was conducted based on the calculated target values.
For events where a price in tolerable distance could not be determined, NaN values
were assigned. These instances are removed to avoid uncertainties in the market
sentiment scores. To further enhance data quality and enable more stable predic-
tions, extreme values were removed. This was achieved by calculating the z-score for
all observations and excluding outliers with z-scores exceeding a specified threshold.

3.4 Sampling

Initial training results in the early development stage indicated a bias towards neu-
tral observations. This is often the consequence of an imbalanced dataset, as shown
in Image [9] The imbalance of this task directs the model to learn that a substantial
share of the error can easily be minimized by predicting values around 0.5. As a
consequence, the model tends to avoid exploring more extreme values, given that
these represent only a small fraction of the dataset, contributing minimally to the
overall error. This will lead to a distribution of the prediction values, as it can be
seen in Image

To address the issue of imbalanced data, a version of the dataset is created with a
more balanced distribution of target values. This was achieved by employing various
sampling strategies with the aim of giving minority classes a weight comparable to
the majority class. However, as these strategies reduce the overall size of the dataset,
additional techniques are applied to augment samples for the minority group.

3.4.1 Splitting the Data

Before any sampling, augmentation, or training is done, it is advisable to put a
test set of the data aside. The test does not require to be uniformly distributed, it
should rather represent the original population of the dataset. For such a case it
might seem sufficient to use the Simple Random Sampling method. Due to the high
frequency of neutral observation, this might lead to a deviating population for the
corner cases. To ensure a similar as possible population, a stratified approach will



3 DATA 32

1400 4

1200 4 8007

1000 A
600

800

600 4 400 4

400
200 A

200

-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03 0.0 0.2 0.4 0.6 0.8 10

Figure 7: Training Data Figure 8: Predictions of the Model
Figure 9: Imbalanced Dataset Problem

be applied here. The range of the target column will be divided into 10 strata, each
with equal intervals. Out of every of these strata 10% will be randomly drawn for
the test to accurately represent the distribution as much as possible In addition to
the test set, a raw version of the training set will also be saved to the disk before
any further sampling is applied.

3.4.2 Creating Sampled Datasets

The stratification is achieved by programmatically defining boundaries based on
the target column, which can be specified as a parameter. This process involves
establishing truth conditions, determining which z; from D has a value for column
¢ between two defined boundaries for each boundary group b (Eq .

condition;, = I(x; € D A lower, < z;. < upper,) (7)

These conditions will be used to annotate each instance with a label indicating
each boundary group, allowing for later grouping by these labels. As stated in
Section [2.2.1 the implementation of stratification strategies can vary. For this thesis,
two different versions were integrated: (1) Automatically dividing the existing range
of the target value into n equally sized interval groups, ensuring that the entire range
of the distribution is represented. (2) Relying on boundary values that are predefined
by the user, allowing a sampling approach based on the sentiment classes and their
borders.

When a sample_size is defined, these methods will sample from the dataset; oth-
erwise, all instances will be included in the strata, which can then be used for more
complex sampling. For the sampling process, it can be specified whether oversam-
pling should be allowed. In order to prevent excessive oversampling, a minimum
length for a stratum to be considered, can be specified.

Drawing from the stratified groups can be approached using several strategies. One
implemented approach determines the strata with the fewest instances and caps



3 DATA 33

all other groups to this size. The aim is to have as many observations as possible
from minority groups, while not disproportionately representing the remaining. A
minimum length can be specified to avoid that an underrepresented stratum, only
containing a few instances, leads to a small dataset. A more simple strategy is to
randomly draw across the whole raw training set, effectively reducing it to a smaller
subset. In this way it can be used as a means of comparison, to evaluate a sampling
strategy against a raw version of the dataset of the same size.

When a certain size for each stratum is required, this can be achieved by specify-
ing a desired amount. Often, the minority groups might not have as many sam-
ples available as desired. In order to address this problem, oversampling can be
used. However, its usage has to be chosen with care, since it can lead to over-
fitting, through duplicating existing instances multiple times without adding new
information. Therefore, another method was integrated into the sampling process,
which increases the dataset size. By employing data augmentation, modified in-
stances based on existing data can be introduced, overcoming the limitations of
oversampling. Using data augmentation modified instances based on existing can
be introduced, thereby overcoming the limitation of oversampling.

To evaluate the most effective sampling strategy, the data_split.py script gener-
ates multiple dataset versions based on the described techniques. One version is
grouped into ten equally sized intervals of the target variable, with samples drawn
uniformly according to the size of the smallest group. Another version augments this
approach by drawing 300 samples per group, compensating for missing data through
augmentation. Additionally, a dataset is created using four predefined group bound-
aries for the target variable, again sampling uniformly based on the smallest group
size. Finally, a randomly sampled dataset of comparable size serves as a baseline
for comparison.

3.5 Characteristics of the Dataset

The raw version of the dataset contains over 59,000 news articles from 275 different
publishers, including 9,554 articles without specified tickers, 32,438 articles associ-
ated with exactly one ticker, and 17,000 articles mentioning at least two tickers.
These multi-ticker observations could be particularly valuable for training models
to predict the impact of specific news on different assets. The dataset spans arti-
cles published between 2004 and 2024, with a focus on more recent articles. The
distribution of publication years is shown in Table

Year | 2024 | 2023 | 2022 | 2021 | 2020 | 2019 | 2018-2015 | 20142004
Share | 46.6% | 24.4% | 8.9% | 5.6% | 3.9% | 2.9% 5.7% 1.9%

Table 1: Distribution of the Publication Years

The test version resulting from our data pipeline contains 2,860 observations. By
employing an LLM-assisted sampling process its range of target values is uniformly
distributed. Instances, which are augmented versions of others, are marked with an
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augmented flag and can be traced to its original through its identifier. The test set
consists of 308 instances and does not contain any augmentations. Its distribution
represents the one of its original population. As target variables, the subsequent
stock price developments are available over three different periods (1, 12, and 24
hours). They are either specified as Rate of Return or Excess Return.
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4 Methods

This chapter outlines the processes and techniques used to train the model. Besides
defining the goals and procedures during fine-tuning, it also covers the implementa-
tion and integration of augmentation methods to mitigate overfitting. Additionally,
other ML operations such as hyperparameter tuning and the logging of metrics and
models are examined. Finally, it introduces custom metrics, which were implemented
for the evaluation of the model.

4.1 Data Augmentation

This section provides an overview of the implementation of the augmentation tech-
niques, described in Section [2.2.6. Example outputs of the different techniques can
be seen in Table 2 Additionally, the section examines how these methods can be
integrated into the data or training pipeline, highlighting the specific advantages
they offer at each stage.

Original Apple is facing delivery issues for the new iPads

Character level | Appel is facing delivery issuws for the new iPads

Synonym replacement | Apple is confront delivery supply for
the new iPads

Word level Random insertion Apple is issuance facing delivery issues
for the new iPads
Random swap iPads Apple facing delivery issues for
the new is

Apple is facing issues for the new iPads

Random deletion Apple is facing delivery for the new

iPads

Back-Translation Apple faces delivery problems for the

Document level new iPads

iPad Delivery Delays Continue to

Generative Plague Apple Fans

Supply Chain Crisis Hits Apples Latest
iPad Launch

Table 2: Various text augmentation methods on the data space with examples at
different levels for the example sentence Apple is facing delivery issues for the new
1Pads.

The augmentation on the character level is implemented by introducing noise that
mimics typical user mistakes while typing on a keyboard. Random words from the
titles are selected, and individual letters are altered. This is achieved either by
swapping the position of two neighbored letters to simulate typos from fast typing
or by replacing letters with others located nearby on the keyboard. For replacement
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a keyboard matrix is used, where a random vector is added to the index of the
original letter, producing a nearby character.

For the word level augmentation, multiple methods were implemented, including
Random Deletion removing arbitrary words, Random Swap changing the position
of two random words, Random Insertion adding synonyms at random positions and
Synonym Replacement substituting words with their synonyms. The synonyms are
being retrieved from synsets provided by WordNet, which is a large lexical database
(Miller et al., [1990).

For the phrase level, no explicit implementations are provided in this work, as the
text data used here mainly concentrates on titles and short social media posts,
which often do not include more than one sentence. This makes the Phrase Level
for our aspect quite similar to the least granular level: Document Level. This level
of augmentation is implemented using translation-based and generative approaches.

The process of the back-translation is automated using Neuronal Machine Trans-
lation (NMT) models. The University of Helsinki provides with the open-source
machine translation OpusMT a high quality solution for such a problem (Tiede-
mann et al., 2023; Tiedemann and Thottingal, 2020). They trained several NMT
models using Marian, offering over 150 different languages and their combinations.
Marian is an efficient and free framework written by the Microsoft Translator team,
which can be used for training and deploying NMT models (Junczys-Dowmunt et al.,
2018). Using the MarianMT from Hugging Face’s transformers library, these model
can be converted to a PyTorch format, enabling their use within the Hugging Face
ecosystem. Each of these models is trained for a specific translation direction be-
tween two languages. Since the back-translation requires both of these directions,
two models need to be loaded. As a part of this project, a BackTranslation service
was implemented that lets users choose the source language and an intermediate
language. Based on this, the corresponding OpusMT models are automatically lo-
cated and loaded, during the initialization of the service. These models are then
used in the augment method to handle the two-step translation process.

It is important to note that the back-translation technique does not guarantee varia-
tions of the original sentence. In some cases, it can produce the exact same sentence
as the original, influenced by the nuances of the text, languages, and translation
models.

As described in Section [2.2.6, the generative approach for augmentation can be ap-
plied using various methods. Since the process of labeling our dataset is already
automated and the missing instances are concentrated at the extremities, we are
focusing on the Data Creation method to generate additional instances for the
minority groups. Moller et al. (2024) addresses the method of Data Creation fur-
ther to compare the performance of models being trained on augmented data with
those trained on human-labeled data across various NLP tasks, including Sentiment
Analysis. Following its approach, the class LLMAugmenter was implemented to au-
tomate this process. The user can specify which model to use for augmentation and
the number of augmented versions to generate per instance. Any PreTrainedModel
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suitable for text generation tasks, which is available on the Hugging Face Hub, can
be selected as a model.

As a default, we decided to use Llama-2-7b-chat-hf, which is the smallest available
size of Meta’s LLM (Touvron et al., 2023). It has a permissive license called the
Llama 2 license, allowing both educational and commercial use. At the time of
its release, it was one of the best performing open-source models, with its largest
variant being competitive with ChatGPT as of the publication date.

In order to get this model to fulfill the task of augmentation, its instructions are
described in the task prompt. This prompt, concatenated with the instance to
be augmented, will be passed as a user message to the model. The task prompt
also includes the sentiment score of the instance and a factor defining how many
augmented versions should be created. The sentiment score is added to ensure that
the model generates instances expressing a similar sentiment. Additionally, there
is a system prompt, describing the desired behavior of the model and providing
some guidelines, including the rule that the resulting text should differ from the
input text. Both prompts are illustrated in Fig[10] After processing these prompts
through the pipeline, the augmented versions of the instances will be extracted
from the model’s answer using a regular expression. This process can be executed
for multiple instances at once using the method augment_batch. The new instances
will be labeled with the same target and post identifier as their original counterparts.
Furthermore, an augmented flag will be added, indicating that these are augmented
versions.

System Prompt:

You are an advanced AI writer. Your job is to help
write examples of text with a certain sentiment. The
examples should have the aim to differ from the input
text. Sentiment is represented as a score between 0O
and 1, where 0 means it has a very negative effect
on the stock market price and 1 means it has a very
positive effect on the stock market price.

Task Prompt:

Based on the following news article title which has
a {label} sentiment score, write {factor} new similar
examples in the style of a news title, that has the
same sentiment. Separate the texts by newline.
Text:

{text}

Figure 10: System and Task Prompts for the Data Augmentation. Modified version
of [Mgller et al.| (2024) prompts.

A technique that operates in the feature space by adding noise was introduced
with NEFTune. An adaptation of this approach was also implemented into Hug-
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ging Face’s transformers.Trainer, and can be activated by setting a value for
neftune_noise_alpha in the TrainingArguments. This factor will determine the
magnitude of the noise added to the embedding, normalized based on its dimensions.
The generated noise will be spread evenly between the positive and negative limits
specified by the magnitude.

4.1.1 Integrating Data Augmentation into the Data Pipeline

Data augmentation can be integrated at various stages of the process. By inte-
grating the augmentation process into the data pipeline, a dynamic approach can
be implemented, taking advantage of the knowledge of the entire dataset. Such a
method enables filling data in certain ranges of the target value, achieving a more
uniform distribution. For this reason, the augmentation step was embedded into the
sampling process. In this process, our data is already present in stratified popula-
tion groups based on the market sentiment score. Depending on the sizes of these
groups, a desired size will be determined, ensuring consistency over all groups.

Algorithm 1 Get Samples By Augmenting
function GETSAMPLESBYAUGMENTING (groups, desiredSize, factor)
augmenter = Augmenter(factor)
samples = []
for each group in groups do
available = min(desiredSize, len(group))
remaining = max(0, desiredSize - available)
samples.add(group.sample(available))
if remaining > 0 then
amountToAugment = ceil(remaining/factor)
amountToAugment = min(available, amountToAugment)
samples = group.sample(amountToAugment)
augmentedSamples = augmenter.augment (samples)
amountAugmented = min(len(augmentedSamples), remaining)
augmentedSelection = augmentedSamples.sample(amount Augmented)
samples.add(augmentedSelection)
end if
end for
return concatenate(samples)
end function

The algorithm shown in (1] will evaluate for each group if and how many more ob-
servations are needed to reach the desired size. For creating new versions of the
instances an Augmenter was initiated with a defined factor f, which specifies how
many new altered variations should be created for one instance. Should a sub-
set require additional observations, a maximum of 1/f of the amount of remaining
instances will be sampled of this group, in order to augment them.
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Besides being able to exploit the global knowledge in a dynamic approach, it also
has the advantage of being more efficient. Given that there is no training happening
in parallel, no additional model needs to be loaded besides the one used for the
augmenting. This leads to fewer conflicts in the usage of the available memory and
a faster execution of the training steps, compared to integrating the augmentation
into the training pipeline. It is also possible to generate multiple augmentations
of one instance with a single prompt, which can later than be redistributed in the
dataset. Once the pipeline is executed and the dataset saved, there will be no more
augmentation overhead for the training, until another dataset shall be created.

The downside of this approach is, that the model will see the same instances with
every epoch since the augmentations already happened in the data pipeline. This
might eliminate one of the desired effects, which is preventing the model from mem-
orizing the dataset, instead of generalizing.

Since a train-test split has not happened yet, it is important to ensure there will be
no overlapping of the augmented instances and original versions between the train,
validation, and test set. To guarantee that, a custom train_test_split method was
implemented, which splits the data into two non-overlapping subsets, based on a
specified column. For this case, a post identifier is being used, which is unique for
every original instance, while the augmented versions also use the identifier of the
original posts.

4.1.2 Integrating Data Augmentatiom into the Training Pipeline

When integrating the augmentation into the training pipeline, the process will hap-
pen Just-In-Time during the training, for every learning step. For this the augmen-
tation needs to happen, between the processing of the training batches Trying to
intervene during this step in the transformers.Trainer class would not work for
most methods, since the text is already tokenized at this stage. This would eliminate
all methods that operate on sentence or word level and do not use this tokenization.
To enable it to work for all augmentation methods, it needs to be implemented at a
stage, where there was still no tokenization applied to the instances. Before imple-
menting the data augmentation into the training pipeline, the tokenization already
happened during the preprocessing of the loaded dataset. A stage during which
intervention is still possible would be when the Datal.oader retrieves the instances
from the dataset. For this a custom class of torch.utils.data.Dataset was imple-
mented, with the added functionality of augmenting and tokenizing its items, called
TextAugmentationDataset. Besides the dataset and the name of the base model,
which is required to ensure the correct tokenization, it takes an augmentation type
and probability. It will be initialized with an yet not tokenized text dataset. The to-
kenization takes place at the end of the __getitem__ method, after the original text
was passed to the method augment_text. This method might return an alternated
version of its input, depending on the specified probability threshold. Based on the
selected augmentation type, the transformation will be delegated to the according
function.
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While this integration of the augmentation does not increase the amount of training
instances per epoch, it still offers the advantage of generating different versions of
the instances with every epoch. This forces the model to learn more generalized
patterns rather than memorizing the original dataset since there can be always new
feedback, based on unseen data, to adjust the weights. When the augmentation
method is properly configured, its effect can persist indefinitely, ensuring that new,
unseen data continues to be available at each epoch, even after countless iterations.
The biggest drawback is that it can be rather resource-expensive, depending on
the applied augmentation method, which slows down the training process. While
conventional methods might only add a marginal computation effort, it is especially
demanding for Al-assisted methods like BackTranslation and Data Creation by LLM
Prompting. Most LLM-assisted methods may already conflict with the remaining
available memory occupied by the weights of the loaded training model. Including
the inference of the augmentation into the training process, would increase the
training time significantly.

In order to fully leverage data augmentation’s ability to overcome overfitting, a
hybrid approach was implemented, integrating augmentation into both the data
and training pipeline. Considering that the disadvantages of the integration into
the training pipeline do not apply to the most conventional augmentation methods,
these strategies will be implemented into the training process. While the resource-
intensive LLM-assisted methods already take place during the data pipeline.

4.2 Fine Tuning

In this subsection, all procedures and considerations involving the fine-tuning will
be described. Fine-tuning is the part of the training, where a pre-trained model is
specialized by further training on a downstream task. This downstream task often
diverges from the text generation task learned during pre-training. Determining the
stock development can either be done through a classification task, which categorizes
the news to be followed by a bearish, bullish, or neutral market reaction, or a
regression task aiming to measure the impact of the market movement.

The target value of our downstream task is a market sentiment score, which expresses
the reaction of the market. The reaction is measured by investigating the subsequent
price movements of the involved stocks. Even though the sentiment score could have
been converted to classes by applying thresholds, it was decided to train the model as
a regression task directly on the target value for several reasons. Firstly, the target
value itself is a continuous number, providing the ability to differentiate between
stronger and weaker price changes. Another challenge would have been finding
the right thresholds for dividing the sentiment scores into the sentiment classes, as
there is no clear boundary between neutral and price-affecting observations. Using
a regression prevents cases falling into uncertain territory between being classified
as bullish, bearish, or neutral from affecting the model convergence.

In order for BERT to be fine-tuned for a specific downstream task, adding a sin-
gle additional layer is sufficient. For extending the model with the additional
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class BertForSequenceClassification(BertPreTrainedModel) :
def forward(self,..., labels=None):

if labels is not None:
if self.num_labels ==
# We are doing regression
loss_fct = MSELoss()

Figure 11: Implementation of regression functionality in BERT’s Sequence Clas-
sification. Source: https://huggingface.co/transformers/v3.0.2/_modules/
transformers/modeling_bert.html#BertForSequenceClassification

layer, Hugging Face offers various classes for different task types in their trans-
formers library (Wolf et al., |2020). The one that we employ for our training is
the AutoModelForSequenceClassificationlﬂ. Using Hugging Face’s AutoModel
classes enables a more modular implementation for future models. Inside the con-
structor, it delegates the initializing to the implementation of the specific model.
While the name suggests a classification-only use, this class is also widely utilized
for regression tasks. This mode is limited to univariate regression and can be enabled
by setting the number of labels to 1. The forward method, as demonstrated in the
Code Snippet [11], sets the loss to a MSE in that case, commented as regression.

Under the approach of scaling it is understood to transform columns of the dataset
into a similar range. This method can be applied to the input data as well as the
output variables. While the processing of the input text is already done by BERT’s
tokenization and embedding, there are several reasons why scaling the target values
can be advantageous. An advantage of scaling the target value is that it enhances the
comparability of results across different models and datasets. When dealing with
datasets that lack a defined maximum, the individual maximum can have a high
impact on the magnitude of measures like the mean squared error. While having a
scaled target value in the range of 0 to 1, the highest possible error is capped at 1,
assuming the model’s predictions do not exceed the range of the scaler.

A more crucial reason to use a scaler is to align with the output activation of the
models. Activation functions are used throughout the entire model to transform
the output of each layer to a certain range, to ensure a more stable training pro-
cess (Nair and Hinton, 2010). Several activation functions, commonly used for the
logits of the model, fit within a 0 to 1 range. In order to fully exploit the avail-
able range and avoid having target values that are impossible to predict with the
chosen activation layer, it is necessary to apply normalization to the targets. While
BertForSequenceClassification does not apply any activation to its logits by
default, it might be beneficial to apply one depending on the task type.

Zhttps://huggingface.co/transformers/v3.0.2/model_doc/auto.html
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Additionally, there are other factors by which scaled target values can enhance the
model’s convergence speed and accuracy(Bishop, [1995). One reason is that the
normalization prevents the calculated gradients from becoming particularly large
or small. It may also be favorable for the model layers to learn the concept of the
target value when it is on a similar scale as the inputs. Consequently, we utilized the
MinMaxScaler to scale our target values, with the goal of achieving optimal model
performance and comparability across different datasets.

4.2.1 WandB as MLOps Platform

In order to monitor the variations in model performance during training, it is es-
sential to track and visualize the results. One tool that offers such functionality is
Weights €& Biases (WandB)JP*Y WandB is a MLOps platform that can be utilized
throughout the entire lifecycle of a model. This spans from tracking initial training
experiments and hyperparameter tuning to deploying models for inference. WandB
provides cloud storage for saving results, enabling the collection of training data
from different machines without the need to set up a centralized service. This is
particularly useful for our case, as it provides the ability to view the outcomes on
the local machine via the web interface, while the training is executed on dedicated
servers. On this web service, all runs can be listed, filtered by their configurations,
and sorted by their metric values. Additionally, the metrics of multiple runs can be
visualized together in a single graph, providing a useful tool for comparison.

In order to incorporate WandB’s experiment tracking into the training process,
its Python library needs to be installed, which is also used for the authentication
of the account. After setting the project name in the environment variables and
configuring report_to in the TrainingArguments, the Trainer will automatically
log all metrics which are returned by the compute_metrics method. When it is
necessary to custom configurations along with the models and trainer’s metrics and
configurations, this can be achieved by passing these configurations when initializing
WandB.

We were particularly interested in analyzing the model’s performance on evalua-
tion data in relation to its results on the training data to gain better insights into
the impact of overfitting. However, by default, the Trainer class does not exe-
cute the compute_metrics method on the training data, effectively logging only
the loss metric during training. Therefore, we created a CustomTrainer inheriting
from Hugging Face’s Trainer class, which intercepts the training process. To avoid
causing any overhead during inference, we manipulate the compute_loss method,
where the predictions on the training set are generated. Since evaluations on the
train batches would result in fluctuating measure values, we only gather the predic-
tions and their ground truth values without computing any metrics at this stage. For
the actual metric computation, we override the evaluation_loop method. Here the
before-gathered values are passed to the compute_metric method and the results are

2https://wandb.ai/ - WandB’s MLOps platform
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logged before calling the parent class’s method to perform the usual evaluation. To
ensure consistency, the evaluation strategy is set to epoch in TrainingArguments,
guaranteeing that each metric calculation includes the same set of instances.

After completing the training process, the updated weights are saved to WandB’s
Model Registry, so that they can deployed and re-used for additional experiments.
This functionality is natively supported by the transformers library. However,
starting with version v4.46.0, changes in the library inadvertently broke the inte-
gration of WandB’s callback for saving models at the end of the training. To address
this issue, we submitted a Pull Reques adjusting the callback to be compatible
with the updated Trainer. As a result, users can utilize this feature with versions
of transformers either prior to v4.45.0 or from v.47 onward.

4.2.2 Hyperparameters

One of BERT’s contributions is that through its architecture and extensive pre-
training often only one additional layer is required for the fine-tuning on the down-
stream task. That already eliminates the need for adjustments for a lot of parameters
for the model structure. However, there are still several other parameters for the
training process to be tweaked to optimize the results.

One such parameter is the number of epochs, which defines how many times the
training set is passed through the model during the training. Increasing the number
of epochs provides the model with more opportunities to learn from the dataset, but
can also lead to overfitting (Murphy| 2012).

Each epoch consists of several batches. The amount of batches per epoch depends
on the batch size, which defines how many instances are presented to the model
before it executes the backpropagation, updating its weights. Due to the paralleliza-
tion capabilities of GPUs, a larger batch size might result in faster training but
also requires more memory. Smaller batch sizes on the other hand can potentially
improve the model’s generalization by providing more regular updates.

Using the learning rate, the pace of the training can be controlled, defining how
strong the model’s weights should be updated to the direction determined by the
optimizer based on the loss function. Employing higher learning rates accelerates
convergence but can also cause the model to overshoot the optimal solution. While
lower learning rates mitigate this problem by making smaller, more precise updates,
they still bear the risk of getting the model weights stuck in a local minimum,
from which the momentum is too weak to escape. In order to benefit from both
of these aspects, the learning rate can be applied dynamically. By default, the
TrainingArguments set the scheduler of Transformer’s Trainer to decrease the
learning rate linearly towards zero over the course of the training process. In this
way, the initial training phase can be used for exploring global minima, before
settling into a local minima using a more precise learning rate.

Zhttps://github.com/huggingface/transformers/pull/34720
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Since the initial weights of the classification head are random, they may not be stable
enough to make strong training adjustments based on them right away. Therefore, it
is advisable not to start immediately with the specified learning rate. The warmup
phase schedules the training to begin with smaller, more stable updates. Using the
warmup ratio, the number of training steps used to build up the learning rate
from zero to the desired level can be defined. While starting with smaller updates,
the model has more time to generalize from the training data before making large
adjustments. However, if the warmup ratio is set too high, the model might have
trouble converging.

The weight decay, also called L2 penalty, is a regularization technique used to
prevent overfitting(Krogh and Hertz, [1991). To achieve this, the L2 norm of the
model weights, scaled with the weight decay, is added to the loss function. Through
this way the optimizer is encouraged to keep the weights small, avoiding exploding
gradients. This is a way of keeping the model simple, without the need to make
cuts to the model’s parameter count. Since the complexity of the model is often the
reason for overfitting, applying a weight decay to the loss function can enhance the
model’s ability to generalize.

The augmentation type is a parameter in our TextAugmentationDataset that
specifies whether and which data augmentation method should be applied during
training. All listed methods in Table [2| can be selected, with the exception of the
Generative approach, since it is too resource-intensive to utilize an additional LLM
model during training. The probability of applying these augmentations during
training can be controlled through a separate parameter augmentation_prob, al-
lowing fine-tuning of the augmentation frequency.

The magnitude of the NEFTune augmentation on the feature space can be controlled
using the neftune noise_alpha parameter (Jain et al., [2023). This parameter,
already implemented in Hugging Face’s Trainer, adjusts the level of noise added
to the embeddings, helping the model to become more robust to variations in its
learned instances.

For most of these parameters, there is no universally optimal or correct value. There-
fore it is essential to determine which parameters are most suitable for a specific task
and dataset. This process of finding the best parameters in order to optimize a spe-
cific metric is called Hyperparameter Tuning. Finding these parameters manually
can be quite tedious, which is why various frameworks exist to automate this pur-
pose. In this study, we decided to use WandB’s hyperparameter search functionality
called Sweeps{j_gl One reason for the choice of this tool was to maintain consistency in
our MLOps workflow since we are already using WandB for Fxperiment Tracking.
Additionally, we found WandB’s interface and visualization capabilities to be more
intuitive and informative compared to other MLOps tools we had previously ex-
plored, which further supported our decision to adopt it for hyperparameter tuning.

The search space can be defined by specifying parameters in the sweep config.
There you can list every hyperparameter, which should be optimized, along with

26https://docs.wandb.ai/guides/sweeps/ - Sweep Docs of WandB
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the ranges of values to be considered during the tuning process. These can either
be specified by providing constant predefined values, or by defined ranges. The
distribution of such a range can be either a normal distribution, defined by its mean
and standard deviation, or a uniform distribution between two specified values, or
some transformations of these distributions.

Besides the search space, it is also required to define a method, for choosing from
the possible values of the parameters. Taking into account the size of the search
space and the overall goal, multiple strategies can be considered.

One of the simpler approaches is called Grid Search. By iterating over all hyperpa-
rameters and their defined range of values, it ensures that every possible combination
is evaluated. Depending on the size of the search space, the execution time can be-
come exponentially large. Assuming we would like to explore six different values for
each of the above stated parameters, this would already result in 262,144 training
runs. Additionally, its iterative nature could result in the evaluation of optimal hy-
perparameter ranges occurring at a relatively late stage. Therefore, it should only
be considered if the whole sweep can be expected to be executed in a reasonable
time.

A more suitable method for larger search spaces is Random Search. This strategy
will randomly draw from the specified distribution of the hyperparameters. In this
way, it is able to explore many diverse combinations in a short time. It can be
helpful for getting a quick overview of how each parameter might influence the
performance of the model. However, it does not consider these results in order to
choose parameters that achieve better training results.

An approach that makes informed decisions based on knowledge about its previ-
ous parameters and their results is known as Bayesian Search(Dewancker et al.,
2015). While the parameters for the first run are still chosen randomly, it will use
a probabilistic model to determine the parameters for subsequent runs. For these
runs, it will balance the trade-offs between exploration and exploitation based on
an acquisition function. During the exploitation phase, the goal is to maximize a
specified metric by selecting the parameter values within regions, that have demon-
strated a high likelihood of yielding promising training results. In order to prevent
the strategy from settling on initial parameters that appear optimal but might not
truly be the best, the exploration phase strives to discover new values. With the
aim of maximizing the knowledge gained from these new points, its probabilistic
model determines parameter values within regions with high uncertainty, In this
way, the Bayesian Search is able to reduce the search time, while employing a more
sophisticated approach of finding the best suitable parameters in fewer steps.

When using Bayesian Search, it needs to be defined in the sweep config, which
metric is supposed to be optimized by the scheduler. For the name of the metric,
every measure that will be logged can be specified. In order to prevent overfitting
it is advisable to choose an eval-metric. Whether its value should be minimized or
maximized is defined by the goal attribute. For example, minimizing metrics like
Mean Squared Error is common, while metrics like Accuracy should strive for the
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highest possible value. It is also possible to define a target, which functions as a stop
criterion to not start any further runs once it is reached.

The integration of this process is done by passing the defined sweep configuration to
a WandB agent along with an objective function. The task of the objective function
is to evaluate a resulting score for a certain run and its defined parameters. The score
must be logged in this method and should match the defined metric from the sweep
configuration. Since Hugging Face’s Trainer comes with built-in WandB support
for logging, there is no need to implement it manually. The only step necessary to
integrate it was to retrieve the specific config of this run from WandB. This config
is being used to dynamically set the parameters of the TrainingArguments and
our TextAugmentationDataset. A frequent problem that occurred during testing
was that runs consistently crashed after a while due to out-of-memory exceptions.
When running a resource-intensive process over a long time it is important to take
precautions to avoid memory leaks. Therefore, we ensure the CUDA cache is cleaned
after deleting the previous model and before starting with the new run.

4.3 Metrics

The fine-tuning of the model happens on a regression task. Common metrics there
are MAE, MSE, and R?, which were also used for the optimization of the model.
When it comes to comparing the model, these metrics are often less suited, especially
when using varying datasets. Depending on the task they can be less feasible to inter-
pret. Hence, some custom created metrics were added, in order to make the results
more comprehensible. All of the following listed metrics were implemented by in-
heriting from the torchmetric.Metric class. Its method update(preds, target)
processes and stores relevant information out of the prediction and its ground truth
values. The actual value will then be calculated by calling compute. Previously
stored information can be discarded with reset ().

4.3.1 DirectionAccuracy

This metric describes how accurately the model can distinguish between falling and
rising prices based on the corresponding posts. For the sake of simplicity, a post
is classified as reflecting rising or falling prices, if its return is above or below 0%.
When training models on a scaled version of the target data, the corresponding
scaled value of 0 must be specified when initiating the metric. The measure is then
calculated by counting the correct and total predictions and dividing them (Eq .

TP + TN __correct
TP+ TN+ FP+FN  total

(8)

Accuracy =

A prediction is counted as correct when it has the same true value for § > zeros.qeq
as its target for y > zeroscaied-
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4.3.2 SentimentAccuracy

The SentimentAccuracy is similar to the previous one but considers an additional
class representing neutral cases. Since the three classes bearish, neutral, and positive
can not be represented anymore as a boolean value, the predictions and targets will
be categorized into a numerical value, representing the three possible classes. The
classification works by comparing each value in the tensor to specified boundaries
(Eq @ Instead of the zero-point, there are now two threshold values, defining the
boundaries of the neutral cases. Unlike the fixed zero value used in DirectionAccu-
racy, the neutral boundary values for SentimentAccuracy do not have a fixed point
and must be selected based on the specific context or dataset.

0 if ¢; < threshold_left
classify(t;) = ¢ 1 if threshold_left < #; < threshold_right 9)
2 if t; > threshold _right

4.3.3 ProfitSimulation

The main purpose of the model is to support making profitable trading decisions,
which is why the ProfitSimulation metric was introduced. This metric simulates
trading actions based on the model’s predictions and calculates the profit using the
ground truth data.

If the model is trained on scaled values, the scaler needs to be passed during the
initialization of the metric. It will then be used to inverse-transform the values,
restoring them to their original state. Additionally, a threshold to determine when
a trade should be considered and a base amount to define the trade size can be
specified as parameters.

A prediction counts as bullish or bearish, when its absolute value exceeds the de-
fined threshold, indicating a position should be opened (Eq . This threshold is
specified as a percentual return and is set to 1% as a default. Theoretical profit
when predicting the right direction, is calculated by multiplying the target value
with a base amount (Eq . When the excess return is being used, it needs to be
considered that it does not express the actual followed return, but rather the ex-
pected price movement isolated from other extrinsic factors. Whether this amount
should be added as a profit or subtracted as a loss, will be determined by checking
if the prediction direction is the same as the one of the target value (Eq |12/ and Eq
. The overall simulated profit is then evaluated by multiplying all these variables
as shown in Equation The metric itself is expressed as an absolute number,
representing the total profit.

shouldOpen = |preds| > threshold (10)

theoreticalProfit = |target| x baseAmount (11)
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rightDirection = (preds > 0 A target > 0) V (preds < 0 A target < 0) (12)

1 if rightDirection (13)

profitMultiplier = ) ] S
—1 if not rightDirection

simulatedProfit = theoreticalProfit x profitMultiplier x shouldOpen (14)

It is crucial to note that this metric does not guarantee a model’s profitability, since

it does not consider slippage (see Sec [2.1.5).

4.3.4 AvgProfit

One limitation of ProfitSimulation is that its magnitude is influenced by the size of
the dataset it is evaluated on. When there are more potential trading opportunities
and the metric is expressed as a cumulative total, a higher number of simulated
trades will most likely result in a higher total profit.

Therefore the metric AvgProfit was introduced, building upon the calculation of
ProfitSimulation. Unlike ProfitSimulation it determines the average profit of the
total profit. For building this mean, the amount of opened positions will be consid-
ered, rather than the total amount of observations (Eq. Instead of expressing the
profit as an absolute value, its relative value is derived, which removes the influence
of the base amount.

simulatedProfit
openedPositions x baseAmount

averageProfit = (15)

These adjustments make the AvgProfit more suitable to be evaluated across different
datasets.
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5 Experiments

This section presents all experiments conducted to determine the optimal configu-
rations for the dataset, model, and training parameters. Based on their results, the
reasoning behind the chosen values and decisions is explained. Furthermore, the
final performance of the model is evaluated on our own dataset.

5.1 Hyperparameter Tuning Results

To find the most suitable configuration for the training processes used in the exper-
iments, several Sweeps were run on different datasets. All of these sweeps used the
same search space, whose boundaries and distributions are shown in Tabular

Hyperparameter Range/Options

learning rate 1x107° to 5x 1072 (log-uniform distribution)
per device train batch size | {4, 8, 16, 32, 64}

num_train epochs {3, 6, 12, 24, 48}

neftune noise_alpha {None, 1, 2, 5, 10, 15, 20, 25}
train_augmentation {None, SynonymReplacement, RandomIn-

sertion, RandomSwap, RandomDeletion,
Noise, BackTranslation}

train_augmentation_prob {0.1, 0.2, 0.3, 0.5, 0.6, 0.7, 0.8, 0.9}
weight decay {0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.8, 0.9}
warmup_ratio {0.1, 0.15, 0.2, 0.25, 0.3}

Table 3: Hyperparameter Search Space

It was decided to optimize the hyperparameter (HP) tuning on a different metric,
than the one employed for fine-tuning. Utilizing MSE was beneficial for training,
as it ensured more precise prediction. However, it is challenging to tell if an im-
provement in the error means, that the model is able to distinguish better between
the cases, or if the predictions are simply closer to the target value, without signif-
icantly impacting the outcome. Additionally, the requirement for the metric to be
differentiable for gradient-based optimization was a decisive factor. Since this rule
is no longer applicable for the hyperparameter tuning, it is possible here to select a
metric that is more meaningful for trading decisions. Therefore, it was decided to
perform the optimization on the ProfitSimulation metric.

To ensure that the sweep does not select the parameters based on overfitting to the
training data, the metric is evaluated on a different set. It is important here that
the evaluation is run on the validation set since optimization on the test can lead to
overfitting the hyperparameters.

Figure |12| presents the results of the hyperparameter tuning can be seen, as visual-
ized with WandB. Although the tuning process included parameters for the training
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Figure 12: Overview of the Hyperparameters and their results

pipeline augmentation, they were omitted in this figure and will be further investi-
gated in Section[5.6] The hyperparameter tuning was performed on multiple versions
of the dataset, varying in sampling and augmentation strategies. This section fo-
cuses on the results obtained from the dataset delivering the best results, which
were achieved through sampling and generative augmentation. Its results were an-
alyzed by considering the run with the best performance and examining the mean
accuracies, grouped by the unique values of each hyperparameter.

A majority of the learning rates fall within the range of 2e — 5 to 3e — 4. While a
few exploratory runs with higher learning rates were attempted, they did not yield
promising results. Nonetheless, the run achieving the best results has a learning
rate lying slightly above the majority. The number of training epochs settled to
values below 12 epochs, demonstrating BERT’s ability to generalize effectively in
a relatively short time. The reason for avoiding longer training periods is likely
indicating overfitting. The best results could be found in runs with 6 epochs.

For the batch sizes, a clear trend emerged when analyzing the mean accuracies for
each value, with smaller batch sizes consistently yielding better training results.
However, with a batch size of 32, the best result from the sweep run approaches the
upper limit of the search space for batch sizes. To ensure this batch size was not
chosen due to an insufficient number of runs exploring other options for the given
hyperparameters, an additional hyperparameter grid search focussing on batch size
was started, keeping all other values fixed. This sweep confirmed 32 as the best batch
size configuration while achieving significantly better accuracies (64.71%) than all
lower tested batch sizes (48.86%).

The evaluation of different warmup ratios exhibited that building up the learning
rate during the initial epochs leads to improved results. Increasing the learning rate
over a period of 20% of the total epochs achieves a performance peak, after which
the results begin to gradually decline. Analyzing the results of different weight
decays showed that any value lower than 0.8 yields better results than not using
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weight decay at all. The best performance was achieved with a weight decay of
0.4, starting from then the penalty outweighed the effect of regularization leading
to poor results.

For the alpha value of added NEFTune noise, no definitive conclusion could be
drawn. While values such as 10 and 20 deliver good results, it could not be proven
that they outperform the scenarios with no added NEFTune noise.

5.2 Setup

For all other experiments besides the hyperparameter tuning, the models were eval-
uated on a separate test set, which was saved during the creation process of the
train set and does not contain any augmentations.

For better reproducibility of the experiments, all training sessions relevant and shown
in these evaluations were trained with manually set random seeds for the model. To
keep track of these seeds, they were logged along with the other metadata. For each
experiment involving training three runs were executed, each with unique seeds and
a common group identifier. This approach provides a more reliable estimate of the
model’s performance, eliminating any uncertainties or overfitting due to randomness.
The group identifier can then be used to summarize the metrics of the individual
runs and display them in a box plot using WandB visualization.

For each dataset, there will also be a comparison with FinBERT in the same in-
stances. Before starting any training on a new dataset, the fine-tune script automat-
ically checks for an existing evaluation of FinBERT for this dataset and initiates
one if necessary.

5.3 Scaling

While the range of the target value does not strictly need to be between 0 and 1,
it can be beneficial for various reasons, as discussed in Section To evaluate its
importance, some experiments were executed with the same model configuration on
the same dataset, with the only difference being the scaling of the target value and
varying model seeds. The results, as shown in Figure demonstrate that training
with scaling consistently achieved notably better performance compared to models
without scaling.

The scaling of the target values also provides more stability during the training,
which can be seen when comparing the variances in the average profit metric be-
tween the two conditions. Without scaling, the average profit was 0.50563% with a
standard deviation of 0.098678, while with scaling, the average profit increased to
1.268% with a notably smaller standard deviation of 0.036182.
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Figure 13: Comparison between Training with and without Scaled Target Values
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Figure 14: Evaluation on different Sampling Approaches

5.4 Sampling Methods

To evaluate the best-performing sampling method, a hyperparameter search was
conducted for each dataset, to prevent any datasets from achieving better perfor-
mances due to more favorable parameters for its pattern. For the best result of each
of these sweeps, there were three models trained with varying seeds. The training
datasets were created through various sampling techniques, including no sampling,
stratified sampling by groups, stratified sampling by borders, and stratified sampling
assisted by augmentation. The process of generating these datasets is detailed in
Section [3.4.2. Their performance, evaluated on a separate test set that remained
consistent across all sampling versions, is shown in Figure

When being trained with the dataset sampled by 10 groups, worse results were
achieved compared to the baseline, without any stratified sampling. The underper-
formance can be attributed to the insufficient amount of training observations, as
the size per stratum conforms to the length of the smallest minority class.

The sampling approach using borders as a stratification constraint, divided the
target variable into four groups. The outer groups are defined by the threshold also
used in Profit Simulation to open a position, while the inner groups are separated
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Figure 15: Comparison between Different Periods for the Target Values

by the neutral value of zero. While this strategy led to improved results in the Profit
Stmulation, the model’s predictions remain too unstable for real-world application.

The sampling assisted with LLM-generated augmentations yielded the best overall
results. At first glance at the Direction Accuracy, its performance appears com-
parable to the No Sampling approach. However, when evaluated using the Profit
Stmulation, it outperformed the other strategies, demonstrating more consistent and
reliable predictions, particularly for the minority classes. This improvement is par-
ticularly evident in the range where predictions are most critical for profitability,
highlighting the potential of generative augmentation to enhance both stability and
profitability.

5.5 Time Period for Price Development

To determine the most effective time period for calculating the returns, different
periods were evaluated. For this three different versions of the dataset were created,
differing in the period length used for the computation of the target variable. Using
our standard approach to create the test set would lead to varying versions of it, as
the process depends on the target variable. Therefore, an alternative approach was
implemented, splitting the data before considering any characteristics of the target
variables, to ensure comparability across the datasets. The subsequent filtering and
sampling process remained the same.

This procedure was evaluated for the intervals 1 hour, 12 hours, and 24 hours, with
the results presented in Figure The evaluation did not consider any intervals
beyond 24 hours, since following the EMH (see the effects of the information
should already be priced in by this time, and longer intervals could introduce noise
from external factors.

Examining the accuracies achieved across different configurations reveals a decreas-
ing trend as the time window for the calculation of the target variable increases.
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This trend applies for the Direction Accuracy, as well as the Sentiment Accuracy.
The superior performance of the 1 hour configuration compared to longer windows
can likely be attributed to the EMH. Longer time windows increase the likelihood of
capturing external factors unrelated to the news event, introducing additional noise
into the data. This is also reflected in the larger standard deviations observed for
the 12 hours and 24 hours windows (0.0574 and 0.0713, compared to 0.0075 for the
1 hour window).

5.6 Data Augmentation Methods

To evaluate the impact of the different augmentation methods in the training pipeline,
over 90 runs were conducted varying, in their configuration of seeds and augmen-
tation type and probability. The dataset and all other hyperparameters were kept
consistent with the previously best-evaluated results. The means and variances of
the direction accuracy and profit simulation for the resulting runs of each augmen-
tation type are presented in Table Synonym Replacement is the only method
achieving, on average, slightly better results than using no augmentation, which
could also be attributed to randomness, given its subtle deviation. All other tradi-
tional text augmentation methods either yielded similar or even poorer results.

It could be argued that there is only minimal potential for improvement through
further augmentation methods since the dataset already incorporates generative
augmentation. However, this pattern can also be observed in sweep runs on datasets
without any previous augmentation. Therefore, it is more likely that this effect can
be explained by the hypothesis of Longpre et al.| (2020), that augmentation is only
beneficial for LLMs when it creates new linguistic patterns — something not achieved
by most traditional text augmentations methods.

Augmentation Type Direction Accuracy Profit Simulation
Mean Std. dev Mean Std. dev

None 64.495% | 0.165291381 | 602.6899% | 105.1580125
SynonymReplacement | 64.577% | 0.313279844 | 754.2226% | 88.3151921
Noise 63.225% | 0.325887124 | 608.8095% | 133.8827053
BackTranslation 63.084% | 0.300257334 | 590.7555% | 136.7412437
RandomlInsertion 62.678% | 0.659140044 | 569.2456% | 265.5292116
RandomSwap 61.645% | 0.741508752 | 553.311% | 348.7875201
RandomDeletion 60.935% | 0.453417066 | 606.2777% | 185.1755443

Table 4: Mean Metrics for each Augmentation Type

5.7 Quality over Quantity

In this experiment, the impact of favoring quality over quantity in the data selection
is examined. For this, training on two different datasets was conducted. The quality
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Figure 16: Performance Comparison between Selected Publishers and All Publishers

dataset follows all criteria described in Section [3.3.1. The quantity data applies
preprocessing, such as the removal of outliers, but does not make any distinctions
based on publishers. Although no filtering on this criterion would yield enough posts
for a comparable dataset, augmentation was still employed, as it has proven to have
positive effects on the performance.

The results of the test runs can be seen in Figure [L6] With an accuracy of 64.23% =
1.4% the quality delivers notable higher and more stable results compared to the
quantity dataset (50.2% + 2.8%). These findings are further reflected in the aver-
age profit, where the quality dataset achieves an average profit of 1.14% =4 0.04%,
outperforming the quantity dataset’s 0.05% = 0.02%. While the Profit Simulation
metric is not idea for direct comparison across different test sets, it is still notewor-
thy that the model trained on the quality dataset achieved a higher profit despite
having fewer observations in the test set.

5.8 Excess Return

Target Variable | Direction Accuracy | Sentiment Accuracy
1h RoR 65.4% + 2.5% 87.1% + 2.8%
1h Excess Return 68.1% + 5.12% 91.9% + 1.58%

Table 5: Comparison between RoR and Excess Return as Target Variable.

Comparison between training with the RoR or the Fzcess Return as target variable
has shown that the FExcess Return yields slightly better results on the Direction
Accuracy. However, its higher standard deviation also indicates a less stable per-
formance. A possible reason for this is that through the adjustment by the CAPM
rather neutral observations are shifted from slightly positive to slightly negative,
and vice versa. In the Sentiment Accuracy, which distinguishes also neutral cases
besides bullish and bearish ones, a more stable performance is achieved.
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5.9 Social Media

During the first experiments with posts retrieved from Reddit high similarities to the
news articles could be observed. Often, posts refer to news articles and therefore
contain some time discrepancy compared to the original article. To focus more
on the primary sources, further evaluations were omitted and devoted to the news
dataset.

The training data based on the most popular list of 30 selected financial influencers
yielded an accuracy of 44% 4+4% on its test set (see Fig . The reason for the poor
performance is most likely due to the low amount of observations. After completing
the preprocessing steps — including filtering out tweets unrelated to the selected
stocks, removing outliers, splitting off a test set, and applying augmentation-assisted
sampling — a total of 420 instances remained for use in the training process, including
the validation data.

5.10 Performance

Model Dir. Acc. | Sentiment Acc. Profit Avg. Profit
Ours 65.4% + 2.5 87.1% + 2.8 294.67% + 25.72 | 1.19% =+ 0.15
FinBERT | 46.77% £+ 9 45.16% + 13.5 | -34.28% + 41.77 | -0.42% + 0.52

Table 6: Final Metrics

The final performance of the trained model on our test set is presented in Table [6]
Its results are comparable to those achieved by other ML-assisted trading strategies
(see Sec[L.1.5). The second row of the table shows the performance of the FInBERT
model (Araci, [2019), evaluated on the same samples. It is important to emphasize
that this is not intended to be a comparison between FinBERT and our trained
model, as the models are designed for different tasks. Nevertheless, it is interesting
to see how the predictions of a promising text sentiment classification model can
be applied to trading strategies, demonstrating that the sentiment of a text is not
always aligned with the stock movement.
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6 Discussion

6.1 Interpretation of Results

Evaluating the performance of fine-tuned LLMs in making assumptions on the sub-
sequent price change based on a news article has demonstrated a notable difference
between the sentiment perceived by readers and the actual stock market develop-
ment. While models like FInBERT (Araci, |2019) achieve impressive results in the
classification of the sentiment on financial news, it is still quite challenging to trans-
fer this knowledge to stock market trading. This can be attributed to the complex
behavior of the market, which is also influenced by additional factors having im-
pacts on the price. There are news articles, that create a positive impression to the
reader but may still be irrelevant for the stock market pricing. Some events might
be relevant for the market, yet fail to affect the price since their impact was already
priced in due to prior events anticipating them.

Although the accuracies achieved in this study may appear less impressive when
compared to those in other fields, they nonetheless remain valuable for algorithmic
trading strategies. Any method that can reliably demonstrate an expected profit
greater than $0 is commonly considered profitable in the field of finance. This be-
gins with strategies that outperform random guessing, achieving success rates above
50%. Those with consistently positive expected values over extended backtesting
periods are often leveraged, through options trading, to amplify potential returns.
Often such strategies do not exceed accuracies of 70% (see Section [1.1.5), which is
consistent with the Efficient Market Hypothesis (see Section @

6.2 Future Work
6.2.1 Backtesting Framework

Even when a model appears to be profitable based on the simulation metrics used
in this study, it should be evaluated using a more complex testing framework before
being applied in real-world scenarios. In addition to testing the strategy over a
longer period, the framework should consider additional factors that can erode the
profitability. One such factor is slippage, which refers to the difference between the
anticipated price and the actual price at which the trade is executed. To mitigate
this deviation, the testing framework must account for the correct price (ask or bid),
depending on the side of the trade (buy or close) and its market depth. Additionally,
the framework should factor in that the expected price may not always be realized,
especially in volatile markets. Finally, other costs incurring when trading, including
commissions and transaction costs, must also be considered.
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6.2.2 Further Social Media Evaluations

The analysis of the effects of social media posts on stock market development was
kept brief due to resource constraints. Nonetheless, there are a number of valid
points that offer grounds for further investigation. A further evaluation of the data
from Reddit was omitted due to a majority of the selected posts referring to news
articles. Therefore, the decision was made to focus on the primary sources of the
articles instead. However, comments to such posts on Reddit could still be a promis-
ing source for analyzing the sentiment of the community, which could be explored in
future work. The evaluation of Section [5.9|revealed that the gathered posts are not
sufficient for effective training. An examination of the posts, however, revealed that
they contain a distinct type of information not appearing in news portals. Platforms
like X are popular among users for sharing trading signals, which could serve as a
useful resource for market trend analysis. To train a model effectively on this data,
a larger number of instances is required, which is not achievable with the approach
employed in this work. Due to the considerable costs associated with the API for
historical search functionality, it was not viable for this study to further explore its
potential.

6.2.3 Informational Pre-Training

In their study, |Araci (2019) concluded that domain pre-training does not provide a
significant advantage. A topic for future exploration could be investigating alterna-
tive ways of pre-training. One concept could involve introducing company-specific
semantic information during pre-training, rather than focusing solely on enhancing
text comprehension within the targeted domain. This approach might provide the
model with a deeper understanding of company-related contexts, enabling it to draw
conclusions when news titles, for example, mention the sector of a company. Such
datasets could be dynamically generated using data from sources like yfinance and
constructed either through templates or by utilizing LLMs for phrasing.

6.2.4 Stock-Aware Predictions

While this study focussed solely on the evaluation of news involving a single asset,
the dataset also has the potential for training models on news covering multiple
companies, producing contradictory sentiments. Future work could explore training
techniques to enable company-aware predictions on such data. Two approaches for
incorporating conditional information of the targeted stock alongside the textual
data into the model are illustrated in Figure One approach involves including
the targeted stock ticker in the text before it is processed by the model (Sinha
et al., [2022; Son et all [2023). This can be achieved by replacing the company
name in the text with a target token, indicating which company is the subject
of the prediction. As a side effect, this substitution eliminates the information
regarding which company the news is about, which can help mitigate biases of the
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Figure 18: Approaches for Incorporating Stock Information as Context to the Model.
(Blue): Add the stock ticker as token to the embeddings. (Red): Provide the stock
ticker as additional context to the downstream task.

model towards certain companies. However, for this approach to be applicable, the
text must explicitly mention the company name, making it unsuitable for instances
that reference a company indirectly. An example of this is the headline ”Sharp
slows larger iPad screen production as demand shifts”, which refers to
Apple through its product but not by its name. Another option is to pass the
stock identifier at a later stage as additional input to the downstream task. For
this approach, the targeted company does not need to be explicitly mentioned in
the text. At the same time, the transformer itself will not be able to capture a
deeper interaction between the stock and the textual data before passing it to the
downstream task.
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7 Conclusions

Evaluations have shown that models achieving state-of-the-art results on text senti-
ment classification tasks, such as FinBERT (Araci, [2019), can not be applied directly
on the market. This is due to the sentiment of the text is often not aligned with
the actual subsequent stock price development, which can be explained by other
influencing factors of the market. Therefore, training the model with target data
based on price data is required for a model to make assumptions about market de-
velopment. For this, a new dataset was created, which involves the Rate of Return
and Fxcess Return as target variables. In this way, it is able to connect news events
with price developments, while trying its best to isolate external factors. For every
observation a list of involved stocks is included, paving the way for future work on
stock-aware prediction models.

Using augmentation-assisted sampling it was possible to address the imbalanced
data problem inherent to this type of data and achieve results that are compatible
with other ML-assisted trading strategies. For this different textual augmentation
methods were evaluated, demonstrating that the added complexity of LLM-assisted
augmentation methods is required to mitigate overfitting for LLM.
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A Appendix

Data Crawling and Processing
k]
17}
S
a
s Y1
3]
Y
Extract Ticker Names
Y
e R
Column renaming, Unifying Ticker Names
- /
F ) v \
% Post Assets Post Asset
a Spoty wins lawsut| gpor appl. — Spotify wins lawsuit against Apple  SPOT
£ against Apple ! Spotify wins lawsuit against Apple | AAPL
©
s h ¥ .
7}
o [ Filter out non NASDAQ 100 Stocks ]
\2
N ALPHA
VANTAGE
Calculating Price Development (Sentiment Score)
Y
[ Remove NaN Values ]
; Filter Publishers :
[ Filter out outliers ]
A
Train Test Split
- (while maintaining same distribution)
-y
»n
o} - -
g W “
v 7 v
Sample using
ample by n Grou, ample by Border:
S ple by n Groups [ Augmentation Sample by Borders

Figure 19: Visualization of the whole data processing applied to the scrapped data
originating from Social Media and Yahoo News. generate_dataset.py splits and
select the stocks of the posts and calculate their target values. data_split.py splits
the dataset into train and test after some filtering.
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