
Designing a Benchmark and
Leaderboard System for Assessing

the Generalizability of Deep
Learning Approaches for Medical
Image Classification using the

MedMNIST+ Dataset Collection

Bachelor Thesis

Bachelor of Science in Applied Computer Science

Marius Ludwig Bachmeier

October 28, 2024

Supervisor:

1st: Prof. Dr. Christian Ledig
2nd: Sebastian Dörrich M. Sc.

Chair of Explainable Machine Learning
Faculty of Information Systems and Applied Computer Sciences
Otto-Friedrich-University Bamberg

Abstract

The application of Deep Learning methods to solve problems in the biomedical
domain has surged. This can be attributed to the increased provision of publicly
available datasets from the biomedical domain. By now image classification, im-
age segmentation and even Natural Language processing on medical texts address
biomedical issues.
Over the years, several benchmarks have been proposed to establish a standardized,
regulated framework to foster scientific competition and advance the field of Deep
Learning while tackling innovative tasks. Thus, this thesis introduces a new bench-
mark focused on image classification in the biomedical domain.
As more and more medical datasets become accessible to people with limited domain
knowledge, researchers become more open to working on these issues which histori-
cally had been left for experts in medical issues. The publication of MedMNIST+,
a collection of biomedical datasets, opens the door for those with limited medical
knowledge but great technical expertise to work with this biomedical data.
The Biomedical Image Generalization benchmark is introduced in this thesis to
seize the opportunity MedMNIST+ offers — establishing a benchmark in order to
investigate the generalization capabilities of Deep Learning models on biomedical
datasets. Furthermore, a website is described which can host a challenge based on
the Biomedical Image Generalization.
Lastly, a training method focused on the generalization problem is investigated. In
particular, a comparison is drawn between Vision Transformers and Convolutional
Neural Networks. Part of these models are also used to provide a baseline for the
proposed benchmark.
All of the custom code written for this thesis can be found at a GitHub repository1.

1https://github.com/mariusbachmeier/Bachelor-Thesis

i

https://github.com/mariusbachmeier/Bachelor-Thesis

Abstract

Durch die Bereitstellung öffentlich zugänglicher Datensätze aus der biomedizinis-
chen Domäne stieg die Anwendung von Deep Learning Methoden auf biomedizinis-
che Fragestellungen rasant an. Mittlerweile werden bereits Bildklassifizierungsprob-
leme, Bildsegmentierungsprobleme aber auch Fragestellungen rund um das Verar-
beiten natürlicher Sprache aus medizinischen Texten angegangen.
Über die Jahre hinweg wurden einige Benchmarks vorgeschlagen, die einen standar-
disierten, regulierten Rahmen zur Förderung des wissenschaftlichen Wettbewerbs
bereitstellen und so Deep Learning durch das Lösen ergiebiger Fragestellungen vo-
ranbringen wollten. Daher führt diese Bachelorarbeit einen neuartigen Benchmark
ein, der die Bildklassifizierung in der biomedizinischen Domäne anspricht.
Auch medizinische Laien können durch die Veröffentlichung leicht zugänglicher und
handhabbarer medizinischer Datensätze ihre technische Expertise einbringen, um
Probleme in dieser sonst abgeschotteten Domäne zu lösen. Hierzu wurde die Samm-
lung an Datensätzen namens MedMNIST+ veröffentlicht. Diese beinhaltet viele ver-
schiedene Datensätze aus der biomedizinischen Domäne. Das Arbeiten mit diesen
Bilddaten erfordert kein spezifisches medizinisches Domänenwissen.
Der Biomedical Image Generalization Benchmark stellt einen der entscheidenden
Beiträge dieser Abschlussarbeit dar. Durch ihn soll ein Rahmen geschaffen wer-
den, innerhalb dessen die Generalisierungsfähigkeit von Deep Learning-Modellen im
biomedizinischen Bereich untersucht werden kann. Außerdem wurde eine Webseite
eigens für ein mögliches Austragen eines wissenschaftlichen Wettbewerbs erstellt.
Dieser Wettbewerb fußt auf dem Biomedical Image Generalization Benchmark. Let-
ztlich werden Modelle basierend auf einer Methode, die sich insbesondere mit der
Generalisierungsfähigkeit von Deep Learning-Modellen befasst, trainiert werden.
Die Auswertung dieser Modelle fließt in die Bereitstellung von Ausgangswerten für
den wissenschaftlichen Wettbewerb ein.

ii

Acknowledgements

I want to thank Professor Ledig for accepting my thesis at the chair, my supervisor
Sebastian for staying in long meetings despite already going well past the assigned
time, my family for supporting me throughout my studies and of course God, for
everything.
Ich möchte mich bei Professor Ledig für das Annehmen meiner Bachelorarbeit am
Lehrstuhl bedanken, bei meinem Betreuer Sebastian für die Geduld in den Meetings
die häufig länger als angesetzt waren, bei meiner Familie für die Unterstützung über
meine Studienzeit hinweg und bei Gott, für alles.

iii

Contents

List of Figures vi

List of Tables vii

List of Acronyms viii

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution . 2

1.3 Related Works . 2

1.3.1 Preliminaries . 2

1.3.2 Benchmarks . 3

1.4 Biomedical Image Generalization Benchmark 7

2 Theoretical Foundations 9

2.1 Deep Learning . 9

2.1.1 Machine Learning . 9

2.1.2 Convolutional Neural Networks 10

2.1.3 Vision Transformers . 15

2.2 Architectures . 18

2.3 Training Paradigm . 27

3 Methods 28

3.1 Benchmark . 28

3.2 Website . 32

3.3 Model Training . 33

4 Experiments 36

4.1 Datasets . 36

4.1.1 MedMNIST v2 . 36

4.1.2 MedMNIST+ . 36

4.1.3 PathMNIST . 37

4.1.4 ChestMNIST . 38

4.1.5 DermaMNIST . 38

4.1.6 OctMNIST . 38

iv

4.1.7 PneumoniaMNIST . 39

4.1.8 RetinaMNIST . 39

4.1.9 BreastMNIST . 39

4.1.10 BloodMNIST . 40

4.1.11 TissueMNIST . 40

4.1.12 OrganMNIST . 40

4.2 Experiment 1: comparison of the performance of CNNs and ViTs . . 41

4.3 Experiment 2: effects of resolution on classification performance . . . 44

4.4 Experiment 3: effects of weighting on classification performance . . . 44

4.5 Experiment 4: comparison of individually trained models vs mm-PT
models . 46

5 Discussion 48

5.1 Experiment 1 . 48

5.2 On training . 48

5.3 Experiment 2 . 48

5.4 Experiment 3 . 49

5.5 Experiment 4 . 50

6 Conclusion 52

A Appendix 53

A.1 VDD Dataset Overview . 53

A.2 MSD Dataset Overview . 54

A.3 WILDS Dataset Overview . 55

A.4 Resnet Architecture Visualization . 56

A.5 DenseNet Architecture Specification 57

A.6 EfficientNet Compound Scaling Method 57

A.7 Pseudocode for the mm-PT training paradigm 58

A.8 Dataset-wise loss curves for training of ResNet18 (128×128) 59

A.9 Dataset-wise loss curves for training of ViT-B/16 (224×224) 60

Bibliography 61

v

List of Figures

1 Architectures of two feed-forward networks, reprinted from Shen et al.
(2017) . 10

2 Convolutions, adapted from Yamashita et al. (2018) 11

3 Residual learning: a building block, reprinted from He et al. (2016) . 13

4 A deeper residual function F for ImageNet, reprinted from He et al.
(2016) . 14

5 Activation functions commonly applied to neural networks, reprinted
from Yamashita et al. (2018) . 15

6 Model Overview, reprinted from Dosovitskiy et al. (2020) 15

7 An illustration of the AlexNet architecture, reprinted from Krizhevsky
et al. (2012) . 19

8 The architecture of VGG-16 model, reprinted from Shi et al. (2018) . 20

9 Dense Block structure, reprinted from Huang et al. (2017) 22

10 EfficientNet-B0 baseline network, reprinted from Tan (2019) 22

11 CLIP Architecture, reprinted from Radford et al. (2021) 23

12 ViT and TrV Blocks, reprinted from Fang et al. (2024) 24

13 Self-distillation with no labels, reprinted from Caron et al. (2021) . . 25

14 Segment Anything Model (SAM) overview, reprinted from Kirillov
et al. (2023) . 26

15 Comparison of losses during training 43

16 Comparison weighted ViT vs unweighted ViT 45

17 Comparison weighted ResNet18 vs unweighted ResNet18 46

18 Example network architectures, reprinted from He et al. (2016) 56

19 DenseNet architectures for ImageNet (Huang et al., 2017) 57

20 Model scaling, reprinted from Tan (2019) 57

21 Overview of loss curves for ResNet18 (128×128) 59

22 Overview of loss curves for ViT-B/16 (224×224) 60

vi

List of Tables

1 Model Overview, adapted from Doerrich et al. (2024) 27

2 Discriminator Metrics, reprinted from Hossin and Sulaiman (2015) . . 28

3 Training Configuration . 35

4 MedMNIST2D Dataset Information, adapted from Yang et al. (2023) 37

5 Performance of mm-PT end-to-end trained models on resolutions
28×28, 64×64, 128×128, and 224×224, evaluated on AUC, BAL-
ACC, and Co κ. 42

6 Performance of individually trained models (end-to-end) and mm-PT
models. 47

7 Overview of the datasets used in the Visual Domain Decathlon 53

8 Overview of datasets used in the Medical Segmentation Decathlon . . 54

vii

List of acronyms

DL Deep Learning

ViT Vision Transformer

CNN Convolutional Neural Network

DA Domain Adaptation

DG Domain Generalization

VDD Visual Domain Decathlon

MSD Medical Segmentation Decathlon

CT Computed Tomography

BIG Biomedical Image Generalization

TP True Positive

FP False Positive

TN True Negative

FN False Negative

ACC Accuracy

ERR Error Rate

BALACC Balanced Accuracy

AUC Area under the ROC Curve

ROC Receiver Operating Characteristic

TPR True Positive Rate

FPR False Positive Rate

CO Cohen’s Kappa

ML Machine Learning

RL Representation Learning

ANN Artificial Neural Network

SA self-attention

MSA multiheaded self-attention

viii

MLP multilayer-perceptron

ILSVRC ImageNet Large-Scale Visual Recognition Challenge

ReLU Rectified Linear Unit

MIM Masked Image Modeling

VGG Visual Geometry Group

ResNet Residual Network

DenseNet Dense Convolutional Network

CLIP Contrastive Language-Image Pre-training

TrV Transform Vision

GELU Gaussian Error Linear Unit

RoPE Rotary Position Embedding

BiT Big Transfer

SiLU Sigmoid Linear Unit

SAM Segment Anything Model

mm-PT multi-domain multi-task pre-training

ix

1 INTRODUCTION 1

1 Introduction

1.1 Motivation

The boom in Deep Learning (DL) has opened up the possibility to employ its algo-
rithms in the medical domain. As Deep Learning took off with the success of AlexNet
in the 2012 ImageNet Large Scale Visual Recognition Challenge (Krizhevsky et al.,
2012), the application to the medical domain followed soon. Around 2015 to 2016,
the number of papers published which were concerned with deep learning for medi-
cal applications took off (Litjens et al., 2017). As medical datasets become available
to a wider audience with less domain knowledge, the field of Deep Learning in the
meantime enjoys further advances with the advent of the Vision Transformer (ViT)
architecture (Dosovitskiy et al., 2020). Since ViTs have a different architecture than
traditional Convolutional Neural Networks (CNNs) and are subject to different un-
derlying assumptions and biases, these models based on the novel Vision Transformer
architecture represent an exciting new avenue for research to be conducted.
At the same time, the corpus of available medical datasets has tremendously ex-
panded. Paradoxically, although medical institutions collect vast amounts of data,
publicly available annotated data in the medical domain is hard to come by. One
reason for this is that labeled medical data is much more scarce compared to un-
labeled medical data (Litjens et al., 2017). This is in part due to the high cost
and difficulty (Lundervold and Lundervold, 2019) associated with medical profes-
sionals or experts labeling the data. Another reason is privacy issues, where the
regulations of a country and thus also the concerns around the usage of the data
might vary. Nonetheless, the notoriously void landscape of medical datasets has
transformed over the years, with new datasets popping up and old ones expanding.
Perhaps the most prominent case is the introduction of the MedMNIST+ collection
of datasets, which expands the MedMNIST v2 collection of datasets (Yang et al.,
2023) by providing the images not just in resolutions of 28× 28 but also in resolu-
tions of 64×64, 128×128 and 224×224. Previously, the MedMNIST Classification
Decathlon Yang et al. (2021) was organized as a challenge to work on a collection of
biomedical images. It was based on an older, less extensive version, the MedMNIST
v1 dataset collection. The expansion of biomedical datasets makes challenges such
as the MedMNIST Classification Decathlon possible, where results are compared
against a baseline and other participants, in the fashion of a benchmark.
Benchmarks establish a regulated, standardized way to compare model performances.
They provide a level playing field for friendly competition which has the potential to
spark innovation to a great extent. Benchmarks aim for comparable, standardized
performance measures with which an evaluation is conducted. Generally, bench-
marks provide a baseline against which the performance of a submitted model is
evaluated. With the MedMNIST Classification Decathlon, the spotlight is shone on
the ability of models to generalize to other domains.
The advent of the Vision Transformer architecture and the novel MedMNIST+ col-
lection of datasets demand not just a reevaluation but also the development of novel
algorithms to take advantage of the aforementioned innovations.

1 INTRODUCTION 2

1.2 Contribution

There is the exciting opportunity to make use of the multiple resolutions provided
in the MedMNIST+ collection of datasets to evaluate a model’s performance as
theoretically the information captured in greater image resolutions increases. Fur-
thermore, the diverse datasets in MedMNIST+ make it possible to examine how
well a model can perform over multiple medical domains. A comparison of the stan-
dard CNN architecture versus the newer ViT architecture, especially as it pertains
to medical applications, is subject to research as well. This thesis aims to build
on these opportunities. Thus, the contribution of this thesis can be divided into
three distinct yet related parts. Firstly, the Biomedical Image Generalization (BIG)
benchmark using the MedMNIST+ collection of datasets is detailed. Secondly, a
website has been developed with which a challenge based on the proposed bench-
mark could be hosted. Thirdly, the training of a model on the union of MedMNIST+
datasets is described. This model represents a baseline for the benchmark this thesis
contributes. The theoretical foundation as well as various benchmarks which can
be seen as predecessors to the BIG benchmark will be given in the following section
1.3. For the contribution of the baseline model, some theory is given in section 2.
Aspects like the use of specific evaluation metrics or cheating prevention measures
for the benchmark will be picked up on later in section 3. The website for hosting a
possible challenge for the BIG benchmark is briefly touched on in section 3 as well.
The experiments in which the baseline was established are then described in section
4.

1.3 Related Works

1.3.1 Preliminaries

Domain Adaptation Daumé III (2009) describes Domain Adaptation (DA)
as the development of learning algorithms which can be easily ported across do-
mains. The author gives an example for Natural Language Processing, where a
model trained on newswire is adapted to biomedical documents. This concept of
domain adaptation implies that the model is trained on (at least) both a source and
a target domain. The concept of DA might be defined differently throughout the
literature but this thesis sticks to the given general definition and doesn’t introduce
intricacies for reasons of practicality.

Domain Generalization In Domain Generalization (DG) no further updates of
the model take place after the initial training, as per Li et al. (2018). So the model
is evaluated on one or more target domains after having been trained on at least one
source domain. The underlying thought and to some extent assumption is that it’s
possible for a model to extract visual primitives which the model can learn using the
source domain and which then can be used to perform well on the target domain(s).
The capability of a model to extract such domain agnostic features determines how
well it performs in regards of DG.

1 INTRODUCTION 3

Multiple-domain learning Multiple-domain learning is described by Rebuffi
et al. (2017) as the performance of feature abstractors in several different image
domains. So the capability to learn universal representations, thus leading to a bet-
ter performance across several different image domains, resembles better multiple-
domain learning performance. Examples for different image domains could be nat-
ural images taken outside with a photo camera, medical images from e.g. scans or
handwritten characters or digits which often have uniform backgrounds and are only
black/white or just in grayscale as opposed to colorful natural images.

1.3.2 Benchmarks

Distinction Benchmark and Challenge A distinction between benchmark and
challenge can and will be given here. However, for the purpose of this thesis, those
two terms can be assumed to be roughly equivalent, as creating a benchmark usually
also entails hosting a challenge for participants to compete in. This is where usually
the distinction between benchmark and challenge can be made. A benchmark in
the context of image classification determines a model’s performance given a set of
evaluation metrics on some specified data. A challenge on the other hand is more
so the ruleset for a competition built around the benchmark. So a challenge would
include making submissions according to some rules such that a comparison can
be drawn between the performance of submissions on the benchmark. A challenge
necessitates that a benchmark exists to host such a challenge that’s based on the
benchmark, so in the context of this thesis the two terms can be used somewhat
interchangeably.

Visual Domain Decathlon The objective of the Visual Domain Decathlon
(VDD) is to provide a benchmark for the evaluation of the capability of an al-
gorithm to learn to perform well in multiple domains at the same time, as stated by
Rebuffi et al. (2017). Multiple-domain learning was detailed in section 1.3.1. The
VDD includes an evaluation of a model’s performance over ten representative visual
domains to determine the multiple-domain learning capability of a model. There’s
an enumeration of the various domains and datasets given in table 7. The domains
range from handwritten digits in grayscale to RGB images of flowers or other natural
images. For the evaluation a bespoke metric was devised, given in equation 1.

S =
10∑
d=1

αd max{0, Emax
d − Ed}γd , Ed =

1

|Dtest
d |

∑
(x,y)∈Dtest

d

1{y ̸=Φ(x,d)} (1)

These equations implicate that each dataset Dd, d = 1, . . . , 10 is formed of pairs
(x, y) ∈ Dd with x being an image and y a label such that y ∈ {1, . . . , Cd} = Yd. The
goal is stated to be to train the best possible model to address all ten classification
tasks using only the provided training and validation data, with no external data
being allowed. The evaluation metric is the single scalar score S, with the authors
noting that a good performance in this metric would require the model to perform
well across all tasks. Ed denotes the average test error for each domain, whereas

1 INTRODUCTION 4

Emax
d is the error of a baseline given by Rebuffi et al. (2017). The exponent γd

then is set to two for all domains, as it rewards more reductions of the classification
error. The authors give αd as 1,000 (Emax

d)−γd . That way a perfect result for one
dataset of the ten VDD datasets would receive a score of 1000. Given that there
are ten datasets, a perfect score across all datasets would thus be a score of 10,000.
In order to make a submission, participants can upload a results.json file containing
the classifications. The results.json file should be containing one annotation for
each test image for all ten domains. A devkit2 (VDD) is provided which contains
code, annotations and one TAR archive with the images of the entire datasets. An
evaluation code example is given in this devkit, too. Moreover, a competition was
hosted from May 1, 2017 to July 10, 2017 and submissions are still possible past this
date. Submission limits can be viewed at CodaLab3 (Cod), where the submission
process is hosted. A maximum of three submissions can be made daily and in total
100 can’t be exceeded.

Medical Segmentation Decathlon The Medical Segmentation Decathlon (MSD)
was presented by Antonelli et al. (2022) and is described as a biomedical image
analysis challenge which is geared towards evaluating the generalization capabilities
of models performing segmentation. The authors define semantic segmentation as
the process of transforming raw medical images into clinically relevant, spatially
structured information, such as outlining tumor boundaries, and highlight that seg-
mentation is an essential prerequisite for a number of clinical applications, such as
radiotherapy planning and treatment response monitoring (Antonelli et al., 2022).
The MSD ties in with the concept of DG and is presented as a benchmark to find
an algorithm leading to a better generalization capability of a model. A comparison
between a generalistic model that has been trained on multiple tasks and performs
well on them versus models trained just on and for a specific dataset is a focal point
of the MSD. The idea that such a generalistic model might approach or even surpass
the performance of a custom-designed model is of particular interest.
The MSD challenge was split into two distinct phases: first the development phase
and second the mystery phase. In phase one, seven open training datasets were
provided which could be used to train models. The participants downloaded the
data themselves and were expected to train their algorithms on the training data of
each task separately. Task-specific manual parameter setting was forbidden. Seg-
mentation results garnered by running the model on the test data were submitted
after training. Each team could make one submission per day, with the results hav-
ing been displayed in a live leaderboard on the challenge website4(med). Then in
the second phase, the mystery phase, three previously unseen data sets could be
downloaded and trained on. Further training on these new datasets was permitted,
however no changes to the method itself. Only one single submission of the segmen-
tation results was allowed for the mystery phase. Even after the original challenge
hosted in 2018 was closed, it’s still possible to see the scores as well a live leader-

2https://www.robots.ox.ac.uk/~vgg/decathlon/#res
3https://zeus.robots.ox.ac.uk/competitions/competitions/9#results
4https://medicaldecathlon.com/

https://www.robots.ox.ac.uk/~vgg/decathlon/#res
https://zeus.robots.ox.ac.uk/competitions/competitions/9#results
https://medicaldecathlon.com/

1 INTRODUCTION 5

board, and more importantly, make submissions5 (med). Each team can only make
15 submissions altogether. Multiple registrations for one team are strictly forbidden.

MedMNIST Classification Decathlon Resembling the predecessor of the BIG
benchmark presented in this thesis, the MedMNIST Classification Decathlon was
built upon the ten medical datasets of MedMNIST v1 (Yang et al., 2021). These ten
datasets all come from the medical domain, which the authors note novices usually
are hesitant to get into, as working with medical data often requires not just in-depth
DL knowledge but also knowledge in the medical domain. Thus, MedMNIST v1
provides a pre-processed, publicly available dataset for which people don’t require in-
depth knowledge about the imaging modalities such as Computed Tomography (CT)
or ultrasound to work with it. With the images all being of resolution 28× 28, the
MedMNIST v1 dataset is considered lightweight as it relates to computational load.
Furthermore, the MedMNIST Classification Decathlon makes use of AutoML, which
provides open-source AutoML tools Roberts et al. (2023). Those are often used and
intended for researchers with not as much technical in-depth knowledge when it
comes to e.g. preprocessing data. Different models can also be easily selected and
made use of. Various metrics for evaluation are provided in those AutoML tools as
well. For evaluation, the MedMNIST Classification Decathlon chooses to use the
metrics Area under the Receiver Operating Characteristic Curve and the Accuracy.

AutoML Decathlon The AutoML Decathlon is presented by Roberts et al.
(2023) as a machine learning competition focused on diverse tasks. There was a
challenge based on the AutoML decathlon hosted at NeurIPS 2022. The decathlon
focused on training models on 10 different tasks. These tasks were selected with re-
gards to their diversity in terms of domain, input dimension, output dimension, out-
put type, objective function, and scale. The challenge that was hosted at NeurIPS
2022 was divided into a development and a test phase. During the development
phase, both the maximum time a model was allowed to train as well as the number
of submissions were limited. The test phase then consisted of an evaluation on 10
withheld datasets. Submissions to the competition were made via CodaLab6 (Pavao
et al., 2023). For the AutoML decathlon, submissions were made in the form of code
uploaded via CodaLab. The submitted code was run on infrastructure the challenge
organizers provided. The maximum time a model was allowed to run for ranged
from 0.2 to 20 hours, depending on the complexity of the task. Ten submissions per
day and in total 100 submissions were permitted to be made during the development
phase.

WILDS The WILDS benchmark was developed at Stanford university and is
specifically designed for research on distribution shifts (Koh et al., 2021a). The au-
thors detail several kinds of distribution shifts. First, when dealing with a related
notion of DG, the training and test distributions might stem from similar, yet dif-
ferent domains. They give the example of a model being trained on data from just
a few hospitals and then being deployed to a lot of other hospitals which weren’t
part of the training. This is reflected in WILDS for example in the CAMELYON17-

5https://medicaldecathlon.com/
6https://codalab.lisn.upsaclay.fr/competitions/6325

https://medicaldecathlon.com/
https://codalab.lisn.upsaclay.fr/competitions/6325

1 INTRODUCTION 6

WILDS dataset, where the training data originates from several hospitals and the
test data from a different hospital not included in the training data. Secondly they
mention the subpopulation shift, where test distributions are subpopulations of the
training distribution. The proportions of the training and test domains will often
not be the same. The aim there is to not have a strong drop-off in performance
with the worst-case subpopulation. They note the poor performance of standard
models on under-represented demographic groups. An example of subpopulation
shift is given in the CIVILCOMMENTS-WILDS dataset, where some demographics
might be underrepresented in the training data but a performance similar to those
of the demographics with more representation share is still desired. Thirdly, some
hybrid scenarios might occur where an algorithm has to deal with both domain
generalization and subpopulation shift, for this the authors mention the FMoW-
WILDS dataset. Koh et al. (2021a) state that they substantially modified most of
the datasets they include in their benchmark, such that they exhibit a more pro-
nounced distribution shift. They also standardized data splits and preprocessed the
data for use in standard ML frameworks.
Submissions for the benchmark can be made via a bespoke website7 (wil, b)organizing
the challenge for the benchmark. This custom-tailored website houses not just a
leaderboard but many other resources like a guide about how to turn in submis-
sions or a description of datasets too. Both newly developed algorithms but also
re-implementations are allowed to be used. This distinction is visible in the leader-
board, which is marked via bold highlighting for original algorithms. It’s stated that
all submissions must use the dataset classes and evaluators which are available via
the WILDS package (Koh et al., 2021b). Submissions are also divided into standard
and non-standard submissions.
The guidelines for standard submissions, as taken from the submission page8 (wil,
a), are as follows: (1) Results must be reported on at least 3 random seeds. The fol-
lowing datasets must have more replicates: 5 random seeds for CIVILCOMMENTS;
10 random seeds for CAMELYON17; and 5 folds for POVERTYMAP. (2) The test
set must not be used in any form for model training or selection. (3) The vali-
dation set must be either the official out-of-distribution (OOD) validation set or,
if applicable, the official in-distribution (ID) validation set. (4) The validation set
should only be used for hyperparameter selection. For example, after hyperparame-
ters have been selected, do not combine the validation set with the training set and
retrain the model. (5) Training and model selection should not use any additional
data, labeled or unlabeled, beyond the official training and validation data. (6) To
avoid unintended adaptation, models should not use batch statistics during evalu-
ation. BatchNorm is accepted in its default mode (where it uses batch statistics
during training, and then fixes them during evaluation). (7) Other dataset-specific
guidelines: - For Camelyon17, models should not be pretrained on external data.
Note: We have relaxed the constraint that models should not use color augmenta-
tion, since unlabeled data methods typically rely on data augmentation suites that
include color augmentation. - For iWildCam, models should not be pretrained on

7https://wilds.stanford.edu/
8https://wilds.stanford.edu/submit/

https://wilds.stanford.edu/submit/

1 INTRODUCTION 7

external data. This includes off-the-shelf detectors (e.g., MegaDetector) that have
been trained on external data.
Non-standard submissions on the other hand only need to follow the first two guide-
lines and will be highlighted as such. Those non-standard submissions are described
to be: using unlabeled data from external sources, specialized methods for particular
datasets/domains, such as color augmentation for Camelyon17 or using leave-one-
domain-out cross-validation instead of the fixed OOD validation set. The submis-
sion itself is then made by uploading .csv-files with the predictions except for the
GLOBALWHEAT dataset, for which a .pth-file is uploaded. A .tar.gz or .zip file is
expected to be uploaded and a submission form to be filled out. This form contains
various fields meant to store metadata but also offers the upload for the final archive
file containing the predictions. A link to a paper detailing the method used as well
as a link to a GitHub where the code is uploaded to are mandatory fields for the
submission. It’s important to note that the .pth-file for GLOBALWHEAT is used to
store predictions and not the model. These predictions are evaluated by the WILDS
organizers and said to be added to the leaderboard within a week.

1.4 Biomedical Image Generalization Benchmark

The BIG benchmark follows in the footsteps of the MedMNIST Classification
Decathlon as a challenge including datasets from the MedMNIST family. For this
benchmark, the MedMNIST+ collection of datasets is used. Hence the proposed
benchmark focuses chiefly on image classification in the biomedical realm. A de-
tailed description of the MedMNIST+ collection of datasets is given in section 4.
Most importantly, the MedMNIST+ collection of datasets contains images from
multiple biomedical domains, with imaging tasks ranging from binary classification
to multi-class classification, multi-label classification and even ordinal logistic re-
gression.
Firstly, this poses the challenge of creating a model which performs well across many
different tasks. Secondly, given that MedMNIST+ consists of 12 datasets including
but not limited to X-rays, microscopy and CT, there is a wide range of imaging
modalities over which data was captured. Additionally, the classification tasks stem
from different parts of the body, with ChestMNIST containing X-ray images of pa-
tients while BloodMNIST for instance pictures individual cells (Yang et al., 2023).
The scale alone of the examined areas is vastly different, with cells being vastly dif-
ferent in size compared to the upper part of the torso, by many orders of magnitude.
Also, blood cells are part of the body fluid blood, while the chest X-rays depict large
areas of lung tissue.
Taking all these differences of modalities, tasks and medical domains into consid-
eration, one goal of the BIG benchmark can be clearly stated: to evaluate the
generalization capability of a model. This goal ties into the previously described
concepts of DA and DG. However, for this benchmark, no dataset is withheld to
purely use for evaluation. This implicates that every imaging task and modality has
been seen during training. An approach to assess the generalization capability of

1 INTRODUCTION 8

a model trained on the combined datasets of MedMNIST+ to an even greater ex-
tent would be to add a dataset to the benchmark which isn’t publicly available and
perform the evaluation on that dataset. So a withheld dataset that is only used for
evaluation. However, this is just a possibility to explore DG to a greater extent and
not per se the case for the BIG benchmark proposed in this thesis. One evaluation
which stems from Doerrich et al. (2024) is used as a baseline for performance on each
dataset individually. Two approaches treated in this extensive evaluation include
evaluating pre-trained models using a kNN approach or linear probing. These two
approaches are treated by Doerrich et al. (2024). Another approach related to DA
and DG is training a model on the combinated collection of datasets. This entails
feeding every sample of each dataset to the model during training and using different
classification heads — one per classification task. The theoretical concept is eluci-
dated in section 2.3 and its implementation described in section 3.3. This approach
to training is one of several approaches which can be employed to make use of the
unique properties of the MedMNIST+ collection of datasets, adding to the standard
end-to-end training paradigm. The evaluation of the BIG benchmark focuses chiefly
on three evaluation metrics: the Area under the Receiver Operating Characteristic
Curve, the balanced accuracy and Cohen’s Kappa. The theory behind those metrics
and the reasons for using them is laid out in section 3.

2 THEORETICAL FOUNDATIONS 9

2 Theoretical Foundations

The BIG benchmark proposed in this thesis represents a unique comparison of tradi-
tional CNNs and the more recent ViTs on various biomedical domains. The general-
ization capability of these architectures and models which are used especially are of
great interest here. To establish a common ground for this undertaking, section 2.1
provides the necessary background and vocabulary on the field of Deep Learning.
Section 2.1.2 then introduces the basic architectural concepts of CNNs. This focus
on architectural specifics continues in 2.1.3 where ViTs are treated. A comparison
between CNNs and ViTs completes the discussion of the conceptual and architec-
tural differences of these two popular architecture types. As this thesis also includes
a reevaluation of the models presented by Doerrich et al. (2024), those architectures
are described in section 2.2. The ResNet architecture and the ViT architecture, both
also used in Doerrich et al. (2024), are the two main architectures around which the
experiments are structured in this thesis. The DL methods discussed throughout
this section are not meant to be an exhaustive list that encompasses everything in
the field of DL, as this would almost be impossible. Instead it is mainly focused on
the architectures used for the baseline of the BIG benchmark.

2.1 Deep Learning

2.1.1 Machine Learning

Machine Learning Machine Learning (ML) is described by Jordan and Mitchell
(2015) to chiefly focus on the following two questions: (1) How can one create
computer systems which automatically improve with experience? (2) What are
the fundamental laws that govern all learning systems, among them computers,
humans, and organizations, as described by statistics, the theory of computation,
and information theory? Both Jordan and Mitchell (2015) and LeCun et al. (2015)
mention Machine Learning to deal with issues in computer vision, natural language
processing, object identification, speech recognition, and robotics.

Representation Learning LeCun et al. (2015) define Representation Learning
(RL) as a ”set of methods that allows a machine to be fed with raw data and to
automatically discover the representations needed for detection or classification”. In
the context of images this might mean feeding a computer with images of a common
format and finding a way to efficiently represent this image data, often expressed
in pixels with colour values. This pixel-wise representation quickly blows up the
number of computations needed to handle even a single image if one were to operate
on the raw pixel data. To just represent a single image of dimensions 3× 224× 224,
where 3 might be the number of color channels in a RGB color scheme, and 224×224
is the number of pixels the image is in width and height, this already are 150,528
pixel values. Representation learning thus also is about finding more efficient ways
to handle such data in order to be able to use an efficient representation to perform
further computations with this representation.

2 THEORETICAL FOUNDATIONS 10

Deep Learning Deep Learning DL is a subfield of ML, LeCun et al. (2015) high-
light how deep learning models are composed of multiple processing layers such that
representations of data with multiple levels of abstraction might be learned. Natu-
rally, this also ties DL closely to RL. According to the authors, DL is characterized
by those multiple layers being composed of simple but non-linear building blocks.
These building blocks, or modules, each transform the representation such that a
representation at a higher and more abstract level is obtained.

Artificial Neural Networks Feed-Forward Neural Networks are a type of Artificial
Neural Network (ANN). Shen et al. (2017) bring up that ANNs are meant to em-
ulate the computational principles of neural systems, which are supposed to learn
patterns in observations. The architecture of such a Feed-Forward Neural Network
is given in Fig. 1a. The left-hand schematic pictures a simple single-layer neural net-
work where each neuron in the output layer receives information from each neuron in
the input layer. Fig. 1b on the other hand shows a multi-layer neural network, where
one or multiple so-called hidden layers are introduced between the input and output
layer. A simple single-layer neural network can only approximate linear functions,
whereas multi-layer neural networks, given general conditions and enough hidden
units, are able to approximate any function (Hornik, 1991). Hidden units are indi-
vidual neurons in the hidden layer. In fully-connected layers, any given neuron of a
layer is connected to each neuron of the next layer as can be seen in Fig. 1.

Figure 1: Architectures of two feed-forward networks, reprinted from Shen et al.
(2017)

2.1.2 Convolutional Neural Networks

Convolutional Neural Networks architecture Yamashita et al. (2018) list
multiple building blocks which make up a CNN. There are convolutional layers,
pooling layers and fully-connected layers. The input to a CNN will commonly be
given as an array of numbers, a so-called tensor. This tensor, especially for image
classification which this thesis is focused on, represents the image data. A convo-
lutional layer is characterized by its use of convolutions, which are linear opera-
tions. Fundamentally, convolutions use a kernel, which is a tensor, and calculate the

2 THEORETICAL FOUNDATIONS 11

element-wise product between a specified slice of the input and the kernel, where the
slice of the input must fit the dimensions of the kernel. This kernel is then applied
to each location of the input. For images, this means sliding the kernel sequentially
over all the pixels of the image, covering each location along the dimensions. The
result is a so-called feature map. An example of a convolution including the sliding
of the kernel over an input and the resulting feature map is depicted in Fig. 2.
Various kernels with different values for their elements can be used, resulting in an
arbitrarily large amount of feature maps which can be produced starting from a
single input. As Simonyan and Zisserman (2014) mention, a kernel of size 3×3 is
the smallest possible kernel size with which the concepts of left/right, up/down and
center can still be captured in the feature maps.

Figure 2: Convolutions, adapted from Yamashita et al. (2018)

Translation Equivariance Bias Lenc and Vedaldi (2015) define translation
equivariance such that a ”representation ϕ is equivariant with a transformation g of
the input image if the transformation can be transferred to the representation out-
put”. They go on to describe how Translation Equivariance deals with how based on
different transformations of an input image the representation changes. CNNs are
found to perform simple linear transformations of the representation given transfor-
mations of the input image. The authors describe the changes of the representation
as predictable.

Translation Invariance Bias The translation invariance bias is a special case of
translation equivariance. The translation invariance bias is defined to be present in a
system if the output is not influenced by any translation of the input (Myburgh et al.,
2020). It’s a characteristic that CNNs possess to some degree. Due to the kernels
of a CNN sliding over the entire input and taking information from highly local
areas, CNNs are commonly deemed translation invariant to some degree. Myburgh
et al. (2020) also note that complete translation invariance, where the output is not
influenced by a translation of the input in any way, is rarely achieved. Usually, for
practical reasons a more pragmatic concept of translation invariance is used, where
the sensitivity of a system to translated inputs is examined. There is some discussion
around whether CNNs can be thought of as translation invariant but generally they
are to some degree, using a less strict notion of the concept.

2 THEORETICAL FOUNDATIONS 12

Pooling Layers Yamashita et al. (2018) elaborate on Pooling layers and explain
how they’re typically used for downsampling. This downsampling of the feature
maps has the effect of introducing a translation invariance bias to small shifts and
distortions. With downsampling, information is locally accumulated in a smaller
space, thereby making the network less susceptible to translations applied to the
input. Additionally, pooling decreases the number of subsequent learnable param-
eters. Different types of pooling operations exist, with two popular options being
Max Pooling and Global Average Pooling. In Max Pooling, a cutout of the input
feature map is taken and just the maximum value of this cutout is then determined
to be the output, ultimately dropping the other values in that cutout. Global Av-
erage Pooling does reduce a feature map of dimensions height×width by means of
taking the global average of the feature map. The depth, or number of channels, of
feature maps is preserved in Global Average Pooling.

Locality Bias CNNs use much smaller receptive fields in the lower layers, thus
capturing more acutely local information. This too stems from the fact that kernels
slide over small parts of the image, extracting information locally. A receptive field is
given as the size of the region in the input that produces the resulting feature Araujo
et al. (2019). Building on the description from before of how a kernel is slid over an
image it follows that for the first layer of a CNN, the size of the kernel matches the
receptive field size. In subsequent layers, the receptive field size grows, as not just
the kernel influences the part of the image which is considered as input but also the
neurons from the layers before, which might have distilled representations of other
parts of the input image. Pooling operations aggregate information from previous
layers into a smaller resolution feature map and contribute to the receptive field size
getting larger the more layers there are.

Two-dimensional neighborhood structure A feature of CNNs is that a sort
of understanding of the 2D spatial structure and the concept of neighborhood is
inherent in the architecture (Dosovitskiy et al., 2020). As Yamashita et al. (2018)
describe, kernels usually have filter sizes of 3× 3, 5× 5 or 7× 7. Thus they capture
spatial information of the immediate neighborhood of the 2D input they slide over.
Not just the pixels used for one calculation are related to each other but given a low
stride, the subsequent areas the kernel performs calculation on are also immediate
neighbors.

Overfitting and Generalizability Overfitting as described by Yamashita et al.
(2018) refers to a model learning statistical regularities specific to the training set,
thus causing worse performance on other datasets such as the validation set. This
according to Shorten and Khoshgoftaar (2019) leads to poor generalizability. They
give the term generalizability as ”the performance difference of a model when eval-
uated on previously seen data (training data) versus data it has never seen before
(testing data)”.

Residual Learning Residual Learning is formulated by He et al. (2016) with
the underlying idea of assuming that if multiple nonlinear layers can asymptotically
approximate complicated functions, then assuming they can asymptotically approx-

2 THEORETICAL FOUNDATIONS 13

imate the residual functions follows from that initial assumption. Thus, the stacked
layers of a network can’t just be used to approximate a mapping H(x) but also the
residual function given in equation 2. The initial mapping H(x) can then be viewed
as equation 3, where both equation 2 as well as equation 3 should be able to be
asymptotically approximated by nonlinear layers.

F(x) := H(x) - x (2)

H(x) := F(x) + x (3)

For this learning of the residual function, residual blocks are introduced. They’re
given by (He et al., 2016) such that they use so-called shortcut connections, con-
necting a layer not just with its following layer but also to a later layer. This is
done by means of an identity mapping. With a shortcut connection, the input fed
into the residual block is being added element-wise onto the output of the stacked
layers. These identity shortcut connections neither introduce additional parameters
nor additional computational complexity. Most importantly, residual blocks with
their shortcut connections facilitate learning of identity mappings by nonlinear lay-
ers. The inability of converging deeper plain networks (without residual blocks) to
achieve the same training error or accuracy as compared to less deep converging
networks with the same number of parameters is coined the degradation problem
by He et al. (2016). The authors conjectured that the degradation problem might
be due to plain deeper networks struggling to approximate identity mappings with
multiple nonlinear layers. This would explain why plain deeper networks suffer from
the degradation problem, as they struggle to approximate the case where the input
x is already very close to the target function H(x). Deeper networks with residual
blocks have a way of skipping a few layers by means of the shortcut connections,
feeding the identity mapping x to later layers and only approximating the residual
F(x) with the multiple stacked layers, and thus combating the degradation problem.
He et al. (2016) propose a bottleneck design for the residual blocks, using a stack of

Figure 3: Residual learning: a building block, reprinted from He et al. (2016)

three layers instead of two. The first of the three layers is of dimensions 1×1, while
the second is of dimensions 3×3 and the third layer is again of dimensions 1×1.
Here, the first 1×1 layer reduces the dimensions, the 3×3 layer then is applied to
this lower-dimensional input and the final 1×1 layer restores the initial dimensions.
This bottleneck design is visualized on the right in Fig. 4. Computational efficiency

2 THEORETICAL FOUNDATIONS 14

is the main reason for employing such a bottleneck design. The reduction of dimen-
sions by the first 1×1 layer makes it possible to have just one 3×3 convolutional
layer with 64 channels instead of two 3×3 convolutional layer with 64 channels like
there are pictured on the left in Fig. 4.

Figure 4: A deeper residual function F for ImageNet, reprinted from He et al. (2016)

Dropout Yamashita et al. (2018) describe dropout as setting randomly selected
activations to zero during training. Krizhevsky et al. (2012) mention how they set
the output of each hidden neuron to zero with probability 0.5, causing those neurons
which have their output set to 0 to neither play a role in the forward pass nor the
backward pass anymore. The authors state that using dropout, a network is forced
to learn more robust features, providing the rationale that complex co-adaptations
of neurons are reduced, as a neuron can’t rely on the presence of particular other
neurons. A robust feature, as they describe it, is thus characterized by a neuron
firing with a variety of different subsets of neurons, as each time that an input is
given, dropout will set different sets of neurons to zero. Dropout hence aims to
prevent a neuron relying disproportionately much on another neuron or another set
of neurons to play its part in representing a feature.

Nonlinear Activation Functions Yamashita et al. (2018) describe how the
outputs of a linear operation such as convolution are subsequently passed through a
nonlinear activation function. Fig. 5 depicts some of the most well-known nonlinear
functions, with the sigmoid and hyperbolic tangent trying to emulate biological
neurons and the nowadays more popular ReLU simply taking the max.

ReLU The function for the non-saturating nonlinearity Rectified Linear Unit
(ReLU) is given by Krizhevsky et al. (2012) as follows:

f(x) = max(0,x) (4)

The significance of ReLU is also highlighted by the authors who state that compared
to tanh units, deep CNNs employing ReLU train several times faster. ReLUs are
not dependent on input normalization to stop them from saturating.

2 THEORETICAL FOUNDATIONS 15

Figure 5: Activation functions commonly applied to neural networks, reprinted from
Yamashita et al. (2018)

2.1.3 Vision Transformers

The Vision Transformer architecture as described by Dosovitskiy et al. (2020) in its
essence is based on splitting an image into patches and feeding those patches as in-
put to a Transformer. ViTs are usually pre-trained on large datasets and fine-tuned
on smaller ones. The authors note that ”Vision Transformers generally outperform
ResNets with the same computational budget” (Dosovitskiy et al., 2020). Further-
more, the authors note that Big Transfer (BiT) ResNets perform better than ViTs
on small datasets, however ViTs surpass them when pre-trained on larger datasets.
Fig. 6 shows an overview over the model architecture. The input is given as the
sequence of linear embeddings corresponding to the patches. A position embed-
ding is added onto the linear projection of flattened patches. In the next step, a
multilayer-perceptron (MLP) head is used for obtaining the predicted class.

Figure 6: Model Overview, reprinted from Dosovitskiy et al. (2020)

2 THEORETICAL FOUNDATIONS 16

Dosovitskiy et al. (2020) state how previous works by Cordonnier et al. (2019) used
a patch size of just 2×2 pixels, leading their approach to only be applicable to small
resolutions. So Dosovitskiy et al. (2020) used patches of size 16×16, allowing for
medium resolution images to be used for training. As Transformers typically receive
an 1D sequence of token embeddings (Dosovitskiy et al., 2020), the 2D images need
to be manipulated in order to be processed by the Transformer architecture. In-
put images are split into patches of dimensions 16×16 pixels and are subsequently
linearly embedded. These embeddings are coined ”patch embeddings” by Dosovit-
skiy et al. (2020). Class tokens are prepended to these patch embeddings. Position
embeddings are added to their corresponding linear projection of flattened patches.
Both of these are vectors, so adding means vector addition here. This resulting
1D sequence is then fed into the Transformer Encoder. Said Transformer Encoder
consists of layers of multiheaded self-attention (MSA) and MLP blocks, both al-
ternating. Dosovitskiy et al. (2020) give the equations for self-attention (SA) and
MSA. Here, standard qkv self-attention (equation 5 - equation 7) is described such
that for each element in an input sequence z ϵ RN×D a weighted sum over all values
v in that sequence is computed. Also, the attention weights Aij are said to be based
on the pairwise similarity between two elements of the sequence, their respective
query qi and key kj representations.

[q,k,v] = zUqkv Uqkv ∈ RD×3Dh (5)

A = softmax(qkT/
√

Dh) A ∈ RN×N (6)

SA(z) = Av (7)

MSA then extends SA, parallely running k-self-attention operations which are called
”heads”. The outputs of these operations are then concatenated.

MSA(z) = [SA1(z);SA2(z); ...;SAk(z)]Umsa Umsa ∈ Rk·Dh×D (8)

The MLP blocks are mentioned to contain two layers with a GELU nonlinearity
with the equations given by Dosovitskiy et al. (2020)

z0 = [xclass; x1
pE;x2

pE; ...;xN
p] + Epos, E ∈ R(P 2·C)×D, Epos ∈ R(N+1)×D (9)

z′l = MSA(LN(z′l−1))+z′l−1 l = 1...L (10)

z′l = MLP (LN(z′l)) + z′l l = 1...L
(11)

z′l = LN(z0L)
(12)

Dosovitskiy et al. (2020) describe how Layernorm is applied before every block while
residual connections are applied after each block. Finally, an MLP head with one
hidden layer for pre-training and a single linear layer for fine-tuning is used.

Masked Image Modeling Masked Image Modeling (MIM) is presented by Bao
et al. (2021) as a task to pre-train vision transformers. With MIM, a ViT is fed
both image patches and visual tokens. As specified by the authors, MIM uses both

2 THEORETICAL FOUNDATIONS 17

image patches and visual tokens as representations of the input images. To obtain
the image patches, the image x ∈ RH×W×C is split into a N = HW/P 2 sequence
of patches xp ∈ RN×(P 2C) with C being the number of channels, (H,W) the input
image resolution, and (P, P) the resolution of each patch. The patches are then
flattened into vectors and linearly projected. For obtaining the visual tokens, the
image x ∈ RH×W×C is tokenized into z = [z1, . . . , zM] ∈ V h×w with V being
the vocabulary V = {1, . . . , |V |}. The authors refer to the discrete variational
autoencoder following the principles of Ramesh et al. (2021) as the tokenizer that
they used. During pre-training, some percentage of image patches is masked with
the objective of predicting the visual tokens for the masked image patches. During
training, a reconstruction loss is used to evaluate the model’s predictions and based
on that updates to the weights are performed. For image classification purposes, a
linear layer is attached to the pre-trained transformer. Average pooling is used to
aggregate the patch embeddings before this representation is fed into the linear layer
and a softmax gives the probabilities for the prediction after the representations have
passed through the linear layer.

Global Attention Bias The self-attention layers of ViTs are global in the way
they process information (Dosovitskiy et al., 2020). Raghu et al. (2021) write about
how even in the lowest layers of ViTs, self-attention layers exhibit a mix of local
heads, so small distances, and global heads with large distances. Distance here refers
to the distance between patches in the latent space. This also leads to somewhat
large effective receptive fields already in the lower layers (Raghu et al., 2021). The
authors note that at higher layers, all self-attention heads are global.

Positional Encoding Bias The positional embeddings are meant to give ViTs
a sense of locality which otherwise they wouldn’t have due to their pronounced
global attention bias (Dosovitskiy et al., 2020). There is no concept of spatial struc-
ture in the transformer architecture, as inputs are sequences of tokens. Positional
Embeddings address this to some extent.

Comparison of standard feedforward networks, convolutional neural net-
works and vision transformers Per Krizhevsky et al. (2012), there come fewer
connections and parameters with CNNs as compared to feedforward networks, which
results in a theoretically slightly worse best performance. However, this comes with
the upside of vastly greater computational efficiency, as in CNNs not every neuron is
connected to every other neuron. As Dosovitskiy et al. (2020) elucidate, transformers
miss the inductive biases of CNNs like translation equivariance and locality. This,
according to the authors, leads transformers to generalize poorly provided that train-
ing is done on insufficient amounts of data. Furthermore, Dosovitskiy et al. (2020)
claim that ViTs didn’t just use computationally fewer resources during pre-training
compared to state-of-the-art convolutional neural networks, they also approached or
even beat the performance of state-of-the-art convolutional neural networks. Doso-
vitskiy et al. (2020) even state that ”large scale training trumps inductive bias”.
So while it’s true that ViTs generally require more data than CNNs to perform
well, they are more computationally efficient during training, requiring less compu-
tational resources. Moreover, according to Dosovitskiy et al. (2020) ViTs have much

2 THEORETICAL FOUNDATIONS 18

less image-specific inductive bias as compared to CNNs. Whereas for CNNs two-
dimensional neighborhood structure as well as translation equivariance and locality
are inherently present throughout the entire model, for ViT only MLP layers are
local and exhibit translational equivariance. The self-attention layers of ViTs are
largely global, as previously described. CNNs don’t process the input as a sequence
of tokens and thus do not use the positional encoding, which introduces some lo-
cality in ViTs that they otherwise lack. This locality isn’t nearly as strong as the
locality of CNNs. Whereas CNNs have fixed, local receptive fields (Raghu et al.,
2021) due to using a kernel to slide over the image, ViTs have larger effective recep-
tive fields. The authors also observed much greater similarity comparing lower and
higher layers in ViTs than it was the case for CNNs.

2.2 Architectures

AlexNet The introduction of what is nowadays commonly known as ”AlexNet”,
a convolutional neural network presented by Krizhevsky et al. (2012), resembles a
major stepping stone in the field of Deep Learning. AlexNet is hailed by Singh
et al. (2020) as a ”grand success”. With citations in the tens of thousands and
growing, AlexNet is commonly brought up when reviewing DL and its beginnings,
such as in Alzubaidi et al. (2021), where it is said to have spurred an ”innovative
research era in CNN applications” Alzubaidi et al. (2021). While not necessarily
being the first to invent the concepts, Krizhevsky et al. (2012) were some of the first
researchers to employ the regularization method ”dropout” as well as making use of
Rectified Linear Units, given in equation 4. As per Alzubaidi et al. (2021), the previ-
ously widely popular and state-of-the-art CNN ”LeNet” had five feature extraction
stages, which AlexNet brought up to seven. This implicated its own challenges, such
as having to find a way to deal with overfitting, but certainly aided in Krizhevsky
et al. (2012) ultimately winning the ImageNet Large-Scale Visual Recognition Chal-
lenge (ILSVRC) in 2012 (Russakovsky et al., 2015), with the authors stating that
removing even one convolutional layer would have resulted in inferior performance.
The problem of overfitting was tackled in part by making use of the dropout method
described in 2.1.2.

The detailed AlexNet architecture is depicted in Figure 7. In the AlexNet architec-
ture, five convolutional layers are followed by three fully connected layers, summing
up to eight layers for which the weights have to be adjusted. For classification, the
output of the last fully connected layer is given as input to a 1000-way softmax
function in the case of the ILSVRC classification task. After the first and second
convolutional layers, response-normalization layers were utilized. Subsequently to
those response-normalization layers there come max-pooling layers as well as after
the fifth convolutional layer. After each convolutional and fully connected layer, the
output of that individual layer is fed into the ReLU nonlinearity described in 2.1.2.
The AlexNet architecture expects an input of dimensions 224× 224× 3, so images
with 224× 224 pixels and 3 RGB channels. The first convolutional layer then uses
96 kernels of size 11 × 11 × 3 with a stride of 4 pixels. Receiving the response-

2 THEORETICAL FOUNDATIONS 19

normalized and max-pooled output of the first convolutional layer as input, the
second convolutional layer uses 256 kernels of size 5× 5× 48. The authors give the
kernels of the third convolutional layer as 384 kernels of size 3×3×256 while noting
that the third convolutional layer receives the response-normalized and max-pooled
outputof the second convolutional layer. The remaining third, fourth and fifth layers
will not have any response-normalization layers or max-pooling layers in-between.
That fourth convolutional layer comes with 384 kernels of size 3 × 3 × 19 and the
fifth and final convolutional layer with 256 kernels of size 3× 3× 192. Lastly, each
fully connected layer has 4096 neurons. The authors give the number of parameters
for their model as 60 million. 650 000 neurons make up the network.

Figure 7: An illustration of the AlexNet architecture, reprinted from Krizhevsky
et al. (2012)

VGG The Visual Geometry Group (VGG) architecture has been introduced by
Simonyan and Zisserman (2014) with the idea of building onto the AlexNet ar-
chitecture by Krizhevsky et al. (2012) by adding more network layers, ultimately
extending it to create a much deeper network. The VGG-16 and the VGG-19 archi-
tectures are the most important here, having 16 and 19 weight layers respectively.
The architecture is depicted in Fig. 8. VGG nets expect as input an RGB image
of size 224× 224. This input is put through convolutional layers with a kernel size
of 3× 3. A convolutional stride of one is used as well as a padding of one pixel for
the 3× 3 convolutional layers. In total, for the VGG16 five max pooling layers are
used which follow some of the convolutional layers. The Max-pooling is performed
with a stride of two over an area of 2× 2 pixels. Three FC layers follow the stack of
convolutional layers. Those first two of the FC layers each have 4096 channels, while
the third has 1000, corresponding to the 1000 classes that needed to be classified
for the ILSVRC 2014 challenge the authors participated in and won. Each hidden
layer of the network is followed by a ReLU nonlinearity described in section 2.1.2.

ResNet He et al. (2016) present the Residual Network (ResNet) architecture
in their paper. The ResNet architecture is based on the implementation of the
Residual Blocks from Section 2.1.2. A visualization of a comparison of the VGG-19
architecture, a plain 34-layer CNN and a 34-layer ResNet is given in the appendix
as Fig. 18. It is important to note that despite the increase in depth of the 34-layer

2 THEORETICAL FOUNDATIONS 20

Figure 8: The architecture of VGG-16 model, reprinted from Shi et al. (2018)

ResNet as compared to the VGG networks, the ResNet still has fewer filters and
fewer computational complexity than the VGG networks.

The convolutional layers are described by the authors to mostly have 3×3 filters, with
the depicted 34-layer ResNet having 3×3 filters in all convolutional layers except for
the very first one, which has 7×7 filters. Two design rules are given by the authors:
(1) the layer should have the same number of filters for the same output feature map
size and (2) when the feature map size is halved, the number of filters gets doubled
in order to retain the time complexity per layer. Downsampling is realized by the
convolutional filters with stride two. Global Average Pooling is conducted before
the single fully-connected layer, the final layer. Given the participation at ILSVRC
2015 with their ResNet architectures, the authors chose a 1000-way fully-connected
layer with softmax for the final classification layer, meeting the requirements for
being able to classify the 1000 different classes of the ILSVRC 2015 challenge.

The shortcut connections, which make the ResNet a Residual Network, come in two
variants. If input and output dimensions match, the identity shortcuts can be used
without further adaptations needed, this is resembled by the solid line shortcuts in
Fig. 18. However, if the input and output dimensions do not match, He et al. (2016)
give 2 options. In option one the shortcut still performs an identity mapping but
zero-padding is used to match the dimensions. With option two, 1× 1 convolutions
are used to match dimensions. These cases, where the input and output dimensions
do not match, are visualized by the dotted lines in Fig. 18. ResNet receives input
images with pixels 224× 224. Batch normalization is used after each convolutional
layer and before each activation. Common ResNet-variants which the authors also
presented results for are ResNets with 18 layers, 34 layers, 50 layers, 101 layers and
152 layers. All of these variants, while significantly deeper than a VGG model, still
have lower complexity than a VGG model. Deeper ResNet architectures may rely

2 THEORETICAL FOUNDATIONS 21

more on the bottleneck design for residual blocks detailed in section 2.1.2. These help
reduce training time, being more computationally efficient. The 50-layer ResNet is
constructed from the 34-layer ResNet by simply using a 3-layer bottleneck residual
block for each 2-layer residual block that was in the 34-layer ResNet. Even deeper
version like ResNet101 and ResNet152 are constructed by simply adding more of
those 3-layer residual blocks.

DenseNet The term Dense Convolutional Network (DenseNet) was coined by
Huang et al. (2017). Their DenseNet builds on the principles of ResNets. DenseNets,
as opposed to ResNets, however don’t just connect a layer to its subsequent layer
as well as to a later layer, as ResNets do. In DenseNets, inside a so-called Dense
Block, any layer is connected to all its subsequent layers. Likewise, any given layer
receives as input all the feature-maps of all the preceding layers inside a Dense
Block. This principle is visualized in Fig. 9. Another difference to ResNets is that
in DenseNets, features passed into a Dense Block are combined by concatenation,
not by summation. The authors go on to state how the lth layer of a DenseNet
has l inputs, them being the feature-maps of all the preceding layers inside a Dense
Block. Knowing that the feature-maps of a layer are fed to all L − l subsequent
layers, one arrives at L(L+1)

2
connections in an L-layer network. This would be just

L connections for other architectures where the output of a layer isn’t fed to all its
subsequent layers. Due to this mechanism, Huang et al. (2017) state that DenseNets
actually require fewer parameters than traditional CNNs, as there are no redundant
feature-maps which must be learned. With often just 12 filters per layer, DenseNet
layers seem narrow. DenseNets come in various depths, with depths of 121, 169,
201 and 264 presented by Huang et al. (2017). All these DenseNet variations have
in common an initial convolutional layer with 7× 7 convolutions and stride 2. This
initial layer is followed by a Pooling layer using 3× 3 max pooling and stride 2. In
each variation, the aforementioned Pooling layer is followed by four Dense Blocks,
each separated by a convolutional layer with kernel size 1× 1 and a 2× 2 Average
Pooling layer with stride 2. The authors name these two layers separating the
Dense Blocks transition layers. The fourth and final Dense Block is followed by a
7× 7 Global Average Pooling layer. Ultimately, after that Global Average Pooling
layer comes a classification layer, specifically a 1000D fully-connected layer (used
for the 1000 classes of the ILSVRC 2012 challenge) which is then finally followed by
a softmax function. The specification details for DenseNets of different depths as
presented by Huang et al. (2017) are included in Fig. 19.

EfficientNet The core idea behind the EfficientNet architecture presented by
Tan (2019) is to introduce a scaling method which uniformly scales the dimensions
depth, width and resolution. A constant ratio, so a fixed set of scaling coefficients is
employed to scale the network. These coefficients were determined by a small grid
search on the original small model. The compound scaling method is given by the
authors as shown in equation 13.

depth: d = αϕ width : w = βϕ resolution : γϕ

s.t. α · β2 · γ2 ≈ 2 with α ≥ 1, β ≥ 1, γ ≥ 1
(13)

2 THEORETICAL FOUNDATIONS 22

Figure 9: Dense Block structure, reprinted from Huang et al. (2017)

The α, β and γ constants are found via a grid search. ϕ is user-defined and depends
on how many extra resources the network might be granted. The authors constrained
α · β2 · γ2 ≈ 2 so the total FLOPS will increase by approximately 2ϕ for any new
ϕ. The architecture of EfficientNet is specified in Fig. 10. The 0 in ”EfficientNet-
B0” stands for ϕ = 0, the B stems from mobile inverted bottleneck convolutional
layers being used. The layers, also called MBConv, are detailed by Sandler et al.
(2018). Tan (2019) added a squeeze-and-excitation optimization to the MBConv-
layers, given by Hu et al. (2018). The key concept of EfficientNet is illustrated in
Fig. 20.

Figure 10: EfficientNet-B0 baseline network, reprinted from Tan (2019)

ViT-B/16 The architecture of ViT-B/16 is essentially depicted in Fig. 6. The
B in ViT-B/16 denotes a ”Base”, meaning it used the base version for this vision
transformer, as presented in section 2.1.3. The 16 denotes the patch size, so input
images are split into images of size 16 × 16 before feeding it into the transformer
encoder.

2 THEORETICAL FOUNDATIONS 23

CLIP ViT-B/16 This architecture is based on Contrastive Language-Image Pre-
training (CLIP). Radford et al. (2021) detail that CLIP works by using both a
text encoder and an image encoder in order to predict the pairings of a batch of
(image, text) training examples which belong together. To realize this, the text
encoder and the image encoder are jointly trained to learn a multi-modal embedding
space. A visualisation of this is provided in Fig. 11. The joint training is done
through maximization of the cosine similarity of the image and text embeddings of
the N real pairs in a batch. Simultaneously, the cosine similarity of the embeddings
of the N2 − N incorrect pairings is minimized. The authors describe optimizing
a symmetric cross entropy loss over these similarity scores. For CLIP ViT-B/16
specifically, the ViT-B/16 architecture given in Fig. 6 is used as the image encoder
with the only modifications being the addition of an additional layer normalization
to the combined patch and position embeddings before the transformer. The authors
also used a slightly different initialization scheme. As the text encoder a Transformer
described by Radford et al. (2019) is used. Crucially, using the CLIP ViT-B/16
architecture for image classification with preceding fine-tuning entails a training
step analogous to step (1) of Fig. 11. The training images of the dataset which the
CLIP ViT-B/16 is about to be trained on are used to adjust the weights of the
encoder as calculated based on the symmetric cross entropy loss over the similarity
scores. To perform image classification, the class names are taken and fed into the
text encoder. The class labels are represented as a sort of prompt template in the
form of ”A photo of class label” Radford et al. (2019) (see supplementary materials).
This is depicted as step (2) in Fig. 11. For the final classification of an unseen test
image, the similarity between the text embedding and the image embedding is then
calculated and the label with the highest similarity score is then predicted as the
class label for the image.

Figure 11: CLIP Architecture, reprinted from Radford et al. (2021)

2 THEORETICAL FOUNDATIONS 24

EVA-02 EVA-02 is a transformer architecture presented by Fang et al. (2024).
The EVA acronym stems from the description ”Explore the limits of Visual repre-
sentation at scAle [sic!]” Fang et al. (2023). EVA-02 is a ViT-inspired architecture,
using several enhancements shown in Fig. 12. The characteristics of EVA-02 are that
it is based on Transform Vision (TrV). Trv builds onto the foundation of the ViT
architecture and modifies it. EVA-02 is based on TrV but sufficiently pre-trained
from EVA-CLIP using MIM, which was described in section 2.1.3. The main ar-
chitectural differences between TrV and ViT which was introduced in section 2.1.3
are that TrV uses Rotary Position Embedding (RoPE) instead of RPE, a Sigmoid
Linear Unit (SiLU) instead of a Gaussian Error Linear Unit (GELU) and an addi-
tional layer normalization. Where not otherwise specified, switch gated linear units
are used as part of the feed forward network. For a detailed description of those
enhancements, see Fang et al. (2024), Hendrycks and Gimpel (2016), Ba (2016) and
Su et al. (2023) as this would go far beyond the scope of this thesis.

Figure 12: ViT and TrV Blocks, reprinted from Fang et al. (2024)

DINO The term Self-DIstillation with NO labels grants DINO its name. Caron
et al. (2021)’s visualization of this is shown in Fig. 13. For an input image, two global
views are created by cropping the image to retain more than 50% of the area of the
original image. Likewise, several local views are obtained by cropping the image
such that less than 50% of the area of the original is contained. This distinction of
differently cropped views is important, as different sets of those cropped inputs will
be fed into different branches. As Fig. 13 displays, DINO uses both a student and a
teacher network. Only one of the global views is fed into the teacher network, while
the student network receives both the local views and the remaining global view, so

2 THEORETICAL FOUNDATIONS 25

the entire crops excluding the crop used for the teacher network, as input. Both the
student and the teacher network are ViT-based (see section 2.1.3 for a description of
the ViT architecture). The ViT-based backbone is followed by a 3-layer MLP, an l2
normalization and a weight normalized fully connected layer. The teacher network
is directly linked to the student network as its weights are computed by means of an
exponential moving average on the student network’s weights. Caron et al. (2021)
go on to explain how knowledge distillation works using DINO. For this, an input
image is given to the student network gθs which is trained to match the output of the
teacher network gθt . The student and the teacher network each output probability
distributions. The goal is the minimization of the cross-entropy loss with regards to
the parameters of the student network as shown in equation 14 and equation 15.

min
θs

∑
x∈{xg

1,x
g
2}

∑
x′∈V
x′ ̸=x

H(Pt(x), Ps(x
′)). (14)

min
θs

∑
xt∈xg

1,x
g
2

∑
xs∈V

H(Pt(xt), Ps(xs)), (15)

One important detail to note is that the ViT-based networks receive the sequence
of patches and an extra learnable token which is added to the sequence as input.
This token is coined a [CLS] token although the authors note that it doesn’t have
a relation to a label or supervision in the case of DINO. For pre-training, DINO
was pretrained on the ImageNet dataset Russakovsky et al. (2015) without labels.
The previously described projection head is discarded for image classification and
instead a fully connected layer is added for classification.

Figure 13: Self-distillation with no labels, reprinted from Caron et al. (2021)

2 THEORETICAL FOUNDATIONS 26

SAM The Segment Anything Model (SAM) is primarily designed for segmenta-
tion tasks but can be employed for image classification tasks as well. Kirillov et al.
(2023) describe how SAM uses an image encoder to compute an image embedding
and a prompt encoder which processes the prompts accompanying the image. Us-
ing these two as sources of information then enables SAM to output segmentation
masks. This process is depicted in Fig. 14. After pre-training, which has already
been done as presented in the paper, the image encoder of SAM can be loaded with
pre-trained weight and then be taken advantage of to apply it to image classification
tasks.

Figure 14: Segment Anything Model (SAM) overview, reprinted from Kirillov et al.
(2023)

Model overview Table 1, which was adapted from Doerrich et al. (2024), dis-
plays an overview over the models used by the authors in their evaluations of the
MedMNIST+ collection of datasets. Evidently, the parameter count among the ViTs
is quite similar for the four Vision Transformers ViT-B/16, CLIP ViT-B/16, EVA-02
ViT-B/16 and DINO ViT-B/16. The SAM ViT-B/16 architecture has 89.7 param-
eters and thus remains in a similar range of the other ViTs where e.g. ViT-B/16
has 86.6 parameters. However, with its additional 3.1M more parameters than ViT-
B/16 the SAM model used is the largest of the ViTs and also the farthest away from
the original ViT-B/16 in terms of parameter count. The CNN architectures used by
Doerrich et al. (2024) exhibit a much wider range of parameter count with the small-
est being DenseNet-121 with roughly 8M parameters and the largest being VGG16
with 138.4M parameters, more than 17 times as many parameters as DenseNet-121.
ResNet-18 is given as having 11.7M parameters. So a ViT-B/16 model has roughly
more than seven times the number of parameters than a ResNet18. It’s important
to note that these models have very different architectures. They don’t just differ in
the way that some are CNNs and some ViTs but also in their general architecture.
ResNets for example were developed to fix some of the issues plaguing AlexNet and
VGGs and thus even among CNNs there can’t simply be drawn a comparison solely
focused on higher parameter count, as the underlying architecture itself also con-
tains different building blocks such as residual blocks with their residual connections,
detailed in section 2.1.2.

2 THEORETICAL FOUNDATIONS 27

Model Params (M) Activations (M) GMACs # Output Dimension

VGG16 138.4 13.6 15.5 4096
AlexNet 62.3 0.6 0.36 4096
ResNet-18 11.7 2.5 1.8 512
DenseNet-121 8 6.9 2.9 1024
EfficientNet-B4 19.3 34.8 3.1 1792
ViT-B/16 86.6 16.5 16.9 768
CLIP ViT-B/16 86.6 16.5 16.9 768
EVA-02 ViT-B/16 86.3 16.5 16.9 768
DINO ViT-B/16 85.8 16.5 16.9 768
SAM ViT-B/16 89.7 1343.3 486.4 256

Table 1: Model Overview, adapted from Doerrich et al. (2024)

2.3 Training Paradigm

Woerner et al. (2024) introduce a specialized training paradigm focused on the ca-
pability of a model to perform well over multiple datasets and thus tasks. The
authors talk about the notion of catastrophic forgetting introduced by Kirkpatrick
et al. (2017) which describes the poor performance of neural networks to learn differ-
ent tasks sequentially. Thus catastrophic forgetting is the forgetting of knowledge
about one or multiple source tasks, leading to a much worse performance on the
evaluation of these source tasks which were forgotten as opposed to a newly trained
task. So sequential training leads to a model forgetting about the original tasks it
was trained on, causing a drop in classification performance on these tasks. The
approach of Woerner et al. (2024) aims to combat this catastrophic forgetting by
training a model on the union of various datasets with different tasks. They name
their approach multi-domain multi-task pre-training (mm-PT). The basis of their
training paradigm is that during training of the model, a batch is randomly sampled
from one of the tasks. This usually will mean that from a dataset, for which there
exists a dedicated classification task, a batch is sampled. Then this batch is fed as
input to the model and used to adjust the parameters of the model. Such a model
can reasonably be expected to possess not just one, but instead multiple classifi-
cation heads, of which only the classification head corresponding to the randomly
sampled task is active. Meaning only the weights and the bias of this classification
head are being updated with the rest of the backbone while the other classification
heads remain frozen. The pseudocode for an algorithm describing mm-PT is given
by Woerner et al. (2024) and shown in algorithm 1.

3 METHODS 28

3 Methods

3.1 Benchmark

Classification problems are the origin of the evaluations in this thesis. They them-
selves can be largely divided into binary classification, multi-class classification and
multi-label classification, as given by Hossin and Sulaiman (2015). Binary classifi-
cation is classification where a decision has to be made between exactly two classes.
Multi-class classification implicates three or more target classes. In multi-label clas-
sification an instance (e.g. an image in image classification) can have zero or more
labels, even multiple labels at once. There is no mutual exclusivity of classes as
there is in binary classification or in multi-class classification. Making the transfer
to image classification with neural networks, evaluation metrics measure a model’s
performance on a classification task. Hossin and Sulaiman (2015) also make the dis-
tinction of evaluation metrics into threshold, probability and ranking metric. They
also note how the evaluation metrics from each of those categories ultimately boil
down to being a single scalar value. When doing image classification, the evaluation
commonly looks like this: a model is trained in a training phase and in a testing
phase that model’s predictions are collected in order to determine how many predic-
tions were right and how many were wrong. For this notion, the authors introduce
so-called discriminator metrics for binary classification, which are shown in table 2.

Actual Positive Class Actual Negative Class

Predicted Positive Class True positive (tp) False negative (fn)
Predicted Negative Class False positive (fp) True negative (tn)

Table 2: Discriminator Metrics, reprinted from Hossin and Sulaiman (2015)

Here, True Positive (TP) denotes the correctly predicted positive classes, False Neg-
ative (FN) the prediction that the positive class was predicted although it was the
negative class, the False Positive (FP) that the negative class was predicted although
it was the positive class and the True Negative (TN) that the negative class was
predicted when it actually was the negative class.
True Positive Rate (TPR): the True Positive Rate is given by Bocchieri et al. (2023)
as shown in equation 16. They describe it as the ”hit” rate. It essentially describes
the share of correct classifications. Another common name for the TPR is Sensitivity
(Hossin and Sulaiman, 2015) or Recall.

TPR =
TP

Positives
=

TP

TP + FN
(16)

False Positive Rate (FPR): the False Positive Rate is given by Bocchieri et al. (2023)
as shown in equation 17. They describe it as the ”false alarm” rate. It measures the
share of actual negatives which have been predicted as being positive by the model.

3 METHODS 29

It is related to the specificity given in equation 18 by being its complement, as in
equation 19.

FPR =
FP

Negatives
=

FP

FP + TN
(17)

Specificity =
TN

Negatives
=

TN

TN + FP
(18)

Specificity = 1− FPR (19)

Accuracy (ACC): the accuracy is mentioned to be the most used evaluation metric
by the authors. It essentially is the percentage of correct predictions made over the
total instances over which predictions were made. The formula for the accuracy is
given in equation 20.

ACC =
TP + TN

TP + FP + TN + FN
(20)

Error Rate (ERR): the error rate is the complement to the accuracy. This relation-
ship is displayed in equation 22. The error Rate can also be given in terms of TP,
FP, TN and FP, as it is in equation 21.

ERR =
FP + FN

TP + FP + TN + FN
(21)

ErrorRate = 1− Accuracy Accuracy = 1− ErrorRate (22)

Multi-class classification metrics like the accuracy follow the same principles of those
metrics for the binary case, but extended to accomodate for multiple classes. In the
following the metrics will be presented as given by sklearn (sci), which was used to
compute the metrics in the experiments presented in 4. The ACC for the multi-class
classification case is given by equation 23. 1(ŷi = yi) is the indicator function which
equals one if ŷi = yi where yi is the true class label of sample i and ŷi the predicted
class label.

ACC =
1

nsamples

nsamples−1∑
i=0

1(ŷi = yi) (23)

Area under the ROC Curve (AUC): the AUC is a single scalar metric intended to
measure the performance of a classifier. It is derived from the Receiver Operating
Characteristic (ROC) curve. The ROC curve can be obtained by plotting the TPR
and the FPR against each other as the threshold is varied. For the binary case,
different thresholds at which samples are classified as positive or negative might
result in different TPRs and FPRs. For this, the predicted scores, so the probabilities
output by the model are fed into the roc auc score function by sklearn. The multi-
class case then entails that for one class, the ROC is determined in a One-vs-Rest
fashion, where the ROC is constructed as in the binary case with the current class
being considered against all the other classes combined. Based on the resulting ROC
the AUCs are then computed for all classes by simply averaging them. Bradley
(1997) explain how the AUC represents the probability that a randomly chosen

3 METHODS 30

positive example is correctly rated with greater suspicion than a randomly chosen
negative example.

Balanced Accuracy (BALACC): the BALACC introduces the concept of weights to
the ACC metric. This weight is determined by the inverse share a class takes up
in the dataset, as shown in equation 24. 1(yj = yi) again is the indicator function,
whereas yi is the true value of sample i, with wi being the accompanying sample
weight.

ŵi =
wi∑

j 1(yj = yi)wj

(24)

So the weight is inversely proportional to the proportion of samples that belong to
a class inside of a dataset. That way classes with less samples will not be underrep-
resented in their contribution to the (balanced) accuracy score. The equation for
the BALACC is given in equation 25.

BALACC =
1∑
ŵi

∑
i

1(ŷi = yi)ŵi (25)

Cohen’s Kappa (CO): the CO is commonly used to measure interrater reliability.
McHugh (2012) give the interrater reliability as the reliabiltiy across multiple data
collectors. The key idea behind CO is to also account for the share of agreement
which might be attributed to pure chance. As a form of correlation coefficient, the
CO ranges from -1 to 1. Values of 0 are seen as measuring no agreement between
the two raters, while values from 0.81-1.00 resemble ”almost perfect agreement”
(McHugh, 2012), whereas the more negative the CO becomes below 0, the worse the
agreement between the raters is. Transferring this concept to the image classifica-
tion domain, the two raters which are compared are a model’s predictions and the
existing ground truth. The formula for the CO is given in equation 26 where po is
the probability of agreement of the two raters on the label assigned to any sample.
On the other hand, pe is defined as the expected agreement of both annotators as-
signing labels randomly. In sklearn this is an empirical prior over the class labels,
calculated using the confusion matrix. This estimation is made by taking the outer
product of the total predictions (columns) and the total amount of times the class
is the true class (rows) and ultimately dividing this product by the total number of
samples to normalize the result.

κ =
po − pe
1− pe

(26)

Cheating Prevention One key question when designing any benchmark will be
whether to use publicly available datasets as test sets or to withhold datasets for
the evaluation. Crucial factors influencing this decision might be the availability
of datasets which are fit to be part of the benchmark, the available computational
resources and infrastructure in the form of a server and whether one wants to host
a challenge on a custom-made website for example or use a popular site like for
instance Kaggle9 (kag) or Grand Challenge10 (gra). More importantly, if publicly

9https://www.kaggle.com/
10https://grand-challenge.org/

https://www.kaggle.com/
https://grand-challenge.org/

3 METHODS 31

available datasets are used, then that opens the door to a greater extent for cheating
than conducting the evaluation on withheld datasets. However, given some domains
like biomedical image datasets suffering from a lack of high-quality datasets that
are available, it might not always be a question of whether one wants to withhold
any datasets but also whether there are even datasets available which could be
withheld. The benchmark presented in section 1.4 is based on the MedMNIST+
dataset collection11 that’s connected to MedMNIST v2 (Yang et al., 2023). This
choice was made for several reason, one certainly being that MedMNIST+ is a large
collection of biomedical datasets and datasets in the biomedical domain already
are generally hard to come by as noted by Shen et al. (2017), who state that for
most medical applications there are fewer than 1,000 images available. Also, there’s
a python package associated with MedMNIST+ and MedMNIST v2, allowing for
a streamlined usage of the datasets, greatly facilitating downloading and handling
the data, even providing code to evaluate the models trained on MedMNIST+. For
the BIG benchmark there currently aren’t any datasets withheld for evaluation but
this might be something to add in the future. One adversarial approach to such a
challenge would be training the model on the test datasets such that it performs
well on them. Withholding datasets for evaluation also has the upside that people
can’t just take the labels from the publicly available source, perhaps modify the
predictions a bit so it isn’t immediately obvious they just took the results, and then
submit them.
This leads to the next point: how and where the evaluation takes place. There
are two common options. One is that the participants of a challenge submit their
results in an easy-to-manipulate format like .csv or .json, as is the case for VDD and
WILDS. Another one is that the participants upload code, which is then run on the
infrastructure that’s provided. Such code submissions with training and evaluation
on infrastructure which was provided was done for the AutoML Decathlon (Pavao
et al., 2023) for example. Other considerations tie into the previous points. If a
benchmark were to use publicly available datasets, then an organizer might shuffle
the datasets in order to prevent people from training on the test split, on which the
evaluations will be made. Such shuffling is often done via random seeds, which can
be reverse-engineered. So even if the training set is provided as a shuffled dataset
it would be possible to find out the labels for the test set, without even needing to
make a submission, as the datasets can be downloaded and tinkered with locally
on an malicious actor’s device. Providing a shuffled publicly available dataset also
entails having to provide a custom solution for downloading that dataset. An upside
of using publicly available datasets to organizers low on infrastructure might be not
having to store the datasets for their challenge and not having to offer a download
option. Instead they can just provide a link to the source where the datasets which
are part of the challenge had been made available initially.

11https://zenodo.org/records/10519652

https://zenodo.org/records/10519652

3 METHODS 32

3.2 Website

Technical Implementation: There are three key components from a develop-
ment standpoint which are vital to the website presented for this thesis: the real-
ization of the user interface, back-end and the database that’s being used. These
resemble the cornerstones on which the bespoke website crafted for the BIG challenge
is built on. For the user interface, React12 (rea) was chosen. React is an open-source,
Javascript-based library for creating user interfaces based on reusable, nestable com-
ponents. For the back end, flask (fla)13 was utilized. Flask is a lightweight, Python-
based web application framework which provides functionality for HTTP requests
as well as routing. The choice of Flask for the back end is based on the the required
data processing capabilities of a website for hosting the BIG challenge. This frame-
work is based on Python which offers the possibility to utilize the pandas library
for easily manipulating and analyzing data. MySQL14 (mys) was chosen for the im-
plementation of the database. It’s an open-source relational database management
system that has been around for decades and enjoys great popularity. Widenius and
Axmark (2002) even claim it’s the most popular open source SQL database. These
web technologies were largely chosen because they fulfill the task-specific require-
ments. Further reasons include extensive documentation which is often concomitant
with great popularity that is given for all three mentioned web technologies.
Content: A contribution from section 1.2 is the development of a website on
which a challenge based on the BIG benchmark could be hosted. As elaborated in
1.3.2, there exists a similar bespoke website that hosts a challenge for the WILDS
benchmark. Building on that, several core components which constitute a well-
structured website for the purposes of hosting such a challenge are identified. This
is a non-exhaustive list, as with different benchmarks and challenge-setups different
requirements will be in place. However, for most challenges, those core components
will serve a good purpose. More importantly, the website for the possible accom-
panying challenge for the BIG benchmark will make use of this structure. Firstly,
a landing page with an overview over what the website and thus challenge offers
should be implemented. Secondly, a description of the challenge should be pro-
vided. Thirdly, an overview over the datasets which are used for the benchmark
is useful. Then a submission page is absolutely needed to do justice to the idea of
a bespoke website for hosting a challenge. Moreover, a leaderboard is essential for
a challenge and serves as a ranking for researchers to compare the performance of
their methods on the level playing field that the benchmark provides. Furthermore,
appealing to the academic and scientific nature of such a benchmark and challenge,
additional resources should be provided, links to related papers, perhaps a paper
detailing the challenge. Lastly, some contact information of the organizers, some-
thing like a site notice.
Having identified those crucial constituents, the website developed to host a chal-
lenge for the BIG benchmark and possible challenge is made up of the following

12https://react.dev/
13https://flask.palletsprojects.com/en/stable/
14https://dev.mysql.com/

https://react.dev/
https://flask.palletsprojects.com/en/stable/
https://dev.mysql.com/

3 METHODS 33

pages: a home page giving the user a quick glance over the challenge and offering
navigation elements, a page detailing the challenge, a page containing a summary of
the datasets being used for the BIG benchmark, a leaderboard page, a page with in-
formation about the evaluation metrics that are used, a page with links to research
related to the BIG benchmark and lastly, an About Us page containing relevant
contact information.
Submissions: The functionality of making submissions is realized via an upload
form when logged in. An account for a team can be created by visiting the register
page via clicking a button. A login page also is implemented, from which the user
is routed to his profile page. There, he can upload a singular .csv-file and specify
some metadata regarding the upload. The .csv-file must contain the predictions for
all datasets, including and especially the output probabilities as they’re used to cal-
culate the AUC. Based on this .csv-file containing the prediction results on the test
sets, the calculation of metrics is realized by the back end. If a submission surpasses
a number of best-ranking submissions, it places itself in the leaderboard at the rank
corresponding to its ranking for a given classification performance.
Upon having made a submission, some plots based on the submission can be down-
loaded as well. These include different visualizations of the performance determined
by making use of the submitted .csv-file. Providing these plots caters to the aim of
facilitating research by making available uniform visualizations of the results.
Cheating prevention: For this thesis it’s not possible to withhold any datasets,
as there were no non-public datasets available that could have been withheld. The
practice of shuffling the datasets can be reverse-engineered, as outlined before. Be-
sides, no infrastructure was available to conduct training on. The main approach of
the BIG challenge to combat cheating is prompting participants to submit a link to a
peer-reviewed study detailing their training. This makes it possible for submissions
to be tested in terms of reproducibility. This approach would also be beneficial for
more discourse among the participants of the challenge. Submissions which include
a link to a peer-reviewed study will be highlighted in the leaderboard. A submission
limit of 10 submissions per day and 100 total submissions per team is also enforced.

Establishing a baseline: The results of the reevaluation of the models trained by
Doerrich et al. (2024) will be used as a baseline for the BIG benchmark. Additionally,
the mm-PT based models detailed in this thesis also serve to establish a baseline.

3.3 Model Training

The experiments conducted for this thesis in large are split into two parts. First, the
training of models using the mm-PT training paradigm described in algorithm 1.
Especially the comparison of two architectures, one representative of CNNs and one
representative of ViTs is considered here. Second, a reevaluation of the models pre-
sented in Doerrich et al. (2024) with regards to the evaluation metrics is conducted
and considered in comparison with the models trained on mm-PT. For this, the very
models given in the paper were taken and their performance on the three evaluation
metrics AUC, BALACC, CO of the BIG benchmark was determined. These two

3 METHODS 34

distinct parts are brought together in an evaluation across training paradigms, with
performance comparisons between the mm-PT trained models and the reevaluated
models from Doerrich et al. (2024). Those latter models have been trained and
evaluated on a single dataset each, representing a contrast to the principle of CNN.

For the mm-PT, bespoke code was created to map the concept of mm-PT. The core
functionality of the code corresponding to the mm-PT paradigm is largely based on
simply randomly sampling a dataset out of the collection of MedMNIST+ datasets
and training the model on the corresponding task. A batch is sampled from those
batches which haven’t been seen yet during the epoch and is then used to train the
model on the task. For this to be as plain of an implementation as it is inside the
training loop, a proper model architecture is needed. This is given by using a back-
bone according to what model one is using, so for ResNet18 a ResNet18 backbone is
used. This backbone consists of all layers except for the last classification layer. Us-
ing mm-PT as implemented for this thesis, there isn’t simply one classification layer,
but multiple ones. This multitude of classification heads and with that classification
tasks follows the backbone. However, this isn’t done in a sequential manner where
the heads follow sequentially upon each other, but instead the model is adjusted
to use just the backbone and one classification head per batch. This classification
head then must correspond to the classification task of the dataset which the batch
is sampled from. For updating the parameters of the model, only the backbone as
well as the classification head corresponding to the sampled dataset and batch are
updated. The other classification heads are simply frozen.
Training setup: In general, all training runs were configured to be as compa-
rable as possible to the training by Doerrich et al. (2024). Just as in their paper,
models were downloaded from the Pytorch Image Models (timm)15 (hug) library.
However, the training runs for this thesis did not involve a training on multiple
random seeds. One of the random seeds of the paper by Doerrich et al. (2024) was
chosen to conduct the training with. It’s important to note that only for the train-
ing of the ResNet18 and ViT-B/16 model timm was used. The reevaluation isn’t
a training per se and for the end-to-end and linear probing only required loading
the already trained models trained in Doerrich et al. (2024). An overview over the
hyperparameters the authors used in the training of the models is given in Table 3.
For better comparability, the mm-PT training used the same training configuration,
meaning the same hyperparameters and general training setup, as described in the
paper. The model training was set to run for 100 epochs at most. Early stopping
was utilized with ten epochs and the validation loss as the early stopping criterion.
Further variables include that like Doerrich et al. (2024) a Cosine Annealing Learn-
ing Rate Scheduler was used. The images were zero-padded to be of size 224× 224.
Training was performed on a single NVIDIA RTX™A5000 GPU. A CUBLAS en-
vironment variable was set upon executing the training script, looking like this.
CUBLAS_WORKSPACE_CONFIG=:16:8 python file_name.py --config_file="/pat

h/to/file_name"

Setting the CUBLAS environment variable enables deterministic algorithms and

15https://huggingface.co/timm

https://huggingface.co/timm

3 METHODS 35

thus facilitates reproducibility of results. The loss functions were chosen as chosen
by Doerrich et al. (2024) with the Cross-Entropy loss applied to the logits being
used for dataset. For binary and multi-class classification, as well as the ordinal re-
gression task. For the multi-label classification however, the Binary Cross-Entropy
with logits was used as the loss function.
Weighting: For some models trained for this thesis a weighting was used. This
weighting weighted the loss of the smallest dataset with 1 and the other datasets
with length smallest dataset

length dataset
such that they’d receive a weight smaller than 1, calculated

using the length of the smallest dataset in the numerator.

Maximum # epochs Early Stopping Learning Rate

100 10 0.0001

Batch Size Seed Optimizer

64 9930641 AdamW

Table 3: Training Configuration

4 EXPERIMENTS 36

4 Experiments

4.1 Datasets

4.1.1 MedMNIST v2

MedMNIST v2 comprises 12 datasets for 2D as well as 6 datasets for 3D biomedical
imaging. (Yang et al., 2023). It is described by the authors to provide a diverse,
standardized and lightweight collection of datasets. Thus there is a wide range of
data modalities as well as classification tasks offered in MedMNIST v2. Binary
classification, multi-class classification, multi-label classification as well as ordinal
linear regression tasks are all part of MedMNIST v2. Cubic spline interpolation
was used in resizing all the images to 28x28 pixels, in the case of the 2D images, or
28×28×28, for the 3D images. The authors highlight that this small image size is
suited to provide a lightweight collection of datasets for machine learning algorithms.
MedMNIST v2 extends its predecessor MedMNIST v1 by adding two datasets for
2D images, hence bringing the total of 2D image datasets from 10 to 12 (Yang et al.,
2021). These additional 2D datasets add to the diversity of the domain of images,
previously in MedMNIST v1 the images were all in the medical realm while these
two additions also include datasets from the bioimaging domain.

4.1.2 MedMNIST+

MedMNIST+ (Yang et al., 2024) extends the MedMNIST v2 datasets by providing
a range of resolutions for the images contained in MedMNIST v2. MedMNIST+
does use the 12 datasets in 2D from the biomedical domain that MedMNIST v2
provides but also offers these in four different solutions. So every image from the
2D MedMNIST datasets is provided in the resolutions 28×28, 64×64, 128×128 as
well as 224×224. It also extends the 3D images to 28×28×28 and 64×64×64 each.
Obtaining these different image sizes for the same pictures for the 12 biomedical 2D
image datasets differed from dataset to dataset and included resizing the source im-
ages or center-cropping them. There is evidence that with higher resolutions there is
the chance of better performance for deep learning models in the biomedical realm
(Sabottke and Spieler, 2020), thus MedMNIST+ presents the chance to not just
possibly achieve superior performance using the higher resolutions of e.g. 224×224
compared to the 28×28 of MedMNIST v2, but also to compare the performance
of models among varying resolutions, further examining the effects of different res-
olutions on model performance. While Sabottke and Spieler (2020) highlight the
superior performance of models trained on higher resolutions, they also acknowl-
edge that training on images with higher resolution in the past had yielded inferior
results, possibly due to overfitting stemming from the higher number of features
leading to a higher number of parameters being optimized. The authors mention
the counter-intuitive observation that in the past models trained on images with
lower resolutions fared better than models trained on higher resolutions. The rea-
son they give for this is that before the implementation of residual blocks as in

4 EXPERIMENTS 37

Name Data Modality
Task

(# Classes)
Samples # Training /

Validation /
Test

PathMNIST Colon Pathology MC (9) 107,180 89,996 / 10,004 /
7,180

ChestMNIST Chest X-Ray
ML (14)
BC (2)

112,120 78,468 / 11,219 /
22,433

DermaMNIST Dermatoscope MC (7) 10,015 7,007 / 1,003 /
2,005

OCTMNIST Retinal OCT MC (4) 109,309 97,477 / 10,832 /
1,000

Pneumonia
MNIST

Chest X-Ray BC (2) 5,856 4,708 / 524 / 624

RetinaMNIST Fundus Camera OR (5) 1,600 1,080 / 120 / 400
BreastMNIST Breast Ultra-

sound
BC (2) 780 546 / 78 / 156

BloodMNIST Blood Cell Mi-
croscope

MC (8) 17,092 11,959 / 1,712 /
3,421

TissueMNIST Kidney Cortex
Microscope

MC (8) 236,386 165,466 / 23,640
/ 47,280

OrganAMNIST Abdominal CT MC (11) 58,850 34,581 / 6,491 /
17,778

OrganCMNIST Abdominal CT MC (11) 23,660 13,000 / 2,392 /
8,268

OrganSMNIST Abdominal CT MC (11) 25,221 13,940 / 2,452 /
8,829

Table 4: MedMNIST2D Dataset Information, adapted from Yang et al. (2023)

the popular ResNet architecture, the models employing deeper architectures faced a
higher training loss due to the increased number of model parameters reducing the
tractability of optimization.
For the BIG benchmark, only the 2D images of the MedMNIST+ collection of
datasets were used.

4.1.3 PathMNIST

In total, 107,180 images of non-overlapping hematoxylin-eosin-stained tissue slides
make up the PathMNIST dataset. These histological slides were used by Kather
et al. (2019) to build a system aimed at predicting survival from colorectal cancer
histology slides. The colored source images were of dimensions 3×224×224. Tis-
sue samples come from the National Center for Tumor diseases in Heidelberg, Ger-
many and the University Medical Center Mannheim in Mannheim, Germany. Hand-
delineating single-tissue regions in 86 colorectal cancer tissue slides resulted in more
than 100,000 HE image patches which made their way into the final dataset. The

4 EXPERIMENTS 38

remaining 7,180 images stem from 25 colorectal cancer patients out of the DACHS
study (Kather et al., 2019). These colorectal cancer histology slides contain tissue
from 9 classes in total, them being adipose tissue, background, debris, lympho-
cytes, mucus, smooth muscle, normal colon mucuosa, cancer-associated stroma and
colorectal adenocarcinoma epithelium.

4.1.4 ChestMNIST

The ChestMNIST dataset (Wang et al., 2017) builds on the NIH ChestXRay dataset
and contains frontal-view chest X-Ray images which in Machine Learning are often
used to classify thoracic diseases captured in these images or even conduct spatial
localization. With its 14 different classes, applying ML methods to ChestMNIST re-
sembles a multi-class classification problem. The possible classifications encompass
Atelectasis, Cardiomegaly, Effusion, Infiltration, Mass, Nodule, Pneumonia, Pneu-
mothorax, Consolidation, Edema, Emphysema, Fibrosis, PT and Hernia. In total,
ChestMNIST encompasses 112,120 images from 30,805 unique patients. The source
images were available in a resolution of 1024×1024 pixels.

4.1.5 DermaMNIST

The HAM10000 challenge (Tschandl et al., 2018) resembles the image basis for Der-
maMNIST (Yang et al., 2023). In this dataset 10,015 dermatoscopic images are pro-
vided from multiple sources, capturing common pigmented skin lesions. There are
7 different diseases captured in the DermaMNIST images, resembling a multi-class
classification problem. These 7 different diseases consist of: actinic keratoses, basal
cell carcinoma, benign keratosis, dermatofibroma, melanocytic nevi, melanoma, vas-
cular skin lesions. Of these diagnoses for the diseases, Tschandl et al. (2018) state
that over 50% have been confirmed by pathology, whereas the rest had been given
based on follow-up, expert consensus or lastly in-vivo confocal microscopy. The im-
ages were acquired over 20 years from different populations on two different sites,
namely Medical University of Vienna, Austria, and the skin cancer practice of Cliff
Rosendahl in Queensland, Australia. The Medical University of Vienna began stor-
ing images even before digital cameras were widely available and hence the images
and metadata existed in various formats such as diapositives which then had to be
digitized. Some other, digitally available images had to be extracted from Power-
point slides or Excel files. Images were generally cropped to center the skin lesions,
however, for some images different magnifications or angles were used for the same
skin lesions.

4.1.6 OctMNIST

OctMNIST (Kermany et al., 2018) relies on optical coherence tomography images
of the retina to examine age-related macular degeneration as well as diabetic macu-
lar edema. Initially, 207,130 of those were obtained, however after an image quality

4 EXPERIMENTS 39

review only about half of those imagges made it into the final dataset, leaving OctM-
NIST with 109,312 images in total. OctMNIST encompasses 4 different diagnosis
categories, namely choroidal neovascularization, diabetic macular edema, drusen
and normal. This presents a multi-class classification problem. Source images were
of resolutions (384–1,536) × (277–512). Center-cropping was employed for resizing
these images. Retrospective cohorts of adult patients were used to obtain the images
from, with the time span over which these images were acquired ranging from July
1, 2013 to March 1, 2017. The Shiley Eye Institute of the University of California
San Diego, the California Retinal Research Foundation, Medical Center Ophthal-
mology Associates, the Shanghai First People’s Hospital the and Beijing Tongren
Eye Center all provided data.

4.1.7 PneumoniaMNIST

The PneumoniaMNIST dataset originally was used by Kermany et al. (2018) to re-
search the generalizability across multiple imaging modalities, having trained their
model on the optical coherence tomography images of the OctMNIST dataset. Pneu-
moniaMNIST deals with pediatric pneumonia, so it contains chest X-rays of children
of which some had fallen ill with pneunomia. 5,856 of these chest X-ray images of
just as many patients make up the PneumoniaMNIST dataset. The classification
task is a binary one, with classes being divided in just pneumonia versus normal.
The source images were of dimensions (384–2,916) × (127–2,713) and got center-
cropped to be part of MedMNIST v2 (Yang et al., 2023).

4.1.8 RetinaMNIST

The RetinaMNIST dataset stems from the DeepDRiD challenge (Liu et al., 2022)
and is meant to explore the application of machine learning systems for auto-
screening systems in diabetic retinopathy. Diabetic retinopathy stands out as the
disease that’s caused most frequently by diabetes. Diagnoses are given based on reti-
nal fundus images. Liu et al. (2022) explain how ”five levels of DR are distinguished,
based on the International Clinical DR (ICDR) classification scale: (1) no apparent
retinopathy (grade 0), (2) mild NPDR (grade 1), (3) moderate NPDR (grade 2),
(4) severe NPDR (grade 3), and (5) PDR (grade 4)”. This leads to RetinaMNIST
deviating from the commonly seen binary or multi-class classification and instead
offering the chance to perform ordinal regression. This ordinal regression is split
into the 5 labels (levels) of diabetic retinopathy as just listed. The entire dataset
encompasses 1,600 retinopathy images. Source images were of dimensions 3 × 1,736
× 1,824 and got center-cropped.

4.1.9 BreastMNIST

BreastMNIST (Al-Dhabyani et al., 2020) encompasses 780 images of breast ultra-
sound scans. The images have been acquired from 600 women over the course of

4 EXPERIMENTS 40

2018, with the patients having been between the ages of 25 and 75. The source
images were acquired at the Baheya Hospital for Early Detection & Treatment of
Women’s Cancer in Cairo, Egypt using the LOGIQ E9 ultrasound and LOGIQ E9
Agile ultrasound system. The source images were of resolution 500 × 500 pixels. Ul-
trasound images are inherently grayscale. The data originally was stored in DICOM
format and subsequently converted to the PNG format. Originally, the data encom-
passed 3 classes (normal, benign and malignant), however BreastMNIST poses a
binary classification task with the labels normal and benign being combined to form
the positive class and the label malignant used to represent the negative class.

4.1.10 BloodMNIST

BloodMNIST (Acevedo et al., 2020) is a dataset made up of microscopic peripheral
blood cell images. These hematological images were captured at the Core Laboratory
of the Hospital Clinic of Barcelona, using the analyzer CellaVision DM96. Collec-
tively, 17,092 images make up BloodMNIST. Eight different classes are found in the
image data: neutrophils, eosinophils, basophils, lymphocytes, monocytes, immature
granulocytes (promyelocytes, myelocytes, and metamyelocytes), erythroblasts and
platelets or thrombocytes. It’s important to note that the individuals which con-
tributed to this dataset did not have any sort of infection, hematologic or oncologic
disease and did not undergo pharmacologic treatment, thus providing a blood sam-
ple which is not affected by the aforementioned factors. Originally, images were
stored in the .jpg-format and were of dimensions 360 × 363, in RGB color space.
These images were acquired over a 4-year period from 2015 to 2019.

4.1.11 TissueMNIST

TissueMNIST (Woloshuk et al., 2021) consists of 236,386 images of human kidney
tissue. These images were acquired with an upright Leica SP8 Confocal Micro-
scope. Source images came in resolutions of 32×32×7, where 7 is the amount of
slices. The images were grayscale and had 8 possible classes resembling epithelial
cells from the proximal tubules (PT), thick ascending limbs (TAL), distal convo-
luted tubules (DCT), and collecting duct (CD), and other cells such as leukocytes
(LEUK), podocytes (PODO) and endothelial cells (ENDO) in glomeruli (G) or in
the peritubular (P) space. 2D maximum projections were obtained by taking the
maximum pixel value along the axial-axis of each pixel (Yang et al., 2023).

4.1.12 OrganMNIST

OrganMNIST describes a family of datasets all originating from the Liver Tumor
Segmentation Benchmark (Bilic et al., 2023). The datasets are split into OrganAM-
NIST, OrganCMNIST and OrganSMNIST, where the letters A, C and S denote
the axial, coronal and sagittal view (Yang et al., 2023). This is because these 2D

4 EXPERIMENTS 41

datasets are sourced from 3D CT images from the Liver Tumor Segmentation Bench-
mark (LiTS). Yang et al. (2021) describe how they used bounding-box annotations
of 11 body organs from another study to obtain the organ labels. They then mention
how Hounsfield-Units of the 3D images are transformed into grayscale with an ab-
dominal window. Subsequently, they cropped the 2D images from the center slices of
the 3D bounding boxes in the axial, coronal and sagittal views, hence the distinction
into OrganAMNIST, OrganCMNIST and OrganSMNIST. The images in the Organ-
MNIST dataset only differ in the views, so it’s the same liver lesions in the datasets
but as noted, captured in different planes. Bilic et al. (2023) mention the technical
challenges of liver segmentation being varied contrast agents, variations in contrast
enhancement due to different injection timing and different acquisition parameters
such as resolution, mAs and kVp exposure, reconstruction kernels. Seven clinical
institutions contributed to the datasets. These seven institutions are Rechts der Isar
Hospital, the Technical University of Munich in Germany, Radboud University Med-
ical Center in the Netherlands, Polytechnique Montréal and CHUM Research Center
in Canada, Sheba Medical Center in Israel, the Hebrew University of Jerusalem in
Israel, Hadassah University Medical Center in Israel and IRCAD in France. Fur-
thermore, the diversity of the data is emphasized by Bilic et al. (2023), bringing up
how images of a diverse set of liver tumor diseases make up the dataset, how the
tumors had varying lesion-to-background ratios and how different CT scanners and
acquisition protocols, including imaging artifacts (e.g. metal artifacts) are features
of the datasets. All three OrganMNIST datasets resemble a multi-class classifica-
tion problem with 11 classes, however they differ in the number of samples they
contain. OrganAMNIST contains 58,850 samples, of which 34,581 are in the train-
ing set, 6,491 are in the validation set and 17,778 are in the test set. OrganCMNIST
contains 23,660 samples, of which 13,000 are in the training set, 2,392 are in the
validation set and 8,268 are in the test set. Finally, OrganSMNIST contains 25,221
samples, of which 13,940 are in the training set, 2,452 are in the validation set and
8,829 are in the test set.

4.2 Experiment 1: comparison of the performance of CNNs
and ViTs

Goal: investigate which architecture outperforms the other on the BIG benchmark
metrics or if they perform similarly.
Experiment description: experiment 1 is mostly focused on comparing how CNNs
perform compared against ViTs using the mm-PT training paradigm by Woerner
et al. (2024). For this, both a ResNet18 and a ViT-B/16 model have been trained us-
ing mm-PT. Training was conducted over all 12 datasets available in MedMNIST+
with all their four available resolutions. One training run per resolution was per-
formed.
Results: the results are shown in table 5. The best performing model per eval-
uation metric and resolution is highlighted in bold respectively. One quick glance
determines the obvious winner — the model trained with the ViT-B/16 architecture

4 EXPERIMENTS 42

and no weighting of the loss outperforms the other models across all resolutions and
all evaluation metrics, without exception. Even the ViT-B/16 with the weighted loss
which is worse than the ViT-B/16 in every regard still outperforms both ResNet18
models across all resolutions and all evaluation metrics, without exception.

Architectures
AUC BALACC Co κ

28× 28 64× 64 28× 28 64× 64 28× 28 64× 64

ResNet 18 0.7774 0.8154 0.3617 0.3992 0.1870 0.2167
ResNet 18 weighted 0.8092 0.8573 0.4016 0.4571 0.2624 0.3164
ViT-B/16 0.8986 0.9133 0.6510 0.7000 0.5653 0.6188
ViT-B/16 weighted 0.8603 0.8878 0.5720 0.6385 0.4725 0.5531

Architectures
AUC BALACC Co κ

128× 128 224× 224 128× 128 224× 224 128× 128 224× 224

ResNet 18 0.8388 0.7776 0.4643 0.3890 0.3099 0.1736
ResNet 18 weighted 0.8257 0.7718 0.4369 0.3759 0.3163 0.1709
ViT-B/16 0.9254 0.9314 0.7305 0.7545 0.6355 0.6882
ViT-B/16 weighted 0.8975 0.8963 0.6660 0.6647 0.5735 0.5785

Table 5: Performance of mm-PT end-to-end trained models on resolutions 28×28,
64×64, 128×128, and 224×224, evaluated on AUC, BALACC, and Co κ.

Aside on Training: Training was set up to run for a maximum of 100 epochs
as shown in table 3. Also an early stopping criterion of 10 epochs was given, so
after 10 epochs throughout which the validation loss didn’t improve, early stopping
would trigger and the best model would be saved. For the ResNet18 models, this
happened in the majority of cases after 11 or 12 total epochs, meaning that the
best model was found in either epoch 1 or 2. After at most 2 epochs, the validation
loss didn’t improve anymore, causing the training to terminate 10 epochs later. The
best-performing ResNet18 model, the one trained on images of resolution 128×128
using a weighted loss, effectively reached its best performing model in epoch 2 of
training. A side-by-side comparison of the training and validation loss for the best
ResNet18 and the best ViT-B/16 is shown in Fig. 15.

4 EXPERIMENTS 43

Figure 15: Comparison of losses during training

The validation loss for the ResNet18 almost immediately goes upwards, however
it does so in a gradual manner, not exploding, not solely going straight up but
also putting in a few lower highs which never reach below the loss of epoch one
or two. Thus the validation loss diverges from the training loss as it pertains to
its trajectory, the training loss continues on a path downwards, declining epoch
after epoch. Fig. 21 contains a dataset-wise overview over the loss curves of the
best-performing ResNet18 model trained using the mm-PT method. Three possible
behaviors of a curve can be seen. For four datasets, namely the three organmnist-
based datasets and pneunomiamnist, the validation loss declines and continues to
decline, perhaps finding a plateau as close to or past 10 epochs. The second behavior
is a type of meandering where the loss generally fluctuates in a range, never breaking
out of it, as can be seen for bloodmnist, breastmnist, chestmnist, dermamnist and
retinamnist. The third and last behavior is an overall rise in the validation loss as
epochs increase, as is the case for octmnist, pathmnist and tissuemnist. These three
losses also are bigger than some of the other losses by an order of magnitude.
On the other hand, the losses of the best-performing ViT-B/16 follow a commonly
observed trajectory during training, with both the training loss and the validation
loss initially declining for multiple epochs until they level off and the validation loss
fails to fall below the previous best validation loss for 10 epochs. The dataset-wise
overview over the loss curves for the best-performing ViT-B/16 is given in Fig. 22.
All curves show a clearly distinguishable decline in validation loss in accordance with
the training loss. The chestmnist curve also doesn’t appear to meander or stay in a
range, the different size of the training and validation loss however make it difficult
to discern visually. This represents an outlier, whereas the validation loss for other
datasets stayed closer to the training loss, the validation loss for chestmnist is about
75% larger than the training loss without narrowing the gap with further training.

4 EXPERIMENTS 44

4.3 Experiment 2: effects of resolution on classification per-
formance

Goal: investigate how using higher resolutions affects classification performance in
the models used for training.
Experiment description: Consulting table 5 again, the model performance across
resolutions can be examined. This is one of the unique selling points of the MedM-
NIST+ collection of datasets — to provide the datasets in four different resolutions,
28×28, 64×64, 128×128 as well as 224×224.
Results: As stated in section 4.2, experiment 1, the ViT-B/16 architecture with
no weighting of the loss outperforms the other models across all resolutions and all
evaluation metrics, without exception. This best-performing model always achieves
gains in the performance metrics when going from a lower to a higher resolution.
This holds for this model for all resolutions and all performance metrics. These
gains in AUC achieved by using higher resolutions for ViT-B/16 are smaller in size
compared to those in BALACC and CO. The weighted ViT-B/16 is very similar,
although gains in the performance metrics can be seen when going from 28×28
to 64×64 and to 128×128, however not when going from resolutions 128×128 to
224×224. There, the model trained on the 128×128 resolution performs better ever
so slightly, with improvements mostly being in the second or third digit. The un-
weighted ResNet also achieves better performance over the same resolutions, going
from 28×28 to 64×64 and to 128×128 and then failing to do better when increas-
ing the resolution from 128×128 to 224×224. The worse performance of the higher
resolution compared to the model trained on 128×128 images is more pronounced
for this ResNet model than it was for the ViT that exhibited this trait. A drop in
the AUC by around 0.06 can be observed, a drop of around 9 percent in BALACC
and 0.13 in CO. The same relationship exists among the models trained on different
resolutions with a weighted ResNet, including a drop in performance from models
trained on images of resolution 128×128 to models trained on images of resolution
224×224 of similar magnitude.

4.4 Experiment 3: effects of weighting on classification per-
formance

Goal: investigate how using the weighting described in section 3.3 affects classifi-
cation performance in the models used for training.
Experiment description: Models using ResNet18 and ViT-B/16 were also trained
with the weighting described in section 3.3. This weighting was intended to prevent
overfitting on the larger datasets, so their loss was weighted less than the loss of
the smaller datasets. A comparison then can be drawn between two models trained
on the same architecture, but one with a weighted loss and one without. Only the
weighting is different for the models in table 5. This experiment focuses especially
on the best performing ViT and ResNet18 models respectively. These were trained
on different resolutions, with ViT notching its top performance on images of size

4 EXPERIMENTS 45

224×224 and ResNet18 performing best on images of size 128×128.
Results: the unweighted version of the ViT-B/16 model outperformed the weighted
version throughout the entire benchmark, all resolutions, all metrics. For the ResNet,
this isn’t so easy. For resolutions 28×28 to 64×64 the weighted version outperforms
the unweighted version across all metrics. For the higher resolutions, 128×128 to
224×224, this flips and suddenly the weighted model underperforms the unweighted
one. This underperformance then too subsists for all metrics. Fig. 16 shows that the
ViT model using the weighted loss on smaller datasets like DermaMNIST, Pneumo-
niaMNIST, BreastMNIST or RetinaMNIST performs worse than the model without
weights. The weighted version only edges out the unweighted version on bloodmnist
with a 0.9989 AUC versus a 0.99742 AUC.

Figure 16: Comparison weighted ViT vs unweighted ViT

For the ResNet models the picture is a different one. While the weighted loss
seemed to not help the weighted ViT-B/16 to perform better on smaller datasets
at all, this changes for the weighted ResNet18. There is much less of a difference
between the weighted and the unweighted ResNet18, with the weighted version even
surpassing the unweighted on pneumoniamnist by more than just a slim margin. The
weighted ResNet also outperformed the unweighted one on the dermamnist dataset,
the retinamnist dataset, the breastmnist dataset, the organcmnist dataset as well
as the organsmnist dataset, as can be seen in Fig. 17.

4 EXPERIMENTS 46

Figure 17: Comparison weighted ResNet18 vs unweighted ResNet18

4.5 Experiment 4: comparison of individually trained mod-
els vs mm-PT models

Goal: investigate how a mm-PT trained model fares against models trained on each
dataset individually.
Experiment description: A reevaluation of the models presented by Doerrich
et al. (2024) is made and compared to the results of the newly trained models
presented in section 4.2. The reevaluation is focused on the end-to-end trained
models of Doerrich et al. (2024), now offering an overview over the metrics of the
BIG benchmark as well. This offers a direct comparison of the mm-PT trained
versus the averaged performance of the models trained on each dataset individually.
Results: The mm-PT ViT-B/16 achieves performances comparable to the other
ViT-based architectures, surpassing the performance of CLIP across all resolutions
and metrics except for the 128×128 Cohen’s Kappa. It also beats out SAM and
EVA-02 for the AUC across all resoolutions. Generally, also taking a look at the
other performanc metrics, the mm-PT ViT-B/16 tends to beat two or three other
ViT-architectures. Except for the EfficientNet-B4, which is the worst performing
CNN of the models not trained with mm-PT, the mm-PT ViT-B/16 can’t quite
reach the performance of the CNN-based models, although for some resolutions of
AUC and BALACC it’s not more than 0.01 or 0.02 away sometimes. The mm-
PT ResNet-18 on the other hand underperforms all other models, no matter the
architecture, resolution or metric, by a wide margin.

4 EXPERIMENTS 47

Architectures
AUC BALACC Co κ

28× 28 64× 64 28× 28 64× 64 28× 28 64× 64

VGG16 0.9266 ± 0.0041 0.9424 ± 0.0028 0.7263 ± 0.0142 0.7598 ± 0.0151 0.6560 ± 0.0156 0.6995 ± 0.0213
AlexNet 0.9114 ± 0.0043 0.9269 ± 0.0034 0.6875 ± 0.0129 0.7375 ± 0.0099 0.6124 ± 0.0145 0.6685 ± 0.0140
ResNet-18 0.9092 ± 0.0028 0.9249 ± 0.0050 0.6805 ± 0.0082 0.7253 ± 0.0101 0.6099 ± 0.0145 0.6620 ± 0.0120
DenseNet-121 0.9175 ± 0.0055 0.9359 ± 0.0023 0.6995 ± 0.0139 0.7448 ± 0.0106 0.6181 ± 0.0194 0.6793 ± 0.0162
EfficientNet-B4 0.8701 ± 0.0084 0.9008 ± 0.0064 0.6120 ± 0.0178 0.6788 ± 0.0165 0.5121 ± 0.0261 0.5898 ± 0.0230
ViT-B/16 0.9054 ± 0.0047 0.9253 ± 0.0069 0.6727 ± 0.0210 0.7324 ± 0.0205 0.5898 ± 0.0230 0.6583 ± 0.0229
CLIP ViT-B/16 0.8922 ± 0.0111 0.9091 ± 0.0051 0.6498 ± 0.0200 0.6990 ± 0.0172 0.5600 ± 0.0303 0.6117 ± 0.0185
EVA-02 ViT-B/16 0.8891 ± 0.0101 0.9053 ± 0.0054 0.6578 ± 0.0164 0.6912 ± 0.0118 0.5717 ± 0.0221 0.5940 ± 0.0138
DINO ViT-B/16 0.9102 ± 0.0048 0.9194 ± 0.0032 0.6781 ± 0.0159 0.7177 ± 0.0139 0.5991 ± 0.0232 0.6398 ± 0.0207
SAM ViT-B/16 0.8901 ± 0.0115 0.9079 ± 0.0101 0.6703 ± 0.0136 0.7096 ± 0.0223 0.5917 ± 0.0153 0.6238 ± 0.0357
mm-PT ViT-B/16 0.8986 0.9133 0.6510 0.7000 0.5653 0.6188
mm-PT ResNet-18 0.7774 0.8154 0.3617 0.3992 0.1870 0.2167

Architectures
AUC BALACC Co κ

128× 128 224× 224 128× 128 224× 224 128× 128 224× 224

VGG16 0.9516 ± 0.0027 0.9530 ± 0.0022 0.7786 ± 0.0141 0.7812 ± 0.0150 0.7231 ± 0.0172 0.7253 ± 0.0159
AlexNet 0.9429 ± 0.0030 0.9490 ± 0.0023 0.7621 ± 0.0117 0.7724 ± 0.0096 0.7005 ± 0.0125 0.7103 ± 0.0112
ResNet-18 0.9391 ± 0.0027 0.9451 ± 0.0024 0.7565 ± 0.0101 0.7665 ± 0.0079 0.7025 ± 0.0126 0.7150 ± 0.0099
DenseNet-121 0.9457 ± 0.0021 0.9503 ± 0.0023 0.7806 ± 0.0090 0.7869 ± 0.0101 0.7252 ± 0.0092 0.7318 ± 0.0119
EfficientNet-B4 0.9189 ± 0.0039 0.9164 ± 0.0073 0.7151 ± 0.0126 0.7202 ± 0.0134 0.6363 ± 0.0178 0.6401 ± 0.0184
ViT-B/16 0.9325 ± 0.0034 0.9408 ± 0.0038 0.7610 ± 0.0171 0.7716 ± 0.0190 0.6838 ± 0.0195 0.7040 ± 0.0213
CLIP ViT-B/16 0.9151 ± 0.0031 0.9183 ± 0.0058 0.7187 ± 0.0151 0.7212 ± 0.0142 0.6358 ± 0.0187 0.6447 ± 0.0223
EVA-02 ViT-B/16 0.9119 ± 0.0122 0.9260 ± 0.0094 0.7110 ± 0.0290 0.7509 ± 0.0181 0.6058 ± 0.0545 0.6785 ± 0.0245
DINO ViT-B/16 0.9291 ± 0.0036 0.9390 ± 0.0073 0.7513 ± 0.0109 0.7640 ± 0.0180 0.6753 ± 0.0172 0.6889 ± 0.0204
SAM ViT-B/16 0.9194 ± 0.0108 0.9191 ± 0.0055 0.7459 ± 0.0170 0.7432 ± 0.0157 0.6753 ± 0.0212 0.6665 ± 0.0208
mm-PT ViT-B/16 0.9254 0.9314 0.7305 0.7545 0.6355 0.6882
mm-PT ResNet-18 0.8388 0.7776 0.4643 0.3890 0.3099 0.1736

Table 6: Performance of individually trained models (end-to-end) and mm-PT mod-
els.

5 DISCUSSION 48

5 Discussion

5.1 Experiment 1

Discussion Reasons for this clear outperformance of the ViT architecture could
be sought in the biases and characteristics inherent to CNNs and ViTs. One ex-
planation might be that CNNs apply attention much more locally as compared to
ViTs, as described in 2.1.3. This might especially offer an advantage due to the
mm-PT training paradigm being employed. Regarding that paradigm it could be
beneficial to encode into the model parameters a less local understanding, as if the
model attempts to learn the fine intricacies. Perhaps a more global understanding
of an image helps especially if there are multiple domains. On the other hand, there
is also an argument to be made that ViTs might capture much more detail due to
their parameter count which for ViT-B/16 is a multiple of that of a ResNet18. For
this refer to table 1.
Outlook Additional experiments could examine the first argument about the more
global attention of ViTs. How ViTs encode the images into feature space and
whether those images belonging to different datasets are particularly distinctly sep-
arated might be an approach for further research. Then for the second possibility, it
might be possible to build a comparable architecture to the ResNet-18 architecture
which however includes many more parameters, to investigate the effect of parame-
ter count on model performance. As addressed in section 2.2, this is not as simple
as just for instance using a VGG16 model which has a more than ten times higher
parameter count than a ResNet18, as the differences in architecture might distort
results. Thus adapting the ResNet18 architecture to have more parameters or ex-
tending another architecture with the residual blocks of ResNets seem to be more
reasonable approaches for future research.

5.2 On training

Discussion The training that effectively lasted for just one or two epochs for
ResNet18 resembles an unusual case. Part of this might be explained by how the
training was conducted. A single optimizer was used for all the heads combined.
This is connected to the use of a single Learning Rate Scheduler. If a sample of
some dataset 1 for instance is seen using mm-PT and then many samples of dataset
2 and lastly a sample of dataset 1 again, the learning rate might be unfit to adjust
the classification head for dataset 1. Outlook One approach to improve training
could be using a different optimizer for each classification head. Leaving out the
Learning Rate Scheduler entirely might improve the course of training as well.

5.3 Experiment 2

Discussion Doerrich et al. (2024) found that in their experiments a higher input
resolution tends to yield better classification performance. However, a plateau is

5 DISCUSSION 49

reached at resolution 128×128. The results of experiment 2 corroborate their no-
tion. It is however noteworthy that the model performing best, the ViT-B/16 stands
out when examining the idea that a plateau is reached at resolution 128×128. This
can’t be said to be the case at all, as the improvement in AUC still is 0,006 and the
improvement in BALACC is more than two percent, while CO increased by more
than 0.05. Taking a closer look at their results, it can be seen that for the ViT-B/16
architecture the same phenomenon can be observed as in experiment 2. The ViT-
B/16-based model achieves incremental improvements in classification performance
across all metrics and all resolutions, without fail. The gain in performance does
abate going from 128×128 to 224×224 as compared to going from 28×28 to 64×64,
however there still is a gain. This suggests that ViTs can benefit from using higher
resolutions and that they might be capable of making use of the finer information
contained in higher resolutions. The gain in performance metric might abate after
some point but to reach a true plateau, maybe even higher resolutions are needed.
Outlook Further research could be focused on whether there exists such a bound-
ary, after which an increase in resolution yields no further improvement in classifica-
tion performance or even a degradation of classification performance. Also qualita-
tive assessments of the information extracted by ViTs as compared to CNNs could
be made, so what structures or parts of the image did the model pay attention to.
This could offer the chance to explore whether ViTs capture more fine-grained de-
tails as the resolution increases as opposed to CNNs or whether something else is
responsible for their continued performance improvements.

5.4 Experiment 3

Discussion The weighting did not achieve what it was intended to do with the
ViT models. Weighting the smallest datasets more almost caused the opposite ef-
fect to what was intended, as some of the smallest datasets register a noticeable
drop in classification performance as compared to the larger datasets. However, the
underperformance isn’t exclusive to only small datasets so there seems to be a more
general decline in classification performance due to weighting the ViT model. This
seems counter-intuitive as such a weighting in theory would have had the potential
to help the model perform better on the smaller datasets at ideally a minimal cost
to classification performance on the bigger datasets. However, the especially poor
performances on chestmnist, retinamnist and tissuemnist might have to do with the
tasks themselves and less the weighting. ChestMNIST is the only multi-label binary
classification task and compared to some plain binary classification tasks more more
demanding, with 14 possible labels. RetinaMNIST has a unique standing as the only
Ordinal Linear Regression Task. For this baseline, it was treated as a multi-class
classification task, not using also not using a loss suited for Ordinal Linear Regres-
sion tasks. It thus could have been expected that a model trained on the union
of the MedMNIST+ datasets would perform especially poor on the RetinaMNIST
dataset, which is what happened for both the ResNet as well as the ViT architecture.
The outstanding underperformance of ChestMNIST, being worst of all datasets for

5 DISCUSSION 50

both versions of ResNet, weighted and unweighted, and worst for weighted version
of ViT might be explained by the complexity of the underlying classification task,
as previously explained.
Outlook Given that for the ViT architecture weighting the loss based on the
smallest datasets didn’t achieve the desired result of the model performing better
on those smaller datasets, one other approach would to still build on the idea of
weighting the loss but leaving out the datasets with special tasks. Given how the
models presented in this paper weren’t fully equipped to handle a Ordinal Logistic
Regression task, the model could be retrained the same way but without considering
the Ordinal Logistic Regression task in the weighting. Meaning this one doesn’t get
weighted more as compared to other datasets. As a consequence of the implemen-
tation that was presented as lacking the proper loss function for Ordinal Logistic
regression, it would be easy to address this issue. Simply a proper implementation
of this classification task added to the existing code has the potential to improve
classification performance and eliminate an outlier that so far is pulling down the
performance of the model. Going back to the idea of a weighting, another approach
might be to examine which datasets have simpler tasks compared to other datasets
and simply weighting the loss of the simpler tasks less. So giving a binary classi-
fication on a large dataset a smaller weight than a dataset with a more complex
task or less images available could yield an improvement in classification perfor-
mance. Moreover, addressing the poor performance of ChestMNIST might be as
simple as including another multi-label classification task. Both RetinaMNIST and
ChestMNIST seem a bit out of place, due to the lack of datasets with similar tasks
in MedMNIST+. Extending the collection of datasets with datasets that offer the
chance to train on more diverse classification task might improve the performance on
datasets which don’t have similar classification tasks in the MedMNIST+ collection
of datasets.

5.5 Experiment 4

Discussion Two clear results can be taken from the comparison of the mm-PT
end-to-end trained models and the individually trained models. Firstly, the results
suggest that the mm-PT training paradigm seems to perform competitively when
training ViTs. The mm-PT ViT-B/16 achieved competitive results among its ViT
peers, although it didn’t rank best on any training configuration. Secondly, the
data gathered for mm-PT ResNet-18 suggests a stark underperformance, making it
appear unfit to consider as a model for mm-PT. Outlook The results gathered
in this thesis suggest that further research is needed to determine the generalization
capability of both ViTs and CNNs as related to both the biomedical domain as well
as the mm-PT training paradigm. Training more ViTs using the mm-PT training
paradigm, seeking the comparison to its individually trained models might uncover
more insights into whether some ViT architectures perform particularly well with the
mm-PT training paradigm. It would be interesting to see whether one of the other
ViT models could outperform all of the individually trained ViTs from table 6. On

5 DISCUSSION 51

the CNN side further research is needed to determine the suitability of CNNs for the
mm-PT approach. The results presented in table 6 seems discouraging when looking
how the ResNet got outperformed by a wide margin. An conjecture that could be
made based on poor performance of the mm-PT ResNet-18 is that CNNs could be
less suited for such generalization tasks. After all, they even outperform most ViTs
when trained on the datasets individually. However, tackling the unusual training
behavior discussed in section 4.2 might yield a more competitive performance of the
mm-PT ResNet-18 architecture. Considering the context of the BIG benchmark
and possible challenge, no fine-tuning has really taken place in order to stay as close
and comparable as possible to Doerrich et al. (2024). So the models presented in
table 6 all could perform vastly different with adjusted hyperparameters. This has
the potential to yield exciting new results in the future. Further research could also
be focused on the influence of the parameter count of a model as it relates to its
generalization capability as well as the different biases inherent to CNNs and ViTs.

6 CONCLUSION 52

6 Conclusion

The application of Deep Learning to the medical domain is continually increasing.
New datasets emerge, new architectures spring up and ever more researchers with
a non-medical background come into the field. As a result, the possibilities of
testing out novel approaches on newly available data rise continuously. One such
possibility is the MedMNIST+ collection of datasets, which offers an opportunity
to examine the generalization capability of different architectures across different
medical domains.

The Biomedical Image Generalization (BIG) benchmark is introduced in order to
capitalize on the possibilities that the MedMNIST+ collection of datasets offers.
The proposed benchmark offers a chance to investigate the generalization capabil-
ities of models on biomedical image data. Moreover, many exciting comparisons
can be made as it relates to resolution, training on multiple datasets at once and
evaluating the trained models based on different evaluation metrics.
There is the opportunity of hosting a challenge based on the BIG benchmark, build-
ing upon the bespoke website detailed in this thesis. A baseline has been contributed
in part based on a reevaluation of already trained models and in part based on the
models for which the training was detailed. Cheating prevention will remain a topic
of discussion, as there doesn’t seem to be a silver bullet to combat cheating when
laying down the rules for a competition centered around the BIG benchmark. The
proposed benchmark relies in part on the peer-reviewing process to deal thwart
cheating. Submission limits are also a cost-effective solution that is implemented to
deter malicious actors.
The ViT-based model trained using mm-PT seemed especially suited for general-
ization on the varying biomedical domains of the BIG benchmark, especially as
compared to its CNN counterpart the ResNet-18 using mm-PT. However, there
might be ways to improve the seemingly underwhelming performance of the mm-
PT trained CNN in further research. The mm-PT trained ViT-B/16 model achieved
competitive results compared against its ViT peers which were trained on the indi-
viduals datasets, with their performance metrics having been averaged. Some of the
individually trained ViT peers were even outperformed, with the mm-PT trained
model presented placing somewhere in the middle of the field among the other ViTs.
It remains a topic for further research how different architectures affect a model’s
generalization capability across medical domains. This could focus on both the in-
herent properties and biases of the competing architectures as well as simple prop-
erties like the parameter count of a model.
In conclusion, the bespoke website presented for the newly introduced BIG bench-
mark offers the possibility to leverage the unique possibilities provided by the MedM-
NIST+ collection of datasets. Some evidence has been gathered that a ViT-based
model trained for generalization can perform at a similar level compared to other
ViT-based models which were individually trained on the datasets. With the BIG
benchmark, future research can investigate the generalization capabilities of models
further, fine-tuning the baseline that this thesis has contributed to.

A APPENDIX 53

A Appendix

A.1 VDD Dataset Overview

Name # of Images # of cate-
gories

RGB Citation

FGVC-
Aircraft
Benchmark

10,000 100 yes Maji et al.
(2013)

CIFAR100 60,000 100 yes Krizhevsky
et al. (2009)

Daimler Mono
Pedestrian
Classification

50,000 2 no Munder
and Gavrila
(2006)

Describable
Texture
Dataset

5,640 47 yes Cimpoi et al.
(2014)

German
Traffic Sign
Recognition

51,840 43 yes Stallkamp
et al. (2012)

Flowers102 8,189 102 yes Nilsback and
Zisserman
(2008)

ILSVRC12 1,200,000 1000 yes Russakovsky
et al. (2015)

Omniglot 32,460 1623 no Lake et al.
(2015)

The Street
View House
Numbers

over 600,000 10 yes Netzer et al.
(2011)

UCF101 see textual de-
scription

101 yes Soomro et al.
(2012)

Table 7: Overview of the datasets used in the Visual Domain Decathlon

A APPENDIX 54

A.2 MSD Dataset Overview

Phase Task Modality Source # Cases (Train/Test)

D
ev
el
op

m
en
t
P
h
as
e Brain mp-MRI BraTS 2016 &

2017 (Bakas et
al., 2018)

750 4D volumes (484/266)

Heart MRI LASC (Gomez
et al., 2015)

30 3D volumes (20/10)

Hippo-
campus

MRI Vanderbilt
University Med-
ical Center,
Nashville, US

394 3D volumes (263/131)

Liver CT LiTS (Bilic et
al., 2023)

210 3D volumes (131/79)

Lung CT Lung and lung
cancer data can

96 3D volumes (64/32)

Pancreas CT Memorial Sloan
Kettering Can-
cer Center, New
York, US

420 3D volumes (282/139)

Prostate mp-MRI Radboud Uni-
versity Medical
Center, Ni-
jmegen, The
Netherlands

48 4D volumes (32/16)

M
y
st
er
y
P
h
as
e

Colon CT Memorial Sloan
Kettering Can-
cer Center, New
York, US

190 3D volumes (126/64)

Hepatic
Vessels

CT Memorial Sloan
Kettering Can-
cer Center, New
York, US

443 3D volumes (303/140)

Spleen CT Memorial Sloan
Kettering Can-
cer Center, New
York, US

61 3D volumes (41/20)

Table 8: Overview of datasets used in the Medical Segmentation Decathlon

A APPENDIX 55

A.3 WILDS Dataset Overview

Dataset Metric Setting
iWILDCAM2020-WILDS Macro F1 Domain gen.
CAMELYON17-WILDS Average acc Domain gen.
RxRx1-WILDS Average acc Domain gen.
OGB-MOLPCBA Average AP Domain gen.
GLOBALWHEAT-WILDS Average domain acc Domain gen.
CIVILCOMMENTS-WILDS Worst-group acc Subpop. shift
FMoW-WILDS Worst-region acc Hybrid
POVERTYMAP-WILDS Worst-U/R Pearson R Hybrid
AMAZON-WILDS 10th percentile acc Hybrid
PY150-WILDS Method/class acc Hybrid

A APPENDIX 56

A.4 Resnet Architecture Visualization

Figure 18: Example network architectures, reprinted from He et al. (2016)

A APPENDIX 57

A.5 DenseNet Architecture Specification

Figure 19: DenseNet architectures for ImageNet (Huang et al., 2017)

A.6 EfficientNet Compound Scaling Method

Figure 20: Model scaling, reprinted from Tan (2019)

A APPENDIX 58

A.7 Pseudocode for the mm-PT training paradigm

Algorithm 1 Multi-domain Multi-task Pre-training

Require: Set T of tasks, Datasets Dt for tasks t ∈ T , Model f with parameters θ,
Classification heads lt for t ∈ T

1: while training has not converged do
2: t← Sample a task t from T with probability |Dt|∑

j∈T |Dj |
3: B ← Sample a batch from dataset Dt

4: θ ← θ −∇θLt (lt (f(B; θ)))
5: end while
6: return θ

A APPENDIX 59

A.8 Dataset-wise loss curves for training of ResNet18 (128×128)

Figure 21: Overview of loss curves for ResNet18 (128×128)

A APPENDIX 60

A.9 Dataset-wise loss curves for training of ViT-B/16 (224×224)

Figure 22: Overview of loss curves for ViT-B/16 (224×224)

BIBLIOGRAPHY 61

Bibliography

CodaLab - Competition — zeus.robots.ox.ac.uk. https://zeus.robots.ox.ac.uk/
competitions/competitions/9#results. [Accessed 12-10-2024].

Visual Decathlon Challenge — robots.ox.ac.uk. https://www.robots.ox.ac.uk/

~vgg/decathlon/#res. [Accessed 12-10-2024].

Welcome to The Cancer Imaging Archive - The Cancer Imaging Archive (TCIA) —
cancerimagingarchive.net. https://www.cancerimagingarchive.net/.

Welcome to Flask &x2014; Flask Documentation (3.0.x) —
flask.palletsprojects.com. https://flask.palletsprojects.com/en/stable/.
[Accessed 27-10-2024].

Grand Challenge — grand-challenge.org. https://grand-challenge.org/. [Ac-
cessed 18-10-2024].

timm (PyTorch Image Models) — huggingface.co. https://huggingface.co/timm.
[Accessed 28-10-2024].

Kaggle: Your Machine Learning and Data Science Community — kaggle.com.
https://www.kaggle.com/. [Accessed 12-10-2024].

https://medicaldecathlon.com/results/. [Accessed 12-10-2024].

MySQL :: Developer Zone — dev.mysql.com. https://dev.mysql.com/. [Accessed
27-10-2024].

React — react.dev. https://react.dev/. [Accessed 27-10-2024].

3.4. Metrics and scoring: quantifying the quality of predictions — scikit-learn.org.
https://scikit-learn.org/stable/modules/model_evaluation.html. [Ac-
cessed 14-10-2024].

Leaderboard submissions — wilds.stanford.edu. https://wilds.stanford.edu/

submit/, a. [Accessed 11-10-2024].

WILDS — wilds.stanford.edu. https://wilds.stanford.edu/, b. [Accessed 27-
10-2024].

Andrea Acevedo, Anna Merino, Santiago Alférez, Ángel Molina, Laura Boldú, and
José Rodellar. A dataset of microscopic peripheral blood cell images for de-
velopment of automatic recognition systems. Data in Brief, 30:105474, 2020.
ISSN 2352-3409. doi: https://doi.org/10.1016/j.dib.2020.105474. URL https:

//www.sciencedirect.com/science/article/pii/S2352340920303681.

Walid Al-Dhabyani, Mohammed Gomaa, Hussien Khaled, and Aly Fahmy. Dataset
of breast ultrasound images. Data in brief, 28:104863, 2020.

https://zeus.robots.ox.ac.uk/competitions/competitions/9#results
https://zeus.robots.ox.ac.uk/competitions/competitions/9#results
https://www.robots.ox.ac.uk/~vgg/decathlon/#res
https://www.robots.ox.ac.uk/~vgg/decathlon/#res
https://www.cancerimagingarchive.net/
https://flask.palletsprojects.com/en/stable/
https://grand-challenge.org/
https://huggingface.co/timm
https://www.kaggle.com/
https://medicaldecathlon.com/results/
https://dev.mysql.com/
https://react.dev/
https://scikit-learn.org/stable/modules/model_evaluation.html
https://wilds.stanford.edu/submit/
https://wilds.stanford.edu/submit/
https://wilds.stanford.edu/
https://www.sciencedirect.com/science/article/pii/S2352340920303681
https://www.sciencedirect.com/science/article/pii/S2352340920303681

BIBLIOGRAPHY 62

Laith Alzubaidi, Jinglan Zhang, Amjad J Humaidi, Ayad Al-Dujaili, Ye Duan, Om-
ran Al-Shamma, José Santamaŕıa, Mohammed A Fadhel, Muthana Al-Amidie,
and Laith Farhan. Review of deep learning: concepts, cnn architectures, chal-
lenges, applications, future directions. Journal of big Data, 8:1–74, 2021.

Michela Antonelli, Annika Reinke, Spyridon Bakas, Keyvan Farahani, Annette
Kopp-Schneider, Bennett A Landman, Geert Litjens, Bjoern Menze, Olaf Ron-
neberger, Ronald M Summers, et al. The medical segmentation decathlon. Nature
communications, 13(1):4128, 2022.

André Araujo, Wade Norris, and Jack Sim. Computing receptive fields of convolu-
tional neural networks. Distill, 4(11):e21, 2019.

Jimmy Lei Ba. Layer normalization. arXiv preprint arXiv:1607.06450, 2016.

Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of
image transformers. arXiv preprint arXiv:2106.08254, 2021.

Patrick Bilic, Patrick Christ, Hongwei Bran Li, Eugene Vorontsov, Avi Ben-Cohen,
Georgios Kaissis, Adi Szeskin, Colin Jacobs, Gabriel Efrain Humpire Mamani,
Gabriel Chartrand, et al. The liver tumor segmentation benchmark (lits). Medical
Image Analysis, 84:102680, 2023.

Andrea Bocchieri, Lorenzo V Mugnai, Enzo Pascale, Quentin Changeat, and Gio-
vanna Tinetti. Detecting molecules in ariel low resolution transmission spectra.
Experimental Astronomy, 56(2):605–644, 2023.

Andrew P Bradley. The use of the area under the roc curve in the evaluation of
machine learning algorithms. Pattern recognition, 30(7):1145–1159, 1997.

Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr
Bojanowski, and Armand Joulin. Emerging properties in self-supervised vision
transformers. In Proceedings of the IEEE/CVF international conference on com-
puter vision, pages 9650–9660, 2021.

Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy Mohamed, and Andrea
Vedaldi. Describing textures in the wild. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3606–3613, 2014.

Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship
between self-attention and convolutional layers. arXiv preprint arXiv:1911.03584,
2019.

Hal Daumé III. Frustratingly easy domain adaptation. arXiv preprint
arXiv:0907.1815, 2009.

Sebastian Doerrich, Francesco Di Salvo, Julius Brockmann, and Christian Ledig.
Rethinking model prototyping through the medmnist+ dataset collection. arXiv
preprint arXiv:2404.15786, 2024.

BIBLIOGRAPHY 63

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. ArXiv, abs/2010.11929, 2020. URL
https://api.semanticscholar.org/CorpusID:225039882.

Yuxin Fang, Wen Wang, Binhui Xie, Quan Sun, Ledell Wu, Xinggang Wang, Tiejun
Huang, Xinlong Wang, and Yue Cao. Eva: Exploring the limits of masked visual
representation learning at scale. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 19358–19369, 2023.

Yuxin Fang, Quan Sun, Xinggang Wang, Tiejun Huang, Xinlong Wang, and Yue
Cao. Eva-02: A visual representation for neon genesis. Image and Vision Com-
puting, 149:105171, 2024.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning
for image recognition. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 770–778, 2016.

Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv
preprint arXiv:1606.08415, 2016.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural
networks, 4(2):251–257, 1991.

Mohammad Hossin and Md Nasir Sulaiman. A review on evaluation metrics for
data classification evaluations. International journal of data mining & knowledge
management process, 5(2):1, 2015.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pages 7132–7141,
2018.

Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q Weinberger.
Densely connected convolutional networks. In Proceedings of the IEEE confer-
ence on computer vision and pattern recognition, pages 4700–4708, 2017.

Michael I Jordan and Tom M Mitchell. Machine learning: Trends, perspectives, and
prospects. Science, 349(6245):255–260, 2015.

Jakob Nikolas Kather, Johannes Krisam, Pornpimol Charoentong, Tom Luedde, Es-
ther Herpel, Cleo-Aron Weis, Timo Gaiser, Alexander Marx, Nektarios A Valous,
Dyke Ferber, et al. Predicting survival from colorectal cancer histology slides
using deep learning: A retrospective multicenter study. PLoS medicine, 16(1):
e1002730, 2019.

Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying
Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan,

https://api.semanticscholar.org/CorpusID:225039882

BIBLIOGRAPHY 64

et al. Identifying medical diagnoses and treatable diseases by image-based deep
learning. cell, 172(5):1122–1131, 2018.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura
Gustafson, Tete Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al.
Segment anything. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 4015–4026, 2023.

James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel Veness, Guillaume Des-
jardins, Andrei A Rusu, Kieran Milan, John Quan, Tiago Ramalho, Agnieszka
Grabska-Barwinska, et al. Overcoming catastrophic forgetting in neural networks.
Proceedings of the national academy of sciences, 114(13):3521–3526, 2017.

Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang,
Akshay Balsubramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips,
Irena Gao, et al. Wilds: A benchmark of in-the-wild distribution shifts. In
International conference on machine learning, pages 5637–5664. PMLR, 2021a.

Pang Wei Koh, Shiori Sagawa, et al. WILDS: A benchmark of in-the-wild distribu-
tion shifts. https://github.com/p-lambda/wilds, 2021b. Version 2.0.0.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from
tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with
deep convolutional neural networks. Advances in neural information processing
systems, 25, 2012.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level
concept learning through probabilistic program induction. Science, 350(6266):
1332–1338, 2015.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. nature, 521
(7553):436–444, 2015.

Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring
their equivariance and equivalence. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 991–999, 2015.

Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy Hospedales. Learning to generalize:
Meta-learning for domain generalization. In Proceedings of the AAAI conference
on artificial intelligence, volume 32, 2018.

Geert Litjens, Thijs Kooi, Babak Ehteshami Bejnordi, Arnaud Arindra Adiyoso
Setio, Francesco Ciompi, Mohsen Ghafoorian, Jeroen Awm Van Der Laak, Bram
Van Ginneken, and Clara I Sánchez. A survey on deep learning in medical image
analysis. Medical image analysis, 42:60–88, 2017.

https://github.com/p-lambda/wilds

BIBLIOGRAPHY 65

Ruhan Liu, Xiangning Wang, Qiang Wu, Ling Dai, Xi Fang, Tao Yan, Jaemin Son,
Shiqi Tang, Jiang Li, Zijian Gao, et al. Deepdrid: Diabetic retinopathy—grading
and image quality estimation challenge. Patterns, 3(6), 2022.

Alexander Selvikv̊ag Lundervold and Arvid Lundervold. An overview of deep learn-
ing in medical imaging focusing on mri. Zeitschrift für Medizinische Physik, 29
(2):102–127, 2019.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi.
Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151, 2013.

Mary L McHugh. Interrater reliability: the kappa statistic. Biochemia medica, 22
(3):276–282, 2012.

Stefan Munder and Dariu M Gavrila. An experimental study on pedestrian classi-
fication. IEEE transactions on pattern analysis and machine intelligence, 28(11):
1863–1868, 2006.

Johannes C. Myburgh, Coenraad Mouton, and Marelie H. Davel. Tracking transla-
tion invariance in cnns. In Aurona Gerber, editor, Artificial Intelligence Research,
pages 282–295, Cham, 2020. Springer International Publishing.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Baolin Wu, Andrew Y
Ng, et al. Reading digits in natural images with unsupervised feature learning. In
NIPS workshop on deep learning and unsupervised feature learning, volume 2011,
page 4. Granada, 2011.

Maria-Elena Nilsback and Andrew Zisserman. Automated flower classification over
a large number of classes. In 2008 Sixth Indian conference on computer vision,
graphics & image processing, pages 722–729. IEEE, 2008.

Adrien Pavao, Isabelle Guyon, Anne-Catherine Letournel, Dinh-Tuan Tran, Xavier
Baro, Hugo Jair Escalante, Sergio Escalera, Tyler Thomas, and Zhen Xu. Codalab
competitions: An open source platform to organize scientific challenges. Journal
of Machine Learning Research, 24(198):1–6, 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sand-
hini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al.
Learning transferable visual models from natural language supervision. In Inter-
national conference on machine learning, pages 8748–8763. PMLR, 2021.

Maithra Raghu, Thomas Unterthiner, Simon Kornblith, Chiyuan Zhang, and Alexey
Dosovitskiy. Do vision transformers see like convolutional neural networks? Ad-
vances in neural information processing systems, 34:12116–12128, 2021.

BIBLIOGRAPHY 66

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Rad-
ford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In
International conference on machine learning, pages 8821–8831. Pmlr, 2021.

Sylvestre-Alvise Rebuffi, Hakan Bilen, and Andrea Vedaldi. Learning multiple vi-
sual domains with residual adapters. Advances in neural information processing
systems, 30, 2017.

Nicholas Roberts, Samuel Guo, Cong Xu, Ameet Talwalkar, David Lander, Lvfang
Tao, Linhang Cai, Shuaicheng Niu, Jianyu Heng, Hongyang Qin, et al. Automl
decathlon: Diverse tasks, modern methods, and efficiency at scale. In NeurIPS
2022 Competition Track, pages 151–170. PMLR, 2023.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al. Ima-
genet large scale visual recognition challenge. International journal of computer
vision, 115:211–252, 2015.

Carl F Sabottke and Bradley M Spieler. The effect of image resolution on deep
learning in radiography. Radiology: Artificial Intelligence, 2(1):e190015, 2020.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages
4510–4520, 2018.

Dinggang Shen, Guorong Wu, and Heung-Il Suk. Deep learning in medical image
analysis. Annual review of biomedical engineering, 19(1):221–248, 2017.

Bibo Shi, Rui Hou, Maciej A. Mazurowski, Lars J. Grimm, Yinhao Ren, Jeffrey R.
Marks, Lorraine M. King, Carlo C. Maley, E. Shelley Hwang, and Joseph Y.
Lo. Learning better deep features for the prediction of occult invasive disease
in ductal carcinoma in situ through transfer learning. In Medical Imaging, 2018.
URL https://api.semanticscholar.org/CorpusID:3638594.

Connor Shorten and Taghi M Khoshgoftaar. A survey on image data augmentation
for deep learning. Journal of big data, 6(1):1–48, 2019.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

Satya P Singh, Lipo Wang, Sukrit Gupta, Haveesh Goli, Parasuraman Padmanab-
han, and Balázs Gulyás. 3d deep learning on medical images: a review. Sensors,
20(18):5097, 2020.

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah. A dataset of 101 human
action classes from videos in the wild. Center for Research in Computer Vision,
2(11):1–7, 2012.

https://api.semanticscholar.org/CorpusID:3638594

BIBLIOGRAPHY 67

Johannes Stallkamp, Marc Schlipsing, Jan Salmen, and Christian Igel. Man vs.
computer: Benchmarking machine learning algorithms for traffic sign recognition.
Neural networks, 32:323–332, 2012.

J Su, Y Lu, S Pan, A Murtadha, B Wen, and Y Liu Roformer. Enhanced transformer
with rotary position embedding., 2021. DOI: https://doi. org/10.1016/j. neucom,
2023.

Mingxing Tan. Efficientnet: Rethinking model scaling for convolutional neural net-
works. arXiv preprint arXiv:1905.11946, 2019.

Philipp Tschandl, Cliff Rosendahl, and Harald Kittler. The ham10000 dataset, a
large collection of multi-source dermatoscopic images of common pigmented skin
lesions. Scientific data, 5(1):1–9, 2018.

Xiaosong Wang, Yifan Peng, Le Lu, Zhiyong Lu, Mohammadhadi Bagheri, and
Ronald M. Summers. Chestx-ray8: Hospital-scale chest x-ray database and bench-
marks on weakly-supervised classification and localization of common thorax dis-
eases. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3462–3471, 2017. doi: 10.1109/CVPR.2017.369.

Michael Widenius and David Axmark. MySQL reference manual: documentation
from the source. ” O’Reilly Media, Inc.”, 2002.

Stefano Woerner, Arthur Jaques, and Christian F Baumgartner. A compre-
hensive and easy-to-use multi-domain multi-task medical imaging meta-dataset
(medimeta). arXiv preprint arXiv:2404.16000, 2024.

Andre Woloshuk, Suraj Khochare, Aljohara F Almulhim, Andrew T McNutt, Daw-
son Dean, Daria Barwinska, Michael J Ferkowicz, Michael T Eadon, Katherine J
Kelly, Kenneth W Dunn, et al. In situ classification of cell types in human kidney
tissue using 3d nuclear staining. Cytometry Part A, 99(7):707–721, 2021.

Rikiya Yamashita, Mizuho Nishio, Richard Kinh Gian Do, and Kaori Togashi. Con-
volutional neural networks: an overview and application in radiology. Insights
into imaging, 9:611–629, 2018.

Jiancheng Yang, Rui Shi, and Bingbing Ni. Medmnist classification decathlon: A
lightweight automl benchmark for medical image analysis. In 2021 IEEE 18th
International Symposium on Biomedical Imaging (ISBI), pages 191–195. IEEE,
2021.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter
Pfister, and Bingbing Ni. Medmnist v2-a large-scale lightweight benchmark for
2d and 3d biomedical image classification. Scientific Data, 10(1):41, 2023.

Jiancheng Yang, Rui Shi, Donglai Wei, Zequan Liu, Lin Zhao, Bilian Ke, Hanspeter
Pfister, and Bingbing Ni. [medmnist+] 18x standardized datasets for 2d and 3d
biomedical image classification with multiple size options: 28 (mnist-like), 64,
128, and 224, 2024.

Declaration of Authorship

Ich erkläre hiermit gemäß §9 Abs. 12 APO, dass ich die vorstehende Abschlussarbeit
selbstständig verfasst und keine anderen als die angegebenen Quellen und Hilfsmit-
tel benutzt habe. Des Weiteren erkläre ich, dass die digitale Fassung der gedruckten
Ausfertigung der Abschlussarbeit ausnahmslos in Inhalt und Wortlaut entspricht
und zur Kenntnis genommen wurde, dass diese digitale Fassung einer durch Soft-
ware unterstützten, anonymisierten Prüfung auf Plagiate unterzogen werden kann.

Place, Date Signature

Bamberg, 28.10.2024

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Contribution
	Related Works
	Preliminaries
	Benchmarks

	Biomedical Image Generalization Benchmark

	Theoretical Foundations
	Deep Learning
	Machine Learning
	Convolutional Neural Networks
	Vision Transformers

	Architectures
	Training Paradigm

	Methods
	Benchmark
	Website
	Model Training

	Experiments
	Datasets
	MedMNIST v2
	MedMNIST+
	PathMNIST
	ChestMNIST
	DermaMNIST
	OctMNIST
	PneumoniaMNIST
	RetinaMNIST
	BreastMNIST
	BloodMNIST
	TissueMNIST
	OrganMNIST

	Experiment 1: comparison of the performance of CNNs and ViTs
	Experiment 2: effects of resolution on classification performance
	Experiment 3: effects of weighting on classification performance
	Experiment 4: comparison of individually trained models vs mm-PT models

	Discussion
	Experiment 1
	On training
	Experiment 2
	Experiment 3
	Experiment 4

	Conclusion
	Appendix
	VDD Dataset Overview
	MSD Dataset Overview
	WILDS Dataset Overview
	Resnet Architecture Visualization
	DenseNet Architecture Specification
	EfficientNet Compound Scaling Method
	Pseudocode for the mm-PT training paradigm
	Dataset-wise loss curves for training of ResNet18 (128128)
	Dataset-wise loss curves for training of ViT-B/16 (224224)

	Bibliography

