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Abstract

Geometric measurements are frequently performed along the virtual vehicle devel-
opment chain to monitor and confirm the fulfillment of dimensional requirements
for purposes like safety and comfort. The current manual measuring process lacks
in comparability and quality aspects and involves high time and cost expenditure
due to the repetition across di↵erent departments, engineers, and vehicle projects.

Thereby motivated, this thesis develops and implements automated solutions for
the component identification within the geometric measurement process. The first
goal is to classify the components of a vehicle as relevant and not relevant for
the geometric measurements (binary classification task), and the second goal is
to generate uniformly coded designations for the relevant car components (multi-
class classification task). Artificial Intelligence (AI) is used in combination with
rule-based filters to automate the component selection. Light Gradient-Boosting
Machines (LightGBMs), eXtreme Gradient Boosting (XGBoost), Categorical Boost-
ing (CatBoost), and Feedforward Neural Networks (FNNs) are investigated for these
tasks, which are compared regarding performance and training complexity. For the
binary classification task, the highest average F2-score of 95.465% using k-fold cross-
validation is achieved by a LightGBM model. On the test set, this model reaches
an F2-score of 97.142%. For the multi-class classification task, the highest average
F2-score of 98.951% using k-fold cross-validation is achieved by a CatBoost model.
On the test set, this model reaches an F2-score of 100%.

As shown in this thesis, gradient boosting models can e↵ectively be integrated into
the geometric measurement process to increase comparability and reduce time by
identifying relevant components and assigning uniformly coded designations. The
code implemented for this thesis is open source and available in a Git-repository for
further examination and utilization.1

1https://github.com/koch-tobias/master-thesis
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1 INTRODUCTION 1

1 Introduction

The automotive industry is the most important industrial sector in Germany and
substantially outperforms other industries in terms of sales, investment, exports, as
well as research expenditure (Müller, 2022). The steady striving to enhance safety,
e�ciency, and comfort in this area requires automobile manufacturers to develop
vehicles that meet ever stricter specifications and quality standards.

In this context, the geometric measurement of functional dimensions is an essential
step in the virtual vehicle development process to monitor and confirm the fulfill-
ment of geometric targets. Examples of geometric targets are the loading sill height
for the trunk or the viewing angle out of the vehicle. By repeating the measurements
frequently along the whole development chain, potential deviations are identified at
an early stage, and appropriate measures can be initiated directly to ensure that the
vehicle meets the requirements. To make these repeated geometric measurements
traceable, reproducible, and comparable along the development chain, identical pro-
cedural methods and dimensional definitions are crucial, especially as this task is
performed across di↵erent departments, employees, and vehicle projects. However,
despite these precise specifications, the manual geometric measuring process is sub-
ject to several limitations and is time consuming, which is why automotive manu-
facturers are searching for new, increased automated methods. These are expected
to improve the quality of the performed measurements and increase the e�ciency
along the virtual development chain.

Thereby motivated, this thesis develops and implements an automated solution for
the component identification within the geometric measurement process for func-
tional dimensions. Artificial Intelligence (AI) is used in combination with rule-
based filters to automate the component selection. Traditional machine learning
methods (Light Gradient-Boosting Machine (LightGBM), eXtreme Gradient Boost-
ing (XGBoost), Categorical Boosting (CatBoost)) and neural networks (Feedforward
Neural Network (FNN)) are investigated for this task, which are compared regard-
ing performance and training complexity. Additionally, an AI model is developed
to generate uniformly coded designations for relevant car components. To make the
results of the thesis directly and easily usable, the software solution is integrated into
a Computer Aided Three-Dimensional Interactive Application (CATIA) pipeline via
an application programming interface (API).

Chapter 1.1 first describes the process and method of the manual geometric mea-
surements of functional dimensions and the related challenges and limitations. Sub-
sequently, Chapter 1.2 presents the goal of the complete measurement tool, which
is currently under development, and Chapter 1.3 concludes the introduction by de-
tailing the structure of the thesis.
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Identification of relevant car components

The first step for determining the required dimensions of the vehicle is to identify the
relevant car components for the measurements. These are not directly available but
must be derived from a generic dimension catalog (see Figure 1) accessible on a
Confluence page. The generic dimension catalog includes a subpage with a sketch
and a textual description for each functional dimension that needs to be measured.
From this information, the engineer needs to infer the necessary car components for
the distance determination.

Figure 2 shows the sketch from the subpage for “headroom exit” of the generic
dimension catalog, which is intended to graphically illustrate the structure of the
dimensions “headroom exit front h11-1” and “headroom exit rear h11-2”. The
textual descriptions for these measures contain a definition of the dimension as well
as further information about how components have to be cut in CATIA and which
predefined planes are necessary for the construction in CATIA.

Using the example dimension “headroom exit front h11-1”, the engineer should
identify the components “front door edge protection” and “headliner” from the
given information on the Confluence subpage.

Figure 2: Visualization of the dimension “headroom exit front h11-1” and “head-
room exit rear h11-2”.

Loading of components into CATIA

After identifying the relevant components, they need to be loaded into CATIA.
For this step, the structural list (see Figure 1) of the analyzed vehicle model
is required, which contains all file paths and components. The common way is to
navigate through the hierarchical structure of the parts until finding the designations
matching to the required components identified in the previous step. From the
structural list, the part numbers corresponding to the component designations can
be extracted, and with them, the components can be loaded into CATIA. Loading
the entire vehicle into CATIA is not recommended due to the required time and
memory of the upload.
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In the example of the dimension “headroom exit front h11-1”, the engineer searches
the required component designations for “front door edge protection” and “head-
liner” in the structural list, extracts the part numbers, and loads the components
into CATIA using the part numbers.

Measurement execution

With the required components loaded intoCATIA (see Figure 1), the measurements
can be set up and performed. Therefore, the engineer sets the measurement points
at the components in CATIA based on the textual definition given in the generic
dimension catalog, whereby the geometrical distance between them is calculated in
the tool.

Based on the textual definition of the dimension “headroom exit front h11-1”, the
engineer needs first to analyze whether the “headliner” or the “front door edge
protection” has the lowest point and then needs to select the point. This can be
realized in CATIA by generating cuts of the components. The second, bottom point
for the measurement needs to be set on a predefined plane of the vehicle in CATIA.
After selecting these two points, the geometrical distance, as shown in Figure 3, is
calculated.

Figure 3: Measurement “headroom exit front h11-1” in CATIA.

Documentation and comparison of the results

In the last step, the measured values need to be transferred to a target database
(see Figure 1) for the comparison with the target values. If all measured values of a
vehicle are within the specified tolerances, the project phase can be released, and the
current development status can be frozen. This means that no further adjustments
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are made in the current step of the development chain to ensure that the achieved
geometric targets are preserved. If the measured values deviate from the target
values, adequate actions must be initiated to correct the discrepancies. This may
involve revising certain car components, like adjusting the design.

1.1.2 Challenges and Limitations

This chapter describes the challenges and limitations of the manual process by fo-
cusing on the time and cost expenditure as well as the comparability and quality
aspects.

Time and cost expenditure

The manual geometric measuring of functional dimensions in the virtual vehicle de-
velopment process is time-consuming and costly. This is particularly generated by
the frequent repetition of the measurements along the virtual vehicle development
process. In addition, other factors increase the required time, for example, if the
dimensions are complex or if engineers do not have a routine in measuring the ve-
hicle dimensions. In detail, a thorough analysis of the descriptions and in-depth
knowledge of the vehicle structure is necessary, especially to identify the relevant
car components from the generic dimension catalog and to navigate to the compo-
nent designation in the structural list. However, since di↵erent employees perform
the measurements along the development chain, experience is often lacking, and e�-
ciency is su↵ering. According to surveys with internal engineers and external service
providers, the measurement of a complete vehicle requires about 40 working hours
from inexperienced engineers and about 16 working hours from experienced engi-
neers. The high time expenditure is directly linked to high costs. Either personnel
costs are incurred if internal developers take over the task or costs for contracting a
service provider if the task is outsourced.

Comparability and quality

Another limitation is the dependence of the measurement process on the generic di-
mension catalogs and their interpretation by the engineers because it can reduce the
comparability and the quality of the measurements. If the dimensions in the generic
dimension catalogs are too complexly defined, it can be challenging to identify the
relevant car components and to accurately measure the required dimension. Since
the measurements are conducted by di↵erent people along the development chain,
there may also be variations in the interpretation of the required car components
or the dimensional structure. As a result, the measured values are not exactly com-
parable, and the quality of the measurement process is limited. Overall, as with
almost any manual task, it can be concluded that manual measurements are prone
to errors and inconsistencies.
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the desired vehicle model, which the macro uses to get the structural list from
the database. After downloading the structural list, it is transmitted to the AI
system, which analyzes the data and returns a list of all relevant components for the
measurements, including uniformly coded designations. Then, the CATIA macro
loads the components in CATIA and creates planes and cuts that represent the
components as required for precise geometric measurements.

AI system for the component identification

As apparent from the description of the manual process, the component identifica-
tion is a crucial step for the automation of the measurement process and the core of
this thesis. All measurement-relevant components are identified with the developed
AI system by analyzing the metadata of the components in the vehicle’s structural
list. In addition, the AI system generates uniformly coded designations for the rele-
vant components across all vehicle models so that they can be assigned later to the
corresponding dimensions in the parametric model. Specifically, this is implemented
with rule-based filters and machine learning methods.

CATIA parametric model

The CATIA parametric model performs the measurements on the selected compo-
nents and compares them with the target values. It enables automated execution of
the measurements and ensures reproducibility as well as high accuracy. The results
are compared directly in the model to the target specifications from the general vehi-
cle plan, which are displayed in color analogous to the tra�c light logic. Afterward,
the measured values are automatically transferred to another system, which is used
for documentation purposes and enables further evaluations and analyses.

1.3 Structure of the Thesis

Chapter 2 explains the theoretical background of this thesis with a focus on the
implemented machine learning methods. Chapter 3 introduces the data set by de-
scribing the raw data, the data labeling, the data preparation, and the data split.
Chapter 4 deals with the method and includes the presentation of the development
environment and general concepts, such as the metrics and the hyperparameter op-
timization techniques used for training the models. In addition, Chapter 4 gives
an in-depth explanation of the implemented machine learning methods. The mod-
els from Chapter 4 are then evaluated based on the presented metrics in Chapter
5 and further interpreted and discussed in Chapter 6. After Chapter 7 shows the
deployment architecture of the AI system, Chapter 8 addresses the limitations of
this thesis and provides an outlook on possible future work. The thesis is concluded
with Chapter 9, which gives a summary of the main findings.
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the better the model has learned to predict the output. Thus, minimizing the loss
function L can improve the performance of the model.

Depending on the task of the model and the characteristics of the data, a loss
function L has to be selected. For the classification tasks in this thesis, the cross-
entropy loss, also called log-loss, is chosen. Entropy is rooted in information theory
and goes back to Claude Shannon, where it is used to estimate the amount of
uncertainty and information of a variable (Shannon, 1948). In the discrete case,
the entropy H is calculated as follows, where I is the information in the variable
X, and X takes the discrete values xi with corresponding probabilities pi (adapted
from (Baddeley et al., 2000)):

H(X) = E[I(X)] = �
X

i

pi log(pi) (1)

The di↵erence between two variables X1 and X2 can be assessed with the cross-
entropy and is calculated in the discrete case according to the following equation,
where the variables X1 and X2 take the values x1i and x2i with corresponding prob-
abilities pi and qi (adapted from (Ramsundar and Zadeh, 2018)):

H(X1, X2) = �
X

i

pi log(qi) (2)

In the application for supervised learning, X1 is the target variable Y and X2 the
prediction thereof Ŷ . In the binary case, pi corresponds to the class label yi 2 {0, 1}
and qi to the predicted probability either for the class with label zero (1� ŷi) or for
the class with label one (ŷi). The average cross-entropy loss over N predictions can
then be simplified as follows:

L(✓) = � 1

N

NX

i=1

[yi log(ŷi) + (1� yi) log(1� ŷi)] (3)

Due to the logarithm in Equations 2 and 3, the cross-entropy loss penalizes especially
those predicted outputs ŷi, which have high deviations from the target outputs yi.

To minimize the value of the loss function L, optimizers are used, which iteratively
adjust the parameters ✓ of a model. The most fundamental optimization algorithm
used for machine learning tasks is gradient descent, which updates the parameters
by moving them in the direction of the negative gradient of the loss function.

The gradient descent algorithm starts by initializing the model’s parameters ✓ with
small random values. Then, in each iteration, it calculates the loss based on the
predicted outputs ŷi, for example, according to Equation 3 in the binary classification
task using the cross-entropy loss. The gradient of the loss is then calculated, which
indicates the direction and magnitude of the steepest increase in the loss function.
To minimize the loss, the parameters ✓ are then updated according to the following
equation by subtracting the gradient (steepest descent) multiplied by a learning rate
(⌘), which controls the step size (adapted from (de Roos et al., 2021)):







2 THEORETICAL BACKGROUND 12

Hence, before gradient boosting is described in the following chapter, this chapter
focuses on the explanation and formulas of the more basic AdaBoost algorithm
introduced in 1995 by Freund and Schapire (Freund and Schapire, 1997). Given the
data set (x1, y1), (x1, y2), . . . , (xN , yN), the goal is to find a performant predictive
model H(x) by combining a sequence of weak learners h1(x), h2(x), ..., hT (x) as
follows, where ↵t represents the weight assigned to each of the T weak learners
(adapted from (Freund and Schapire, 1999)):

H(x) =
TX

t=1

↵tht(x) (5)

A weak learner ht(x) is a learning algorithm with limited predictive power that
might perform solely slightly better than random guessing (Freund and Schapire,
1999). For example, this can be a decision stump (one-level decision tree) or a linear
classifier. The strength of the method lies in its ability to boost the performance
of these weak learners by aggregating the predictions with weights ↵t and adjusting
data weights Dt as follows, where ✏t is the error of one weak learner (adapted from
(Freund and Schapire, 1999)):

↵t =
1

2
ln(

1� ✏t

✏t
) (6)

Dt+1(i) =
Dt(i) exp�↵tyiht(xi)

Zt

(7)

The key idea here is to assign higher weights Dt to the misclassified examples and
thus to increase their importance in the following iterations. Thereby, boosting
algorithms e↵ectively concentrate on the challenging examples to classify correctly.
The final hypothesis produced by boosting is a weighted combination of these weak
learners, where the weights ↵t are determined based on their individual performance
(see Equation 6).

2.2.2 Gradient Boosting

Gradient boosting was introduced in 1999 by Friedman and is a special form of
boosting that leverages the principles of gradient descent in its learning process
(Friedman, 2001). Again, the goal is to find a performant predictive model H(x)
by combining a sequence of weak learners h1(x), h2(x), . . . , hT (x) given the data
set (x1, y1), (x1, y2), ..., (xN , yN). In contrast to AdaBoost, where the weights of
data points are adjusted before the following weak learner is trained, in gradient
boosting, the following weak learner focuses on the di↵erence between the prediction
and the ground truth of the previous weak learner (called residuals or residual error)
(Bentéjac et al., 2021). Hence, for gradient boosting, a loss function L needs to be
selected, for example, the previously explained cross-entropy loss, which measures
the discrepancy between the predicted values and the target values. A weak learner
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ht(x) in gradient boosting is usually a slightly larger model than in AdaBoost and
is often a decision tree (gradient boosting tree).

The gradient boosting algorithm starts by initializing the model H(x) with a con-
stant approximation, where ↵ is set as a fixed value (Bentéjac et al., 2021):

H0(x) = argmin
↵

NX

i=1

L(yi,↵) (8)

In each gradient boosting iteration t, pseudo-residuals, denoted as rit for the data
record i, are calculated as follows using the negative gradient of the loss function,
where Ht�1(x) represents the ensemble model of the iteration t� 1 (Bentéjac et al.,
2021):

rit = �

@L(yi, H(xi))

@H(xi)

�

H(x)=Ht�1(x)

(9)

The weak learner ht(x) is trained to minimize the pseudo-residuals rit by fitting a
decision tree to the training data. The resulting weak learner ht(x) is then added
to the ensemble model of the iteration t � 1 weighted by the learning rate (⌘)
that controls the contribution of each weak learner. The updated model can be
represented as (Bentéjac et al., 2021):

Ht(x) = Ht�1(x) + ⌘ ⇤ ht(x) (10)

This process is repeated until a predefined stopping criterion or iteration number
T is reached, and results in the final model, which is the sum of all weak learners
(Bentéjac et al., 2021):

H(x) = H0(x) + ⌘ ⇤ h1(x) + ⌘ ⇤ h2(x) + ...+ ⌘ ⇤ hT (x) (11)

By iteratively updating the model and training further weak learners, gradient boost-
ing e↵ectively improves the model’s predictive performance.

After presenting the theoretical fundamentals of gradient boosting, three state-of-
the-art gradient boosting frameworks (XGBoost, LightGBM, and CatBoost) are
described in the following chapters. While they all share the principles of gradient
boosting and use decision trees as the default choice for the weak learners, they dif-
fer in several additional aspects that are discussed in more detail. To allow a better
comparison, each method is analyzed based on sampling characteristics, leaf growth,
handling of sparse data, and handling of categorical features. Table 1 provides an
overview of the comparison of these aspects in the three frameworks. The compari-
son shows that all three gradient boosting frameworks have di↵erent strengths due
to their slightly di↵erent methods and algorithms. Which framework performs best
depends heavily on the individual use case and cannot be generalized. A bench-
marking for gradient boosting methods shows that all frameworks can be deployed
very promisingly, with a slight tendency towards LightGBM as the best performing
framework across di↵erent data sets (Florek and Zagdański, 2023).



2 THEORETICAL BACKGROUND 14

Table 1: Comparison of selected aspects in the three gradient-boosting frameworks.

XGBoost LightGBM CatBoost
sampling no yes yes
leaf growth level-wise leaf-wise symmetric

handling sparsity yes yes yes
handling categorical features no yes yes

2.2.2.1 eXtreme Gradient Boosting

XGBoost is an e�cient, flexible, and scalable gradient boosting framework intro-
duced in 2014 (Chen and Guestrin, 2016; Chen and He, 2023). In the Kaggle chal-
lenges published in 2015, XGBoost was already the most frequently used solution
among the winners (Chen and Guestrin, 2016).

In contrast to the other two frameworks, in the default setting, XGBoost uses no
sampling of the training data, which means that all data is used in one boosting
iteration (Chen and Guestrin, 2022).

XGBoost uses a level-wise leaf growth strategy for its decision trees and generates
them with a greedy algorithm for determining the splits (Alshari et al., 2021). A
level-wise leaf growth means that the decision tree is expanded level by level, where
a level refers to a specific tree depth, as shown in the center box of Figure 8. The
greedy algorithm for splitting the leaves involves sorting the training instances based
on the values of each feature, searching for potential split points, and calculating
the information gain for each split point (Chen and Guestrin, 2016). Subsequently,
XGBoost selects the split point that maximizes the gain for each feature, thereby
determining the splitting feature for the corresponding tree node. The data is then
divided into two subsets based on the selected feature and the split point, with the
instances that fulfill the split condition being assigned to the left child node and
the remaining instances to the right child node. This recursive splitting process
continues level-wise until a stopping criterion is fulfilled, like reaching the maximum
tree depth or a minimum number of instances in a leaf node. By iteratively training
decision trees and optimizing splits based on the gain criterion, XGBoost gradu-
ally improves the model’s predictive capabilities while minimizing the loss function.
This process continues until a predefined number of trees is reached, or the model’s
performance converges.

Another feature of XGBoost is its ability to handle sparsity patterns in the input
data without requiring manual preprocessing. This is achieved by assigning a default
direction to each tree node so that even when the feature required to determine the
split decision is missing, it can be classified (Chen and Guestrin, 2016).

XGBoost is built to work with numerical data and has no common option to handle
categorical features, instead, the user should encode the features in a preprocess-
ing step (Chen and Guestrin, 2022). An in-built option for handling categorical
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As XGBoost, LightGBM uses a greedy algorithm for determining the splits in the
decision tree generation, but contrary to XGBoost, LightGBM adopts a leaf-wise
growth strategy, which grows the tree in depth and selects at each step the leaf
for splitting that maximizes the gain (Zhang and Gong, 2020). This method is
illustrated in the left box of Figure 8. It can lead to faster convergence and better
performance but can also lead to overfitting if it is not properly controlled (Zhang
and Gong, 2020).

LightGBM can handle categorical features as it employs a strategy for splitting
directly also categorical features (Ke, 2023). This is achieved by creating a histogram
of the categorical features, sorting it according to its accumulated values, and then
finding the best split into two subsets based on the sorted histogram (Ke, 2023).
With this strategy, LightGBM e↵ectively handles categorical features while avoiding
unbalanced and deep trees that can result from one-hot encoding, especially for
categorical features with a large number of distinct categories.

2.2.2.3 Categorical Boosting

The third gradient boosting framework compared in this thesis is CatBoost, which
was introduced in 2017 (Prokhorenkova et al., 2017). CatBoost is a gradient boost-
ing framework, which is specifically designed to process categorical features and to
address the so-called “prediction shift” (Prokhorenkova et al., 2017).

For sampling, CatBoost does not rely on traditional techniques but introduces
randomization with a technique called “ordered boosting” to enhance the robustness
and generalization of the model (Prokhorenkova et al., 2017). Ordered boosting
generates multiple random permutations of the training data and uses them in such
an order that the model is always evaluated on other permutations than being
trained, which avoids the “prediction shift” (Prokhorenkova et al., 2017).

CatBoost incorporates a symmetric leaf growth strategy for its decision trees,
which allows an e�cient computation and reduces the complexity of the algorithm
(Alshari et al., 2021). The tree is built level-wise, and each split in one level is based
on the same criterion, which means that the decision of whether to go left or right
in the tree is determined solely by the current level and the corresponding feature
value. By using this symmetric structure, CatBoost can vectorize the decision-
making process, which can substantially improve the computational e�ciency.

In general, CatBoost can handle sparse data as it assigns the minimum value of a
feature to the missing values in the default implementation (Gulin, 2023). However,
this simplistic approach might be inappropriate for some data sets (Florek and
Zagdański, 2023).

One of the key features of CatBoost is its in-built algorithm for handling cate-
gorical features using their target statistics (Prokhorenkova et al., 2017). This
algorithm calculates the statistics of the target variable for each category and takes
these statistics to convert them into numerical values (Prokhorenkova et al., 2017).
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2.3 Deep Learning

Deep learning is a subfield of machine learning, which has gained much attention
and success, especially in fields that involve large amounts of complex data like
images, audio, and text (Taye, 2023). With increasing e↵orts to adapt deep learning
models for tabular data, deep learning also gains popularity here besides traditional
machine learning methods (Joseph, 2021). Hence, in addition to the presented
gradient boosting methods, FNNs are implemented in this thesis with the PyTorch
Tabular framework. In addition, GPT is explained briefly in this chapter, as they
are investigated in this thesis for data augmentation and can also be classified as
deep learning.

2.3.1 Feedforward Neural Network

An FNN is the simplest structure of a neural network and consists of multiple
computational units, also called perceptrons or neurons, organized in consecutive
layers, as schematically illustrated in Figure 9. A single neuron computes its output
y according to the following equation, where � denotes the activation function, w
the weight, x the input of a neuron, and b the bias:

y = �(wx+ b) (12)

An FNN passes information only in one direction from the input layer through
hidden layers to the output layer. It defines a mapping f of an input x to an output
ŷ and adapts the parameters ✓ iteratively during the training process to approximate
the function f

⇤, where x and ŷ can also be vectors like in Figure 9 depending on the
task (adapted from (Goodfellow et al., 2016)):

ŷ = f(x;✓) (13)

FNNs are considered as deep learning, when they consist of multiple hidden layers,
and hence f can also be interpreted as a chain, where f1 denotes the first layer and
f
l the last layer (adapted from (Goodfellow et al., 2016)):

f(x) = f
l(...f 2(f 1(x))) (14)

The input data is passed through the layers of the network to compute its prediction.
During the training process, a method called backpropagation is used to update
the parameters ✓ of the FNN, for which the propagation direction is reversed and
the gradient of the loss according to Chapter 2.1 with respect to the weights w is
calculated. With the gradients, the weights in the network are updated, for example,
by using gradient descent as described in Chapter 2.1. These steps are repeated for
several epochs until the model’s performance converges.
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Figure 9: Schematic visualization of an FNN.

PyTorch Tabular

PyTorch Tabular is an open-source framework introduced in early 2023 to simplify
deep learning for tabular data (Joseph, 2021). It builds on PyTorch, PyTorch Light-
ning, and Pandas and provides a comprehensive toolkit to work with tabular data
(Joseph, 2021). The framework adopts a “config-driven” approach built around five
core configuration files that define the data, the model, the training, the optimiza-
tion, and the experiments. It enables customizing the machine learning pipelines
depending on the data and application requirements (Joseph, 2021). The library
also contains options for integrated preprocessing and feature engineering.

PyTorch Tabular has several state-of-the-art model architectures implemented, in-
cluding the standard FNN used in this thesis (Joseph, 2021).

2.3.2 Generative Pre-trained Transformer

GPT is a method in the field of Natural Language Processing (NLP) that gains
increasing popularity in language-related tasks such as text generation, language
translation, and sentiment analysis (Yenduri et al., 2023). GPT is based on two
concepts, namely pre-training and fine-tuning, to predict the next word in a sequence
based on the previous words.

The first stage is to pre-train the language model with unsupervised learning tech-
niques, which means it does not require labeled data for training. Instead, it uses
large amounts of unlabeled text data (for example from books, articles, or web
pages) to learn the statistical properties of languages, including syntax, semantics,
and grammar (Radford et al., 2018). For this, a transformer architecture is investi-
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gated. It is a neural network architecture that relies on self-attention mechanisms
to capture contextual relationships between words in a sentence (Yenduri et al.,
2023). Unlike traditional recurrent neural networks that also process sequential
data, transformers can process sentences parallelly, making them highly e�cient.
The core components of the transformer architecture are an encoder and a decoder.
The encoder processes the input sequence while the decoder generates the output
sequence. Each component consists of multiple layers, and each layer contains two
sub-layers (Radford et al., 2018): a multi-head self-attention mechanism and an
FNN. The self-attention mechanism enables the language model to weigh the im-
portance of di↵erent words or segments in a sentence (Kardakis et al., 2021).

After pre-training the model, it is fine-tuned for tasks such as text classification,
named entity recognition, or machine translation. In fine-tuning, the parameters of
a model are adapted in a training process on labeled data for a specific task (Radford
et al., 2018). This transfer learning approach allows GPT to utilize its pre-trained
knowledge and adapt it to specific applications.
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3.1 Data Description

The data used in this thesis consists of structured, tabular data. Tabular data is
usually organized in rows and columns, resembling spreadsheets or databases. Each
column represents a characteristic or attribute, such as age, income, or categorical
variables, like gender or occupation. Each row represents a record, which could be
a person or an observation.

The data used in this thesis consists of structural lists of various vehicle models,
which are downloaded as Excel files from a database (see Figure 1). Each list
contains all components of a specific vehicle model. These components are orga-
nized into main modules, including body, exterior, interior, and various submodules.
Therefore, the rows of the data sets represent individual car components or their as-
sociated hierarchical module structure, while the columns contain information about
each record, including the part designation, the part number, a functional key, and
additional metadata. The metadata includes attributes like bounding box informa-
tion, the weight, and the version. An extract from a selected structural list is shown
in Table A1 to illustrate the hierarchical structure of the data set. However, the
values have been modified for information security reasons.

In total, the combined data set consists of 33 data sets from di↵erent vehicle models,
each containing exactly 104 attributes and, on average, 5903 records. The record
number ranges from 4139 to 8175 and depends mainly on the model and its devel-
opment stage. The selection of the vehicles includes earlier models, current models
as well as models in a development stage to ensure a comprehensive representation.
Also, the models are selected such that at least two examples of each vehicle type are
included to enhance the generalizability. Table 2 provides an overview of the vehicle
types and their distribution within the combined data set before data preparation.

Table 2: Distribution of the car types in the combined data set before data prepa-
ration.

Vehicle type Number of vehicles Number of records
Limousine 5 33416
Compact 2 9974
Cabrio 3 18288
Coupé 5 29335
SUV 13 72309
Estate 3 19423
Sport 2 12070

33 194815

3.2 Data Labeling

For the supervised learning tasks implemented in this thesis, labeled data is neces-
sary. As this is not already available, the data needs to be labeled first.
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3.3 Data Preparation

This chapter details the investigated methods for data preparation, namely feature
engineering, data preprocessing, and data augmentation (Methods 2-4 in Figure 10),
and additionally provides an analysis of the classes that guides the data preprocess-
ing and data augmentation.

Before the data sets are further analyzed and prepared for training the machine
learning models, the records are pre-selected based on simple criteria to standardize
the data sets and reduce their size.

Since the dimensional measurements of the CATIA parametric model are based on
specific modules, modules that do not contain any relevant component can be ex-
cluded. This is achieved with the attributes “Modul (Nr.)” and “Ebene”, where the
attribute “Ebene” indicates the level of each record in the hierarchical structure, and
the attribute “Modul (Nr.)” assigns each record to the corresponding submodule.
This combination can be used to keep solely the records from modules with relevant
components. Once the not relevant modules have been excluded, all records that
are not components are removed. This is achieved with the “Doc-format” attribute,
which categorizes each record as a car part or file path to realize the hierarchical
structure.

3.3.1 Feature Engineering

Feature engineering is the process of transforming the raw data into features, which
enables machine learning algorithms to accurately model the data. This process is
critical for the performance of machine learning models, as it identifies the potential
relevant features for a given task, creates new features to extend the existing data,
and transforms features to a more suitable representation, which highlights relevant
information and removes noise.

The feature engineering described in this chapter is demonstrated on the data set
of one randomly selected vehicle model but is applied to the other vehicle models
as well and includes the feature selection, the feature transformation, the feature
extraction, and the feature creation.

3.3.1.1 Feature Selection

For the feature selection, it is crucial to understand the characteristics of the data
set and their relevance for a respective task. Therefore, all 104 attributes in the
data set, which could be used as potential features for the machine learning models,
are assessed with domain experts. Out of the 104 attributes, 31 are identified as
potential relevant features and 38 as not meaningful, while 35 are eliminated due to
a high rate of missing values.

Table 3 briefly explains the 31 pre-selected features, which are analyzed in more
detail in the following. The numerical pre-selected features are specifically assessed
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by conducting an exploratory data analysis (EDA). Motivated by Occham’s Prin-
ciple of Parsimony (also known as Occham’s Razor), which states that “one should
not increase, beyond what is necessary, the number of entities required to explain
anything” (Tolin, 2016), only those features that are expected to add substantial
information value are selected as input features to limit complexity.

Table 3: List of the 31 pre-selected features with a brief translated description.

Feature Description

Sachnummer Unique key to reference the record, f.e part number
Zeichnungsindex Forms the functional key of the version
Doku-Teil Forms the functional key of the version
Alternative Forms the functional key of the version
Dok-Format Forms the functional key of the version
Bennennung (dt) Car component designation
Kurzname Short name of the component
L/R-Kz. Left/right markers for symmetrical component
Modul (Nr) Module number
Ebene Level of the record in the hierarchy of the structural list
Code Development code to which the vehicle model belongs
X-Min X-Min of the bounding box
X-Max X-Max of the bounding box
Y-Min Y-Min of the bounding box
Y-Max Y-Max of the bounding box
Z-Min Z-Min of the bounding box
Z-Max Z-Max of the bounding box
ox x-value of the shift vector
oy y-value of the shift vector
oz z-value of the shift vector
xx xx-value of the rotation matrix
xy xy-value of the rotation matrix
xz xz-value of the rotation matrix
yx yx-value of the rotation matrix
yy yy-value of the rotation matrix
yz yz-value of the rotation matrix
zx zx-value of the rotation matrix
zy zy-value of the rotation matrix
zz zz-value of the rotation matrix
Wert Weight of the car component
Einheit Weight unit

Functional key: The features “Sachnummer”, “Zeichnungsindex”, “Doku-Teil”,
“Alternative”, and “Dok-Format” are categorical and form the functional key for
referencing records. While not suitable as an input to the machine learning models,
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these features play an important role in loading the relevant components into the
CATIA parametric model. Therefore, they are used in a later stage of the AI system
but are not considered as potential input features for the machine learning models.

Designation: “Benennung (dt)” is a textual feature representing the German des-
ignation of the component, which contains relevant information for the classification
task. The challenge with this feature stems from the lack of consistency in the com-
ponent naming across di↵erent vehicle models, as engineers are free to choose the
name of the components. Nevertheless, there are similarities in the naming, and the
feature contains no missing values, which is why the feature is selected as an input
feature but requires extensive further preparation.

Short name: The categorical feature “Kurzname” represents a short name (one
word) of the German designation and could serve as a valuable feature for training
purposes. However, engineers are not required to fill this field during the virtual
vehicle development, leading to potential missing input values and inconsistencies
also during inference. Additionally, the short name does not provide su�cient details
about the position of the part in the vehicle, such as front or back. Hence, this
feature is not selected as an additional input feature to the complete designation.

Symmetrical components: The “L/R Kz.” feature indicates whether a compo-
nent is symmetrical and used on both the left and right sides of a vehicle. After
consulting with experts, it was determined that only the left-hand versions of these
components are necessary for the measurements, as they can be mirrored in the
parametric model if needed. Therefore, this feature is used for preprocessing (see
Chapter 3.3.3) but not as an input feature for the machine learning models.

Module number and level: As mentioned at the beginning of this section, the
“Modul (Nr)” and ”Ebene” features are used to filter the data sets for relevant
modules. Therefore, the data sets are already filtered by this feature, and the
expected additional information for the machine learning models is considered low.
Hence, this feature is not selected as an input feature for the models.

Development code: The feature “Code” specifies the vehicle model and is unique
for each vehicle model. This means that the feature has the same value for all
components of one vehicle model and is therefore not considered as a valuable feature
for the machine learning models. However, this feature is used as a reference in the
final, combined data set over all 33 vehicle models to be able to assign the records
to the initial vehicle models.

Bounding box: The bounding box of a component is defined by the numerical
features “X-Min”, “X-Max”, “Y-Min”, “Y-Max”, “Z-Min”, and “Z-Max”, where
the di↵erence in x-direction represents the length, in y-direction the width, and in
z-direction the height of the component’s bounding box as it is aligned with the
coordinate axes. The coordinate system for these values is set equally across all
vehicle models according to the Society of Automotive Engineers (SAE) convention,
having the origin at the midpoint of the front axle at ground level.

By investigating the boxplots of the bounding box features shown in Figure 12, one
value for each feature is considerably distant from the other values, including the
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that occur often but have no information, like “AF” or “ZB” are deleted. By
applying these cleaning techniques, the feature is made more suitable for subsequent
transformations, and additionally, the number of unique words is reduced.

Following the cleaning process, the feature is transformed further using the CountVec-
torizer technique, which is part of the scikit-learn library in Python (Pedregosa
et al., 2011). The CountVectorizer is a commonly used text preprocessing technique
in NLP to convert text data into a numerical representation that machine learning
algorithms can use. The main idea behind CountVectorizer is to convert text into
a vector of word frequencies. Therefore, it creates a vocabulary of unique words
from the given text and assigns an index to each word. Then, it counts in the text
of the record the number of occurrences of each word and transforms it into a vec-
tor, where the count for each word is denoted at the corresponding index. Instead
of words, character n-grams with a range between three and eight characters are
used to account for minor variations in the words, abbreviated versions of words, or
spelling or typographical errors. The char-analyzer and the range for the n-grams
enable to capture both short and long character sequences. This is particularly ben-
eficial as car component designations can vary in length and may contain important
information at di↵erent character levels. Considering a wide range of n-grams in-
creases the chance of capturing relevant patterns and relationships within the data.
As it is more relevant for the task which n-grams are present, it is appropriate that
CountVectorizer does not capture semantic relationships between n-grams or take
their order into account.

Since the number of features increases exponentially with the amount of unique
n-grams in the text, the vectorizer is fitted solely with the designations of the com-
ponents that are labeled as relevant. This approach substantially reduces the num-
ber of features to represent the designations and ensures that the vectorizer learns
particularly from the relevant records.

3.3.1.3 Feature Extraction

Feature extraction is an essential technique for transforming raw data into a more
meaningful representation that machine learning algorithms can e↵ectively utilize.
In the context of the given problem, feature extraction is performed on the features
with the bounding box information (“X-Min”, “X-Max”, “Y-Min”, “Y-Max”, “Z-
Min”, “Z-Max”), the shift vector (“ox”, “oy”, “oz”), and the rotation matrix (“xx”,
“xy”, “xz”, “yx”, “yy”, “yz”, “zx”, “zy”, “zz”). Out of these features, the length,
width, and height, the center point, and the orientation of the bounding box are
calculated to reduce the number of features for representing the bounding box.

Dimension: The length, width, and height of the bounding box are calculated from
the minimum and maximum values before the bounding box is shifted and rotated
as it is aligned with the coordinate axes in this step:

length = Xmax �Xmin (15)

width = Ymax � Ymin (16)
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height = Zmax � Zmin (17)

For generating further features, the edge points of the rotated and shifted bounding
box are calculated. This transformation is performed as follows: Firstly, a matrix of
corner points C is defined using the minimum and maximum values of the bounding
box:

Corners = C =

2
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Xmin Ymin Zmin

Xmin Ymin Zmax

Xmin Ymax Zmin

Xmin Ymax Zmax

Xmax Ymin Zmin

Xmax Ymin Zmax

Xmax Ymax Zmin

Xmax Ymax Zmax

3

77777777775

(18)

Then, the rotation matrix R is applied to the corner points, resulting in rotated
corner points Crotated :

Crotated = C ·R = C ·

2

4
xx xy xz
yx yy yz
zx zy zz

3

5 (19)

To get the transformed corner points Ctransformed, the shift vector � is added to the
rotated corner points Crotated:

Ctransformed = Crotated + � = Crotated +
⇥
ox oy oz

⇤
(20)

With the transformed corner points, the following features are calculated:

Center points: The center points of the transformed bounding box are calculated
by taking the mean of the x-, y-, and z-coordinates of the transformed corner points:

centerx =

P7
i=0Ctransformed[i][0]

8
(21)

centery =

P7
i=0 Ctransformed[i][1]

8
(22)

centerz =

P7
i=0 Ctransformed[i][2]

8
(23)

Euler angles: The orientation of the transformed bounding box is determined by
calculating the Euler angles ✓x, ✓y, and ✓z from the rotation matrix R according to
the equations by Slabaugh (2020).
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By performing the previously explained calculations, the number of features to rep-
resent the bounding box information is reduced from 18 to nine features for the
length, width, and height, the center point, and the orientation of the bounding
box.

3.3.1.4 Feature Creation

From the length, width, and height of the bounding box, the volume is derived,
which provides a comprehensive measure of the spatial extent. The volume of a
bounding box can be calculated by multiplying its length, width, and height.

The correlation matrix for the features length, width, height, and volume is shown
in Figure A2. It reveals a moderate positive correlation between the volume and
the length and a weaker positive correlation between the volume and the width and
the volume and the height. However, it cannot be concluded that the volume can
be used as a substitute for the dimensional features during model training. Hence,
all four values are used as input features.

All resulting bounding box features (length, width, height, center point, volume,
and orientation) are further analyzed with a correlation matrix. However, they do
not show substantial correlations and, therefore, are all retained as input features
for model training.

To conclude this chapter, Table 4 shows the resulting features from feature engi-
neering, which are used as inputs for the models.

Table 4: List of the selected features after feature engineering.

Features used as input for the models
“Bennennung (dt)” (vectorized)
centerx

centery

centerz

✓x

✓y

✓z

length

width

height

volume

“Wert”

3.3.2 Label-based Analysis

Now that the features are prepared and selected, this chapter analyzes the labels of
the data set. This helps to understand the distribution and characteristics of the
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di↵erent classes within the data set and provides insights to make informed decisions
for proceeding with data preprocessing and data augmentation.

For this, the combined data set from all vehicle models is investigated. This consol-
idation allows to have a comprehensive view of the data and perform consistent pre-
processing steps across all records. The combined data set contains 101140 records
out of 33 structural lists of various vehicle models.

The distribution of the label “Relevant fuer Messung” in Figure 14 shows that the
class “Ja”, which represents the relevant components, is highly underrepresented in
the data set. This indicates an imbalance in the data set, which can potentially
a↵ect the performance of the machine learning models. To address this issue, data
preprocessing methods, as described in Chapter 3.3.3, are implemented such that
the number of records labeled as not relevant is further reduced.

Figure 14: Distribution of the label “Relevant fuer Messung”.

The distribution of the uniformly coded designations (“Einheitsname”) of rele-
vant components reveals that components appear in the data set with varying fre-
quency. For example, due to the low number of convertibles, the convertible top
(“VERDECK”) is less represented in the data set than others. Therefore, when
dividing the data into a training, validation, and test set, it is necessary to ensure
that the relevant components are distributed evenly by the uniform names. How-
ever, this is not possible if a class is too rare in the data set. Therefore, methods
have been implemented as described in Chapter 3.3.4 to generate synthetic data for
the a↵ected components.

3.3.3 Data Preprocessing

As mentioned in the previous Chapter 3.3.2, the data set includes substantially more
components labeled as not relevant than relevant and is therefore highly imbalanced.
To counteract this, methods for identifying and excluding not relevant components
are presented in this chapter.
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Figure 15: Bounding box visualization of a selected vehicle with relevant components
highlighted in red.

Figure 15 shows all bounding boxes of the selected modules of an example vehicle
model. The bounding boxes highlighted in red are the relevant labeled components,
and the bounding boxes shown in grey are the not relevant components. This plot
is the starting point to illustrate further e↵ects of the methods explained in the
following.

Figure 16: Bounding box visualization of a selected vehicle with relevant components
highlighted in red after filtering by volume.
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Filtering by volume: Looking at the relevant components in Figure 15, it seems
that they all have a relatively large size. This is supported by analyzing the min-
imum and maximum volume values of the relevant components from 503 cm

3 to
3.31 m

3 respectively compared to the not relevant components from 0.00 mm
3 to

11.0 m
3 in the combined data set. The highest bounding box volume of the relevant

components refers to the convertible top, and the not relevant ones are PVC seams
and vehicle lacquers. Due to this finding, it is implemented that all components
with a volume smaller than 450 cm

3 and components with a higher volume than
4.00 m

3 are removed. These values contain a bu↵er to compensate for changes in
the size of relevant components. Figure 16 shows the remaining components for the
example vehicle. The di↵erence to Figure 15 is not easily visible, but in general, it
can be observed that the grey from the not relevant components is lighter. In the
combined data set the record size of the not relevant components is reduced from
99895 to 34134.

Filtering by position: The data set is further filtered by the position of the
records. As observable from Figure 15, no relevant component is located in the
front part of the vehicle. The first component that is relevant from the front is the
windshield. Therefore, all components located in the first 10% of the length of the
vehicle are removed, which further reduces the number of records of the not relevant
components from 34134 to 29712 records in the combined data set. Figure 17 shows
the remaining components after this filter criterion. The di↵erence to Figure 16 is
clearly visible as no bounding box remains at the front part of the vehicle.

Figure 17: Bounding box visualization of a selected vehicle with relevant components
highlighted in red after filtering by position.

Filtering symmetric components: As mentioned in Chapter 3.3.1.1, only the
parts in the left half of the vehicle are necessary if they are identical on both sides.
The reason is that the components can be mirrored in the CATIA parametric model
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based on the “L/R-Kz” feature. By removing the mirrored components on the right
side, the number of records of the not relevant components in the combined data
set is further reduced from 29712 to 19673, which is shown in Figure 18. Compared
to Figure 17, the right side of the vehicle contains fewer bounding boxes.

Figure 18: Bounding box visualization of a selected vehicle with relevant components
highlighted in red after deleting mirrored components.

Dropping duplicates: The last preprocessing step is to remove all duplicates in
the data set such that no component is used twice across vehicle models, which
reduces the number of records of the not relevant components from 19673 to 19478
in the combined data set.

By the preprocessing performed with the described filter criteria, the number of not
relevant components is reduced from 99895 to 19478 records, while the number of
relevant components is reduced from 1245 to 919. The new distribution is substan-
tially more balanced than before. However, the data set is still highly imbalanced,
which must be taken into account in splitting the data into training, validation, and
test sets to train and evaluate the models.

3.3.4 Data Augmentation

Chapter 3.3.2 also discusses the imbalanced and underrepresentated classes within
the label “Einheitsname”. This chapter aims to generate synthetic records for the
underrepresented components so that these can also be distributed to the training,
validation, and test sets with the same split ratio. The process of splitting the
data as described later in 3.4 requires a minimum of seven records such that in
the validation and test set, the number of records per class can be one. With
the explained split, five of the seven records (70% of seven records rounded up to
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full records) are assigned to the train set, and one of the seven records each to the
validation and test set. For a number below seven records, assigning one record each
to the validation and test set would not be possible with the performed split. Hence,
for the combined data set, the convertible top (“VERDECK”) with a record number
of six requires one synthetically generated record, and in the stage where solely eight
data sets out of 33 are used, several more components require synthetically generated
records.

For this purpose, synthetic records are created with the augmentation techniques
described in the following until the required number of records is reached. However,
only the designation and the bounding box information are generated. All other
features are copied from an original component.

Generating designations: To generate a synthetic designation, one of the three
following methods is randomly selected: One method randomly reorders the words
of an original designation to create a new one. This method introduces variation
while preserving the original designation. A second method swaps two characters
in an original designation to generate a spelling error, further diversifying the data
set. The third method utilizes GPT-3.5 to generate a new designation similar to an
original designation with the same uniformly coded designation label.

The GPT model, hosted on Azure, is configured with a temperature of 0.4 and a
maximum token limit of 15. The temperature parameter controls the randomness
of the model’s output, where 0 gives an almost deterministic and 1 a highly varied
response (Yenduri et al., 2023). Here 0.4 is chosen, which allows moderate varia-
tion in the generated designations. The maximum token limit of 15 specifies the
maximum length of the generated text, where each token is about four characters.
By configuring the GPT model with these settings, the aim is to achieve a balance
between adding variations and keeping key information in the designation.

The prompt given to GPT is structured using the elements task, context, instruc-
tions, and examples, as illustrated in Table 5. The task involves generating modified
car component designations based on the input while ensuring that the output di↵ers
slightly from the input. The context of the prompt emphasizes that the original des-
ignations are written in German and may contain abbreviations and technical terms.
It also includes a list of common abbreviations found in the data set, such as “HI”
for “HINTEN” (rear), “VO” for “VORN” (front), “HKL” for “HECKKLAPPE”
(rear trunk), and others. These abbreviations serve as a reference for creating the
modified designations.

The instructions given to GPT guide its behavior during the generation process.
GPT is instructed to carefully analyze the input and comprehend its meaning. It is
then tasked with modifying the designation to create a new version while maintaining
the same meaning. Additionally, GPT is instructed to avoid generating a modified
designation identical to the input data.

To further enhance the performance of GPT, a few-shot prompting technique is
employed. This technique facilitates contextual learning by incorporating relevant
examples in the prompt.
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Table 5: GPT prompt to generate synthetic component designations.

Element Description

Task Write a modified car component designation based on the
given input. The output must be slightly di↵erent to the input
while retaining the same meaning.

Context The original designation is written in German.
It may contain abbreviations and technical terms.
Do not add or remove words.
Abbreviations that often appear in the data set are:
“HI” for “HINTEN”, “VO” for “VORN”,
“HKL” for “HECKKLAPPE”, “GPR” for “GEPAECKRAUM”,
“VKL” for “VERKLEIDUNG”, “ISP” for “INNENSPIEGEL”,
“TV” for “TUER VORNE”, “TH” for “TUER HINTEN”,
“HBL” for “HOCHGESETZTE BREMSLEUCHTE”,
“STF” for “STOSSFAENGER”, “KST” for “KOPFSTUETZE”,
“ND” for “NORMALDACH”,
“DAHAUBE” for “DACHANTENNENHAUBE”.

Instructions 1. Carefully examine the input and understand its meaning.
2. Modify the designation to create a new version which is
very close to the original.
3. Make sure that the meaning of the designation remains the same.
4. Make sure that the modified designation is not equal to the
input data.

Examples Original: ABDECKLEISTE EINSTIEG HI
Modified: ABDECKLEISTE EINSTIEG HINTEN
Original: KANTENSCHUTZ TUER VORN
Modified: KANTENSCHUTZ TV
Original: MD KST VERSTELLBAR AUSSEN MAT
Modified: MD KST AUßENMATTE VERSTELLBAR
Original: SEITENVERKLEIDUNG
Modified: SEITENVERKL
Orignal: ABDECKUNG FENSTERRAHMEN TUER VORNE
Modified: ABDECKUNG FENSTERRAHMEN TUERE VORN

Input Original designation

Calculating bounding box information: In addition to generating a designation,
the bounding box information for the synthetic records is calculated. Firstly, a valid
space is defined based on the other components with the same class label. Secondly,
a random bounding box is generated in this space, which has similar dimensions to
the original components. This means that the components from the data set of the
same class are analyzed to get the range of minimum and maximum values in x-,
y-, and z-direction. A new bounding box with a similar volume is then generated
within this range.
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Once the necessary number of synthetic records is generated, the data can be split
among the training, validation, and test set, which is described in more detail in the
following chapter.

The resulting distributions after data preparation of the label Relevant fuer Messung
are shown in Figure 19 and of the label “Einheitsname” of relevant components in
Figure 20.

Figure 19: Distribution of the label “Relevant fuer Messung” after preparation.

3.4 Data Split

This chapter discusses the process of dividing the data set into training, validation,
and test sets for the two di↵erent classification tasks. One task is a binary classifi-
cation task with the label “Relevant fuer Messung”, while the other is a multi-class
classification task with the label “Einheitsname”. To ensure representative and un-
biased training, validation, and test sets, a stratified split approach is implemented.
This approach considers the class labels and ensures that the distribution of classes
remains consistent across the splits. Maintaining the proportional representation of
each class reduces the risk of introducing bias into the model during training. The
initial split of the data set involves allocating 70% of the data to the training set,
15% to the validation set, and 15% to the test set. This split allows the model to
learn from a substantial part of the data while reserving a separate validation set for
hyperparameter optimization and model selection. Additionally, the test set enables
evaluating the model’s performance on unseen data and assessing its generalization
capabilities. For splitting the data for the binary task, the entire preprocessed data
is used. The resulting class distribution across the splits is visualized in Figure A1.
For the multi-class task, only the records labeled as relevant are investigated.
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Figure 20: Distribution of the label “Einheitsname” of relevant components after
preparation.
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the best model of a framework and is further evaluated on the test set. To use all
data for the inference model, the best model selected from comparing the methods
is then trained on a data set, which combines the training and test set.

This chapter begins with a brief description of the development environment in
Chapter 4.1, which includes the hardware and the most important frameworks used
in this thesis. The first step of the process is presented in Chapter 4.2 and shows
the implementations of the di↵erent machine learning methods, the used parameters,
and how the hyperparameters are optimized using grid-search. The other steps of
selecting and evaluating the models are explained afterward in Chapters 5 and 6.

4.1 Development Environment

This thesis is implemented in Python on a local machine with the following hardware:

• Processor: Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz, 2.30 GHz

• RAM: 16 GB

• Operating System: Windows 10 Enterprise (64-bit operating system, x64-
based processor)

According to IEEE Spectrum, Python is currently the world’s most widely used pro-
gramming language (Cass, 2023) and o↵ers numerous advantages, particularly for
developers in machine learning and AI, due to its extensive collection of open-source
libraries. In this thesis, the gradient boosting models are built with the frameworks
XGBoost (Version 1.7.6), LightGBM (Version 3.3.5), and CatBoost (Version 1.2.1).
For comparison, Pytorch Tabular (Version 1.0.2) is used as a deep learning frame-
work, along with Pytorch (Version 1.13.1), for building and training an FNN. Addi-
tionally, the SHapley Additive exPlanations (SHAP) framework (Version 0.41.0) is
employed for interpreting the machine learning models, and Pytest (Version 7.4.0)
is utilized to write and execute unit tests. Besides, docker and Amazon Web Ser-
vices (AWS), FastAPI (Version 0.97.0) and Streamlit (Version 1.23.1) are used for
the deployment of the AI system.

4.2 Model Implementation

This chapter focuses on the implementation of the machine learning models. To
limit the description per framework, Chapter 4.2.1 presents general settings imple-
mented identically for the tasks and methods. Afterward, Chapter 4.2.2 gives the
implementation details for the ensemble learning methods, followed by Chapter 4.2.3
for the deep learning method.
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4.2.1 General Concepts

The following concepts are implemented for all frameworks and models of this the-
sis. This includes the metrics, the hyperparameter optimization technique, and the
parameters, which are used across all methods.

4.2.1.1 Metrics

In addition to the cross-entropy loss, which is described in Chapter 2.1 and used
for optimizing all models, the models for the binary classification task additionally
calculate the F2-score in each training iteration, which is explained in the following.
For the multi-class classification task, the F2-score is only calculated for the fully
trained models as XGBoost has no option yet to implement a loss in combination
with an additional custom metric.

Sensitivity

Sensitivity, also known as recall or true positive rate, measures the percentage of
correctly classified positive records out of the total number of actual positive records:

Sensitivity = Recall =
True Positives

True Positives + False Negatives
(24)

It quantifies the model’s ability to correctly identify the positive records. In tasks
where the focus is on identifying all positive records, sensitivity is an important
metric. For the binary classification task in this thesis, a high sensitivity score
indicates that the model e↵ectively classifies relevant components and especially
classifies a few relevant components incorrectly as not relevant. However, this metric
does not consider the not relevant components incorrectly classified as relevant.

Precision

Precision measures the percentage of correctly classified positive records out of the
total number of records predicted as positive:

Precision =
True Positives

True Positives + False Positives
(25)

It quantifies the model’s performance on the positive predictions. In tasks where the
focus is on the accuracy of the positive predictions, precision is an important metric.
For the binary classification task in this thesis, a high precision score indicates that
the model provides accurate predictions for the relevant components and especially
classifies few not relevant components as relevant. However, it does not consider the
relevant components incorrectly classified as not relevant.
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F1-score

To combine the sensitivity and precision, the F1-score is a commonly used metric
for evaluating a model’s performance, especially in imbalanced tasks, where both
metrics are important:

F1-score = 2⇥ Precision⇥ Sensitivity

Precision + Sensitivity
(26)

It is the harmonic mean of precision and sensitivity, which provides a balanced mea-
sure of the model’s ability to correctly classify both positive and negative records.
The F1-score ranges from zero to one, where a value of one indicates perfect pre-
cision and sensitivity. In imbalanced tasks, where the focus is often on correctly
identifying the minority class, the F1-score can be a valuable metric.

F�-score

To further adjust the balance between sensitivity and precision, the F�-score is a
modified version of the F1-score. It is often used in evaluating imbalanced classifi-
cation tasks to get more focus on either minimizing the false positives or the false
negatives. The F�-score is calculated as follows:

F�-score = (1 + �
2)⇥ Precision⇥ Sensitivity

(�2 ⇥ Precision) + Sensitivity
(27)

The parameter � controls the trade-o↵ between precision and sensitivity. When
� is larger than one, more emphasis is on the sensitivity, when � is smaller than
one, more emphasis is on the precision. The F�-score ranges from zero to one, with
a value of one indicating perfect precision and sensitivity. In this thesis, the F�-
score with � equal to two is chosen to prioritize minimizing sensitivity, focusing on
capturing all relevant components.

For the multi-class classification task, the F�-score is weighted across the di↵erent
classes. This includes calculating the F�-score separately for each class and then
averaging it based on the number of true instances for each class.

4.2.1.2 Hyperparameter Optimization Method

Hyperparameters mainly define the performance of a machine learning model and
must be adapted to a specific task. Hyperparameter optimization aims to find a tuple
of hyperparameters yielding to a minimal loss or another extremum of a metric. For
this purpose, several optimization algorithms can be applied in machine learning.
This thesis uses grid-search as an optimization approach, where each combination of
hyperparameters specified in the search space is trained and evaluated. All models
are trained with a grid of four selected hyperparameters and three values each,
resulting in 81 combinations and, thus, 81 models per method and task.



4 METHOD 43

4.2.1.3 Parameters

Seed: By setting a seed, the same results are generated when the model is trained
with the same parameters and data, which ensures reproducibility.

Number of estimators/ epochs with early stopping: For the models in this
thesis, the number of estimators/ epochs a model is trained is set to a high value
of 10000, which gets limited due to incorporating early stopping. Early stopping
is a regularization technique used to prevent overfitting by monitoring the model’s
performance on the validation set and by stopping the training when no improve-
ment on the validation set is achieved after a defined number of estimators/ epochs,
called patience. Hence, computational resources and training time are saved. The
stopping criterion, patience, is set for all models to 25, which means that the train-
ing stops after the model’s performance on the validation set does not increase for
25 iterations.

4.2.2 Ensemble Learning

This chapter describes the implementation of the ensemble learning methods
XGBoost, LightGBM, and CatBoost for the binary and multi-class classification
tasks, focusing on addressing class imbalance and optimizing hyperparameters for
these methods. For the grid-search hyperparameter optimization, the hyperparam-
eters tree depth, learning rate, L2 regularization, colsample by tree, and bagging
temperature are selected, which enhance the generalization capabilities.

The class weight parameter is used in all implemented ensemble methods to ad-
dress the class imbalance in the data set. It assigns di↵erent weights to classes based
on their frequencies. For the binary task, the class weight is calculated using the for-
mula shown in Equation 28, while for multi-class tasks, it is computed by Equation
29. By adjusting the class weights, the model can e↵ectively reduce the impact of
imbalanced class distributions and improve its ability to classify underrepresented
classes.

class weightbinary =
Number of records labeled as not relevant

Number of records labeled as relevant
(28)

class weightEinheitsname =
Number of records of the majority class

Number of records of the considered class
(29)

Grid-search hyperparameter optimization

Table 6 lists the hyperparameter combinations used for grid-search optimization,
where each ensemble method is optimized with four hyperparameters and three
values each. The hyperparameters and their e↵ects are explained in more detail in
the following.
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Table 6: Values for hyperparameter tuning.

Hyperparameter XGBoost LightGBM CatBoost

Tree depth [3, 6, 9] [6, 9, 12] [3, 6, 9]
Learning rate [0.1, 0.2, 0.3] [0.05, 0.1, 0.2] [0.1, 0.2, 0.3]
L2 regularization [0.05, 0.1, 0.2] [0.05, 0.1, 0.2] [0.05, 0.1, 0.2]
Colsample by tree [0.5, 0.7, 1.0] [0.5, 0.7, 1.0] x
Bagging temperature x x [0.5, 1.0, 1.5]

The tree depth utilized in all ensemble models determines the maximum depth of
the individual trees within the ensemble. Controlling the depth of the trees is an
important parameter to manage the model’s complexity and potential overfitting.
While a deeper tree can capture more complex patterns in the training data but
may lead to overfitting, a shorter tree may generalize better but might not capture
all relevant patterns. Therefore, careful tuning this hyperparameter can lead to a
balance between model complexity and generalization performance.

The learning rate is selected as a hyperparameter for optimization in all gradient
boosting methods. Chapter 2.1 shows the importance of selecting an appropriate
learning rate.

L2 regularization, also called weight decay, is a technique used to prevent over-
fitting. It adds a penalty term to the loss function, which penalizes large weights
by adding the sum of the squared magnitude of all the weights to the cost or loss
function (Marin et al., 2020).

Colsample by tree is a hyperparameter, which controls the fraction of features to
be randomly sampled for each tree. Introducing randomness in feature selection for
each tree can help to reduce overfitting and increase the variety of the trees, leading
to better generalization performance.

Bagging temperature is a hyperparameter used in CatBoost and defines the sam-
pling of the weights. The higher the temperature, the more aggressively the bagging
is performed (Dorogush et al., 2018).

4.2.3 Deep Learning

This chapter addresses the implementation of the deep learning method with Py-
Torch Tabular, focusing on the used optimizer and the hyperparameter optimiza-
tion. PyTorch Tabular is utilized solely for the binary classification task as it has
currently no support for multi-class classification tasks. For the grid-search hyper-
parameter optimization, the hyperparameters layers, activation function, batch size,
and dropout are discussed, enhancing the performance and generalization capabili-
ties.
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Optimizer

The Adaptive Moment Estimation (Adam) optimizer is used to adjust the weights
and search for the optimum. This optimizer is common for classification tasks be-
cause it achieves high performance in a comparatively short time. It combines the
advantages of the Adaptive Gradient (AdaGrad) algorithm and the Root Mean
Square Propagation (RMSProp), which are both extensions of the stochastic gradi-
ent descent (SGD) algorithm (Ruder, 2016).

Learning rate

PyTorch Tabular has a learning rate finder implemented in its framework, which
should enable the usage of an optimal learning rate for the tabular data models
(Smith, 2017). However, as conceptual implementations in this thesis indicated a
better performance with a fixed learning rate, 0.0001 is chosen as a learning rate for
the deep learning models.

Grid-search hyperparameter optimization

The hyperparameter combinations for the grid-search hyperparameter optimization
used to optimize the PyTorch Tabular models are shown in Table 7. Similar to the
ensemble methods, hyperparameter optimization is performed with four hyperpa-
rameters and three values each. The hyperparameters and their e↵ects are explained
in more detail below.

Table 7: Values for hyperparameter tuning.

Hyperparameter PyTorch Tabular

Layers [16-8-4, 512-256-128, 2028-1014-512]
Activation function [LeakyReLU, ReLU, Sigmoid]
Batch size [16, 256, 1024]
Dropout [0, 0.1, 0.3]

The layers refer to the architecture of the neural network, specifically the number of
hidden layers and the number of neurons in each layer. The di↵erent configurations
represent the arrangement of neurons in each layer and can significantly impact the
model’s capability to learn complex patterns from the input data.

Activation functions can introduce nonlinearities into the neural network to model
complex relationships within the data. In this paper, di↵erent activation functions
such as Leaky Rectified Linear Unit (LeakyReLU), Rectified Linear Unit (ReLU),
and Sigmoid are considered.
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The batch size defines the number of training samples, which are propagated
through the neural network during a single iteration before adjusting the param-
eters. The choice of batch size can impact the model’s convergence speed, memory
requirements, and the stability of the training process.

Dropout is a regularization technique used to prevent overfitting. It works by
randomly deactivating a fraction of neurons during each training iteration. In this
study, no dropout and dropout values of 0.01 and 0.1 are considered, representing
the proportion of neurons dropped out during training. For example, a dropout
value of 0.1 means that during each training iteration, 10% of the neurons in the
network are randomly deactivated by setting their outputs to zero. Hence, the
network learns from more robust features and distributes the decision competence
across many neurons.
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5.1.2 K-fold Cross-Validation

K-fold cross-validation is a method that enhances the robustness for estimating the
performance of a machine learning model and is particularly important for smaller
data sets. The basic idea behind k-fold cross-validation is to split the data set
into k subsets, also called “folds”, which have a similar size. The model is k times
trained and evaluated, where always one of the k folds is used as the validation set,
and the other k-1 folds as the training set. With k-fold cross-validation, a more
reliable estimate of the model’s performance can be obtained compared to a single
split, especially for small data sets. This thesis employs the k-fold cross-validation
technique with k = 4 for all methods. The same value for k allows a fair comparison
of the performance of various models, as they are all evaluated using the same
cross-validation setup.

5.2 Model Evaluation

As explained in Chapter 4 and Figure 21, the models of each method are trained
using a grid-search hyperparameter optimization, which results in 81 models per
method and task. Based on the validation F2-score, the top four models (top 5%)
from hyperparameter optimization for each task and method are selected. These
models are further evaluated using the 4-fold cross-validation technique. The best
model of each method and task is chosen based on the average validation F2-score
from 4-fold cross-validation, which is evaluated in more detail. In Chapter 6, the
final binary and multi-class models are determined by comparing the best models
across the investigated methods.

5.2.1 Ensemble Learning

This chapter details the evaluation of the three ensemble learning methods XGBoost,
LightGBM, and CatBoost, starting with the binary classification task and followed
by the multi-class classification task.

5.2.1.1 XGBoost

Binary classification task - Component relevance

For the XGBoost models of the binary classification task, Table 8 shows the results of
the four models with the highest F2-scores on the validation set. The corresponding
hyperparameters and the training complexities for these models are listed in Table
A2.
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Table 8: Results of the top four XGBoost models for the binary classification task
after grid-search hyperparamter optimization.

Train Validation

Model F2-score Loss F2-score Loss
23 0.99752 0.00086 0.96607 0.01735
11 0.99752 0.00093 0.96377 0.01802
26 0.99752 0.00089 0.96377 0.01810
51 0.99752 0.00205 0.96269 0.01843

These four models are further evaluated using 4-fold cross-validation, which leads
to the results in Table 9. When comparing these results with the results after
hyperparameter tuning, the ranking of the models based on their validation F2-
score has changed. Here, Model 11 is selected as the best XGBoost model after
cross-validation, as it has the highest average validation F2-score of 95.324%. For
the XGBoost Model 11, the average validation F2-score from k-fold cross-validation
of 95.324% is lower than the validation F2-score of 96.377% using one fold.

Table 9: Results of the top four XGBoost models for the binary classification task
after 4-fold cross-validation.

Train Validation

Model Average
F2-score

Average loss Average
F2-score

Average loss

11 0.99660 0.00238 0.95324 0.01526
51 0.99864 0.00145 0.94690 0.01707
23 0.99864 0.00156 0.94600 0.01630
26 0.99864 0.00107 0.94470 0.01690

To assess the generalizability of XGBoost Model 11, it is further analyzed on the
test set, also by calculating the sensitivity and precision, which are especially in-
teresting metrics for the binary classification task with imbalanced data. On the
test set, the XGBoost Model 11 achieves a F2-score of 96.237%, which is slightly
lower than the validation F2-score and higher than the average F2-score from 4-fold
cross-validation. Detailing the metric further, the model reaches on the test set a
sensitivity of 95.652% and a precision of 98.507%. The resulting confusion matrix in
Figure A3 shows that six out of 138 relevant components are incorrectly classified as
not relevant, while two out of 2784 not relevant components are incorrectly classified
as relevant.

Multi-class classification task - Uniformly coded designations

For the multi-class classification task, the results of the four models with the highest
validation F2-score are given in Table 10, and the corresponding hyperparameters
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and training complexities are listed in Table A3. To further evaluate the top four
models after hyperparameter optimization, 4-fold cross-validation is used, which
leads to the results listed in Table 11. Contrary to after hyperparameter tuning,
Model 46 is here identified as the best XGBoost Model for the multi-class classifica-
tion task with an average F2-score of 98.169% on the validation set. For the XGBoost
Model 46, the average validation F2-score from k-fold cross-validation of 98.169%
is slightly lower than the validation F2-score of 98.532% using one fold. The best
XGBoost Model 46 achieves an F2-score of 99.256% on the test set, which is higher
than the validation F2-score and the average F2-score from 4-fold cross-validation.
The confusion matrix shows only one incorrectly classified component, which is a
component of class “SITZBEZUG HINTEN” that is classified as “VERKLEIDUNG
STOSSFAENGER”.

Table 10: Results of the top four XGBoost models for the multi-class classification
task after grid-search hyperparamter optimization.

Train Validation

Model F2-score Loss F2-score Loss
40 1.0000 0.02435 0.98532 0.10879
43 1.0000 0.02409 0.98532 0.11990
44 1.0000 0.02462 0.98532 0.12295
46 1.0000 0.02229 0.98532 0.10254

Table 11: Results of the top four XGBoost models for the multi-class classification
task after 4-fold cross-validation.

Train Validation

Model Avgerage
F2-score

Avgerage loss Avgerage
F2-score

Avgerage loss

46 1.0000 0.02665 0.98169 0.11452
44 1.0000 0.02622 0.97795 0.12543
43 1.0000 0.02580 0.97787 0.12308
40 1.0000 0.02669 0.97780 0.11913

5.2.1.2 LightGBM

Binary classification task - Component relevance

For the LightGBM models of the binary classification task, Table 12 shows the
results of the four models with the highest F2-scores on the validation set. The
corresponding hyperparameters and the training complexities for these models are
listed in Table A4.
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Table 12: Results of the top four LightGBM models for the binary classification
task after grid-search hyperparamter optimization.

Train Validation

Model F2-score Loss F2-score Loss
0 0.99721 0.00574 0.95514 0.02099
13 0.98561 0.01743 0.95442 0.03068
21 0.99413 0.00827 0.95409 0.02489
9 0.99814 0.00442 0.95376 0.02034

These four models are further evaluated using 4-fold cross-validation, which leads
to the results in Table 13. Also here, the ranking of the models based on their F2-
score has changed. The highest average validation F2-score of 95.465% is achieved
by Model 13, which is therefore selected as the best LightGBM model after cross-
validation. For the LightGBM Model 13, the average validation F2-score from k-fold
cross-validation of 95.465% is comparable to the validation F2-score of 95.442% using
one fold.

Table 13: Results of the top four LightGBM models for the binary classification
task after 4-fold cross-validation.

Train Validation

Model Average
F2-score

Average loss Average
F2-score

Average loss

13 0.99534 0.00808 0.95465 0.02003
0 0.99168 0.01150 0.95284 0.02336
9 0.99501 0.00737 0.95045 0.02047
21 0.98698 0.01649 0.94584 0.02827

On the test set, the LightGBM Model 13 achieves a higher F2-score of 97.142%
compared to the validation F2-score and the average F2-score from 4-fold cross-
validation. Detailing the metric further, the model reaches on the test set a sen-
sitivity of 98.551% and a precision of 91.892%. The resulting confusion matrix in
Figure A5 shows that two out of 138 relevant components are incorrectly classified as
not relevant, while 12 out of 2784 not relevant components are incorrectly classified
as relevant.

Multi-class classification task - Uniformly coded designations

For the multi-class classification task, the results of the four models with the highest
validation F2-score are given in Table 14, and the corresponding hyperparameters
and training complexities are listed in Table A5. 4-fold cross-validation on these
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top four models leads to the results listed in Table 15. The highest average val-
idation F2-score of 98.155% is achieved with Model 17, which is selected as the
best LightGBM model for the multi-class classification task. For the LightGBM
Model 17, the average validation F2-score from k-fold cross-validation of 98.155% is
higher than the validation F2-score of 97.797% using one fold. The best LightGBM
Model 17 achieves an F2-score of 99.256% on the test set, which is higher than the
validation F2-score and the average F2-score from 4-fold cross-validation. The con-
fusion matrix shows that the incorrectly classified component is again a component
of class “SITZBEZUG HINTEN” that is classified as “VERKLEIDUNG STOSS-
FAENGER”.

Table 14: Results of the top four LightGBM models for the multi-class classification
task after grid-search hyperparamter optimization.

Train Validation

Model F2-score Loss F2-score Loss
16 1.00000 0.00000 0.97808 0.08344
7 1.00000 0.00050 0.97797 0.08631
17 1.00000 0.00000 0.97797 0.07447
26 1.00000 0.00000 0.97797 0.07957

Table 15: Results of the top four LightGBM models for the multi-class classification
task after 4-fold cross-validation.

Train Validation

Model Avgerage
F2-score

Avgerage loss Avgerage
F2-score

Avgerage loss

17 1.00000 0.00038 0.98155 0.07849
16 1.00000 0.00016 0.98152 0.07406
7 1.00000 0.00016 0.98152 0.07406
26 1.00000 0.00066 0.98020 0.07584

5.2.1.3 CatBoost

Binary classification task - Component relevance

For the CatBoost models of the binary classification task, Table 16 shows the results
of the four models with the highest F2-scores on the validation set. The correspond-
ing hyperparameters and the training complexities for these models are listed in
Table A6.
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Table 16: Results of the top four CatBoost models for the binary classification task
after grid-search hyperparamter optimization.

Train Validation

Model F2-score Loss F2-score Loss
78 0.99660 0.01337 0.97122 0.06059
79 0.99660 0.01337 0.97122 0.06059
80 0.99660 0.01337 0.97122 0.06059
24 0.99567 0.01958 0.96983 0.05719

These four models are further evaluated using 4-fold cross-validation, which leads
to the results in Table 17. Also here, the ranking of the models based on their F2-
score has changed. The highest average validation F2-scores of 95.000% is achieved
by Model 24, which is therefore selected as the best CatBoost model after cross-
validation. For the CatBoost Model 24, the average validation F2-score from k-fold
cross-validation of 95.000% is lower than the validation F2-score of 96.983% using
one fold.

Table 17: Results of the top four CatBoost models for the binary classification task
after 4-fold cross-validation.

Train Validation

Model Average
F2-score

Average loss Average
F2-score

Average loss

24 0.99560 0.01933 0.95000 0.08678
78 0.99923 0.00753 0.94046 0.10899
79 0.99923 0.00753 0.94046 0.10899
80 0.99923 0.00753 0.94046 0.10899

On the test set, the CatBoost Model 24 achieves a F2-score of 96.705%, which is
lower than the validation F2-score, but higher than the average F2-score from 4-fold
cross-validation. Detailing the metric further, the model reaches on the test set a
sensitivity of 97.826% and a precision of 92.466%. The resulting confusion matrix
in Figure A7 shows that three out of 138 relevant components are incorrectly clas-
sified as not relevant, while 11 out of 2784 not relevant components are incorrectly
classified as relevant.

Multi-class classification task - Uniformly coded designations

For the multi-class classification task, the results of the four models with the highest
validation F2-score are given in Table 18 and the corresponding hyperparameters,
and training complexities are listed in Table A7. 4-fold cross-validation on these top
four models leads to the results listed in Table 19. The highest average F2-score of
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98.951% is achieved with Model 76, which is selected as the best CatBoost model for
the multi-class classification task. For the CatBoost Model 76, the average validation
F2-score from k-fold cross-validation of 98.951% is lower than the validation F2-score
of 99.254% using one fold.

The best CatBoost Model 76 achieves an F2-score of 100% on the test set, which
is higher than the validation F2-score and the average F2-score from 4-fold cross-
validation. Hence, the confusion matrix shows no incorrectly classified component.

Table 18: Results of the top four CatBoost models for the multi-class classification
task after grid-search hyperparamter optimization.

Train Validation

Model F2-score Loss F2-score Loss
73 1.00000 0.00122 0.99254 0.06132
79 1.00000 0.00072 0.99254 0.04628
76 1.00000 0.00099 0.99254 0.05006
63 1.00000 0.00310 0.99252 0.04982

Table 19: Results of the top four CatBoost models for the multi-class classification
task after 4-fold cross-validation.

Train Validation

Model Avgerage
F2-score

Avgerage loss Avgerage
F2-score

Avgerage loss

76 1.00000 0.00234 0.98951 0.04968
79 1.00000 0.00256 0.98821 0.05260
63 1.00000 0.00467 0.98821 0.05974
73 1.00000 0.00342 0.98691 0.06101

5.2.2 Deep Learning

Binary classification task - Component relevance

For the PyTorch Tabular models of the binary classification task, Table 20 shows
the results of the four models with the highest F2-scores on the validation set. As
more models share the same best F2-scores, those four models are selected, which
have additional the lowest four losses on the validation set. The corresponding
hyperparameters and the training complexities for these models are listed in Table
A8.
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Table 20: Results of the top four PyTorch Tabular models for the binary classifica-
tion task after grid-search hyperparamter optimization.

Train Validation

Model F2-score Loss F2-score Loss
13 0.99932 0.00027 0.99855 0.00077
26 0.99966 0.00516 0.99855 0.00103
7 0.99932 0.00042 0.99855 0.00111
8 0.99897 0.00068 0.99855 0.00119

These four models are further evaluated using 4-fold cross-validation, which leads
to the results in Table 21. Also here, the ranking of the models based on their F2-
score has changed. The highest average validation F2-scores of 89.933% is achieved
by Model 26, which is therefore selected as the best PyTorch Tabular model after
cross-validation. For the PyTorch Tabular Model 26, the average validation F2-score
from k-fold cross-validation of 89.933% is considerably lower than the validation F2-
score of 99.855% using one fold.

Table 21: Results of the top four PyTorch Tabular models for the binary classifica-
tion task after 4-fold cross-validation.

Train Validation

Model Average
F2-score

Average loss Average
F2-score

Average loss

26 0.99829 0.00623 0.89933 0.03145
8 0.99840 0.00226 0.88154 0.03198
7 0.99898 0.00160 0.87669 0.03396
13 0.98489 0.00251 0.83800 0.06220

On the test set, the PyTorch Tabular Model 26 achieves an F2-score of 99.855%,
which is comparable to the validation F2-score and considerably higher than the
average F2-score from 4-fold cross-validation. Detailing the metric further, the model
reaches on the test set a sensitivity of 100% and a precision of 99.281%. The resulting
confusion matrix in Figure A10 shows that zero out of 138 relevant components are
incorrectly classified as not relevant, while one out of 2784 not relevant components
are incorrectly classified as relevant.
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6 Discussion

While Chapter 5 presented the evaluation and selection of the best model for each
method and task individually, this chapter compares the best models for a task across
the di↵erent methods. It discusses the individual advantages and determines a final
model in the context of this thesis for each task, which is then further analyzed and
re-trained on the combination of the original training and test set for the inference
model to use all available data. The chapter starts with the models for the binary
classification tasks, which is followed by the models for the multi-class classification
task.

6.1 Binary Classification Task

In this chapter, the best models for the binary classification task identified in Chap-
ter 5.2 are compared with regard to the performance and training complexity. Sub-
sequently, the model, which is determined as the final model for the binary classifi-
cation task, is further discussed in terms of its explainability and performance.

6.1.1 Comparison of the Models

Table 22 shows the validation results and the training complexity of the three best
models of the gradient boosting methods XGBoost, LightGBM, and CatBoost.
Across the di↵erent models, the LightGBM Model 13 achieves the highest aver-
age F2-score of 95.465% with k-fold cross-validation, slightly outperforming both
the XGBoost Model 11 by 0.141% and the CatBoost Model 24 by 0.465%. Consid-
ering the average validation loss from k-fold cross-validation, the XGBoost Model
11 achieves the lowest loss of 0.01526, indicating a better performance in minimizing
the error.

In terms of training complexity, the LightGBM Model 13 is characterized by requir-
ing the fewest number of estimators (55) and the shortest training time (4 seconds).
This shows that LightGBM is highly e�cient, making it the preferable choice when
training time and computational resources are limited.

In conclusion, the choice of the best gradient boosting model among XGBoost,
LightGBM, and CatBoost depends on the specific requirements of the task. As the
primary goal in this thesis is to maximize the F2-score, the LightGBM Model 13 is
selected as the best gradient boosting model for the binary classification task. The
findings are in line with the benchmarking for gradient boosting frameworks per-
formed by Florek and Zagdański (2023), which demonstrate across various data sets
that all three frameworks achieve promising results but also give a slight tendency
towards LightGBM due to its high performance and low runtime. In the following,
the best gradient boosting model (LightGBM Model 13) is compared to the best
deep learning model for the binary classification task.
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Table 22: Best gradient boosting models of each method for the binary classification
task.

Validation Training Complexity

Model Average
F2-score

Average
loss

Number of
estimators

Training
time in
seconds

XGBoost Model 11 0.95324 0.01526 232 292
LightGBM Model 13 0.95465 0.02003 55 4
CatBoost Model 24 0.95000 0.08678 111 106

Table 23: Best deep learning model for the binary classification task.

Validation Training Complexity

Model Average
F2-score

Average
loss

Number
of epochs

Training
time in
seconds

PyTorch Tabular Model 26 0.89933 0.03145 199 895

The results of the best deep learning model are given in Table 23, where the PyTorch
Tabular Model 26 achieves the highest average F2-score of 89.933% with k-fold cross-
validation.

Comparing the PyTorch Tabular Model 26 with the LightGBM Model 13, the deep
learning model achieves a 5.532% lower performance on the averaged F2-score with
cross-validation than the LightGBM model. In addition, the training complexity
is substantially higher. Therefore, the LightGBM Model 13 is chosen as the
final model for the binary classification task and is further analyzed in terms of
performance and explainability in the following chapter.

6.1.2 Discussion of the Best Model

To provide insights into how the selected LightGBM Model 13 makes its predic-
tions, Figure A6 shows a beeswarm plot of the 30 most important features for the
predictions on the validation set identified using the SHAP framework. The color
coding shows the magnitude of the feature values, where a dark color represents
a high feature value and a light color a low feature value. The x-axis shows the
e↵ect on the output, where features with positive values have an e↵ect on the pos-
itive class (relevant) and negative values on the negative class (not relevant). The
five most influential features are “center y”, “center z”, “volume”, “length”, and
“value”. When considering “center z”, a direct correlation becomes evident that
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high feature values have a substantial influence on the positive class, which indi-
cates that vehicle components positioned higher in the vehicle are more likely to be
relevant. For “volume”, high feature values also correlate with a substantial impact
on the positive class, indicating that vehicle components with a higher volume are
more likely to be relevant. In addition, an examination of certain features represent-
ing the n-grams of the vehicle component designation shows that a feature value of
one for the feature “KANT” is a strong indicator for a relevant vehicle component,
probably due to the “KANTENSCHUTZ” components.

The training and validation losses of the LightGBM Model 13 shown in Figure A4
have a consistent decreasing trend, and no overfitting or fluctuation is observable.
However, there is a small gap between the training loss and validation loss observ-
able, which could indicate a slight imbalance in splitting the data sets.

The LightGBM Model 13 identified as the best model for the binary classification
task achieves a F2-score of 95.442% on the validation set. On the test set, it achieves
a higher F2-score of 97.142% and, in more detail, a sensitivity of 98.551% and a
precision of 91.892%. The resulting confusion matrix in Figure A5 shows that two
out of 138 relevant components are incorrectly classified as not relevant, while 12 out
of 2784 not relevant components are incorrectly classified as relevant. By classifying
not relevant components as relevant, the runtime for loading the considered relevant
components in CATIA is increased. However, this problem is minor if the number is
small. Classifying relevant components as not relevant requires manual adaptions in
the aftermath, which was the motivation for choosing the F2-score as the important
metric. As one vehicle contains on average 28 relevant components and the split
is stratified distributed, the test set with 138 relevant components and 2784 not
relevant components can be considered as a data set from five vehicle models. Then,
this result can, for example, be interpreted that for three out of five vehicles, no
manual adaption is required as all relevant components have been correctly classified,
and for the other two vehicles, one additional component must be added manually
that is not identified correctly as a relevant component.

The di↵erences between the F2-scores on one validation set and the average F2-scores
from 4-fold cross-validation, the deviations between the results on the validation and
test sets, and the gap in the loss plot between the training and validation set indicate
that the results are dependent on the performed split and a larger data set could
further reduce the variances and improve the performance of the models.

Hence, after identifying and analyzing the best model for the binary classification
task, this model is re-trained to use the entire available data for the inference model.
The original validation set is kept, but a new train set is generated that combines
the original train and test set. Here, the model achieves a validation F2-score of
95.514%, a sensitivity of 95.652%, and a precision of 94.624%.
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6.2 Multi-class Classification Task

In this chapter, the best models for the multi-class classification task identified in
Chapter 5.2 are compared with regard to the performance and training complexity.
Subsequently, the model, which is determined as the final model for the multi-class
classification task, is further discussed in terms of its explainability and performance.

6.2.1 Comparison of the Models

As mentioned in Chapter 4.2.3, PyTorch Tabular currently has no support for multi-
class classification tasks. Therefore, solely the gradient boosting methods are com-
pared for this task to find the best model of the three methods XGBoost, LightGBM,
and CatBoost. Table 24 shows the results of the best models of each gradient boost-
ing method. The highest average validation F2-score of 98.951% with 4-fold cross-
validation is achieved by CatBoost Model 76, outperforming the XGBoost Model
46 by 0.782% and the LightGBM Model 17 by 0.796%. Considering the average
loss from k-fold cross-validation, the CatBoost Model 76 achieves the lowest loss of
0.04968, indicating the best performance in minimizing the error.

In terms of training complexity, the XGBoost Model 46 is characterized by utilizing
the fewest number of estimators (84), and the LightGBM Model 17 by requiring
the shortest training time (5 seconds). This shows again that LightGBM is highly
e�cient, making it the preferable choice when training time is essential.

In conclusion, the choice of the best gradient boosting model among XGBoost,
LightGBM, and CatBoost depends on the specific requirements of the task. As the
primary goal in this thesis is to maximize the F2-score, the CatBoost Model 76
is selected as the best model for the multi-class classification task.

Table 24: Best gradient boosting models of each method for the multi-class classifi-
cation task.

Validation Training Complexity

Model Average
F2-score

Average
loss

Number of
estimators

Training
time in
seconds

XGBoost Model 46 0.98169 0.11452 84 46
LightGBM Model 17 0.98155 0.07849 308 5
CatBoost Model 76 0.98951 0.04968 389 1024

6.2.2 Discussion of the Best Model

Also, for the multi-class classification task, the SHAP beeswarm plot shown in Figure
A9 provides insights into how the model makes its predictions on the validation set.
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Here, the five most important features are “center z”, “center y”, “length”, “width”,
and “center x”. Even though the order of the most important features is di↵erent
than for the binary classification task, again, the features describing the bounding
box and the weight of the component are ranked as the most important features.
This ranking is firstly surprising for the generation of uniformly coded designations,
where one could assume that the n-grams of the “Benennung (dt)” are particularly
important. However, the reason for the overall higher relevance of the bounding box
features is probably that they are available for all components, while most n-grams
are only tailored to specific components. The n-grams among the 30 most important
features for the multi-class classification task di↵er largely from the n-grams that are
among the 30 most important features for the binary classification task. This shows
that other char combinations are meaningful for deciding whether a component is
relevant or not and for generating uniform designations.

The training and validation loss of the CatBoost Model 76 shown in Figure A8
does not indicate general overfitting but also has a gap between the training and
validation loss. Especially as the data set consists only of the relevant components
for the multi-class classification task, the data set is small, and the gap in the plot
could indicate that the performed split has an imbalance.

The CatBoost model 76 is identified as the best model for the multi-class classifi-
cation task with an F2-score of 99.254% on the validation set. On the test set, it
achieves an even higher F2-score of 100.00%. Hence, the confusion matrix shows no
incorrectly classified component. As explained before, the test set can be considered
as a data set from five vehicle models. Then, the result can be interpreted such
that for all five out of five vehicles, no classification errors are present. Therefore,
no manual adjustments in the uniformly coded designations are required.

Like in the binary classification task, the deviations between the results on the
di↵erent sets and the gap in the loss plot between the training and validation set
indicate that the results are dependent on the performed split, and a larger data set
could further reduce the variances and improve the performance of the models.

Hence, after identifying and analyzing the best model for the multi-class classifica-
tion task, this model is re-trained to use the entire available data for the inference
model. The original validation set is kept, but a new train set is generated that
combines the original train and test set.
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the development phase, as here the engineer can review the results to give feedback
on the models’ performance.

To get a more detailed understanding of the deployment architecture, the main
technologies and frameworks are explained in the following. The CATIA macro
and the parametric model are not developed in this thesis and, therefore, are not
explained in detail.

The REST-API handles HTTP requests and responses. It is developed using
FastAPI, a Python web framework for building APIs. It combines important features
of other popular frameworks, such as Flask and Django, while leveraging Python
features (Ramı́rez, 2018). One of the fundamental principles of FastAPI is its sup-
port for asynchronous programming, which allows multiple requests to be handled
parallelly, making it well-suited for high-performance applications (Ramı́rez, 2018).

The website is developed using streamlit, which is an open-source Python library.
It simplifies and accelerates the building of interactive web applications for ma-
chine learning and data science. The API includes functions for creating widgets,
displaying data, and generating visualizations.

Docker is an open-source software that is commonly used to deploy and run ap-
plications. It provides a platform for separating applications from the underlying
infrastructure, which allows developers to quickly build, test, and deploy code (Rad
et al., 2017). The key objects of docker are images and containers, which are ex-
plained in the following:

At the core of docker is the concept of images, which is a self-contained and exe-
cutable package that includes all the necessary dependencies, libraries, and configu-
rations required to run a particular application. An image is built using a docker file,
which contains a set of instructions for creating the image. These instructions spec-
ify the base image, the dependencies to install, the files to copy, and the commands
to execute during image creation.

A docker container is an isolated and executable instance of an image. It decou-
ples the application and all of its dependencies from the underlying infrastructure.
Hence, they are designed to be portable and platform-independent, which means
that containers can run on any system where docker is installed.

In the AI system, the docker container virtualizes the REST-API, the website, and
the ML models.

AWS is a large cloud computing platform that o↵ers many services to build, deploy,
and manage applications and infrastructure in a flexible and scalable way. In the
AI system, AWS hosts the docker container, including the website and the API.
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8 Limitations and Future Work

This chapter focuses on the limitations of this thesis and proposes potential future
work.

Limitations

One limitation of the models developed in this thesis is their proneness to data
shift. Data shift refers to the phenomenon where the distributions or characteristics
of the data change over time. In the context of the tasks in this thesis, data shift
occurs when the relevant car parts in the automotive industry change or evolve.
This can happen due to various factors such as technological advancements, design
improvements, or new regulations. Ignoring data shifts can lead to outdated or
ine↵ective models for making accurate predictions.

Another limitation of the developed models is the amount of data used to train
and evaluate the machine learning models. The data set for this thesis is generated
from a limited number of 33 vehicles, and the reported results indicate a sampling
bias.

Finally, the techniques used in this thesis are limited by the capabilities of the
frameworks employed. For instance, PyTorch Tabular is solely available for binary
classification, and XGBoost does not allow using a combination of two metrics if
one is a custom metric like the F�-Score.

Future Work

Besides the improvements to the frameworks, one direction of future work is how the
models are deployed. The current deployment of the machine learning models (see
Chapter 7) is solely temporary. In the future, the models will be hosted on an AI
platform where the models and the code for data preparation will be integrated into
an existing infrastructure, including model evaluation, data labeling, data analysis,
and model deployment. In the AI platform, data shift detection techniques should be
implemented to ensure that changes in the probability distribution of input variables
and targets can be detected.

Future work should also prepare the data from more vehicles to increase the
available data set, which could further improve the performance and the generaliza-
tion of the models.

Another potential future work direction is the adaptation of the developed models for
other use cases. For example, the AI model could be used by another department
to assign specific components to a generic component. This use case is similar to the
tasks solved in this thesis, as the same data can be used, but only the class labels
need to be changed.
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9 Conclusion

Geometric measurements are frequently performed along a virtual vehicle develop-
ment chain to monitor and confirm the fulfillment of dimensional requirements for
purposes like safety and comfort. The current manual measuring process lacks in
comparability and quality aspects and involves high time and cost expenditure due
to the repetition across di↵erent departments, engineers, and vehicle projects.

Thereby motivated, this thesis develops and implements automated solutions for
the component identification within the geometric measurement process. The first
goal is to classify the components of a vehicle as relevant and not relevant for the
geometric measurements (binary classification task). The second goal is to generate
uniformly coded designations for the relevant car components (multi-class classifi-
cation task).

In addition to the data labeling for both tasks, extensive data preparation is re-
quired to e↵ectively utilize the data for the machine learning models. This included
feature engineering, data preprocessing, and data augmentation steps. Due to the
high imbalance between relevant and not relevant components, the components are
pre-filtered in a rule-based approach. LightGBM, XGBoost, and CatBoost as gradi-
ent boosting methods and FNNs as deep learning methods are investigated for the
binary classification task, which are compared regarding performance and training
complexity. Due to the restriction of Pytorch Tabular, for the multi-class classifica-
tion task, solely LightGBM, XGBoost, and CatBoost are compared.

To find the best method and model for both tasks, grid-search hyperparameter
tuning, and an iterative model selection process is implemented, which incorporates
di↵erent validation methods. For the binary classification task, the highest average
F2-score of 95.465% using k-fold cross-validation is achieved by the LightGBMModel
13. On the test set, this model reaches an F2-score of 97.142%, a sensitivity of
98.551%, and a precision of 91.892%. It classifies two out of 138 relevant components
incorrectly as not relevant and 12 out of 2784 not relevant components incorrectly
as relevant. For the multi-class classification task, the highest average F2-score of
98.951% using k-fold cross-validation is achieved by the CatBoost Model 76. On the
test set, this model reaches an F2-score of 100% and, hence, assigns to all components
the target uniformly coded designation. The explainability analysis revealed that
for both tasks especially the features corresponding to the bounding box of the
component and its weight are important criteria.

This thesis shows that machine learning methods can e↵ectively be integrated into
the geometric measurement process to increase comparability and reduce time and
cost expenditure by identifying relevant components and assigning uniformly coded
designations. For both tasks, gradient boosting models have been proven to be
performant choices and require solely limited manual corrections. To make the
results of the thesis directly and easily usable, the software solution is integrated
into a CATIA pipeline via an API. Future work should focus on integrating the
models in the AI platform and on training and evaluating the models on more data
to reduce the sampling bias.
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Table A1: Modified snapshot of a data set (structural list).
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Figure A1: Distribution of the training, validation, and test sets of the binary
classification task.
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Table A2: Hyperparameters of the top four XGBoost models for the binary classi-
fication task after grid-search hyperparameter optimization, including the resulting
model training complexity.

Hyperparameter Training complexity

Model Tree
depth

Learning
rate

L2 regu-
larization

Colsample
by tree

Number
of esti-
mators

Training
time in
seconds

23 9 0.3 0.7 0.05 130 299
11 6 0.3 0.5 0.05 232 292
26 9 0.3 1.0 0.05 120 386
51 9 0.2 1.0 0.2 91 315

Figure A3: Confusion matrix for the test set with the XGBoost Model 11 for the
binary classification task.
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Table A3: Hyperparameters of the top four XGBoost models for the multi-class clas-
sification task after grid-search hyperparameter optimization, including the resulting
model training complexity.

Hyperparameter Training complexity

Model Tree
depth

Learning
rate

L2 regu-
larization

Colsample
by tree

Number
of esti-
mators

Training
time in
seconds

40 6 0.2 0.1 0.7 31 36
43 6 0.2 0.1 1.0 32 51
44 6 0.2 0.05 1.0 29 45
46 9 0.2 0.1 0.5 84 46
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Table A4: Hyperparameters of the top four LightGBM models for the binary classi-
fication task after grid-search hyperparameter optimization, including the resulting
model training complexity.

Hyperparameter Training complexity

Model Tree
depth

Learning
rate

L2 regu-
larization

Colsample
by tree

Number
of esti-
mators

Training
time in
seconds

0 12 0.2 0.2 1.0 67 5
13 9 0.2 0.1 0.7 55 4
21 6 0.2 0.2 0.7 153 7
9 9 0.2 0.2 1.0 106 6

Figure A4: Training and validation loss of the LightGBM Model 13 for the binary
classification task.
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Figure A5: Confusion matrix for the test set with the LightGBM Model 13 for the
binary classification task.
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Figure A6: Feature importance for the LightGBM Model 13 for the binary classifi-
cation task on the validation set.
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Table A5: Hyperparameters of the top four LightGBM models for the multi-class
classification task after grid-search hyperparameter optimization, including the re-
sulting model training complexity.

Hyperparameter Training complexity

Model Tree
depth

Learning
rate

L2 regu-
larization

Colsample
by tree

Number
of esti-
mators

Training
time in
seconds

16 9 0.2 0.1 0.5 178 2
7 12 0.2 0.1 0.5 48 1
17 9 0.2 0.05 0.5 308 5
26 6 0.2 0.05 0.5 254 2
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Table A6: Hyperparameters of the top four CatBoost models for the binary classi-
fication task after grid-search hyperparameter optimization, including the resulting
model training complexity.

Hyperparameter Training complexity

Model Tree
depth

Learning
rate

L2 regu-
larization

Bagging
tempera-

ture

Number
of esti-
mators

Training
time in
seconds

78 9 0.3 0.2 0.5 46 117
79 9 0.3 0.2 1.0 46 118
80 9 0.3 0.2 1.5 46 116
24 9 0.1 0.2 0.5 111 106

Figure A7: Confusion matrix for the test set with the CatBoost Model 24 for the
binary classification task.
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Table A7: Hyperparameters of the top four CatBoost models for the multi-class
classification task after grid-search hyperparameter optimization, including the re-
sulting model training complexity.

Hyperparameter Training complexity

Model Tree
depth

Learning
rate

L2 regu-
larization

Bagging
tempera-

ture

Number
of esti-
mators

Training
time in
seconds

73 9 0.1 0.2 1.0 543 1332
79 9 0.1 0.1 1.0 330 920
76 9 0.1 0.05 1.0 389 1024
63 6 0.1 0.2 0.5 453 164

Figure A8: Training and validation loss of the CatBoost Model 76 for the multi-class
classification task.
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Figure A9: Feature importance for the CatBoost Model 76 for the multi-class clas-
sification task on the validation set.
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Table A8: Hyperparameters of the top four PyTorch Tabular models for the binary
classification task after grid-search hyperparameter optimization, including the re-
sulting model training complexity.

Hyperparameter Training complexity

Model Layers Activation
Function

Batch
size

Dropout Number
of epochs

Training
time in
seconds

13 1024-512-
256

ReLU 128 0 41 292

26 1024-512-
256

Sigmoid 512 0.1 199 895

7 1024-512-
256

LeakyReLU 512 0 39 169

8 1024-512-
256

LeakyReLU 512 0.1 40 175

Figure A10: Confusion matrix for the test set with the PyTorch Tabular Model 26
for the binary classification task.
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Piotr Florek and Adam Zagdański. Benchmarking state-of-the-art gradient boosting
algorithms for classification. 2023.

Yoav Freund and Robert E Schapire. A Decision-Theoretic Generalization of On-
Line Learning and an Application to Boosting. Journal of Computer and System
Sciences, pages 119–139, 1997.

Yoav Freund and Robert E Schapire. A Short Introduction to Boosting. 1999.

Jerome H. Friedman. Greedy Function Approximation: A Gradient Boosting Ma-
chine. The Annals of Statistics, pages 1189–1232, 2001.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016.

Andrey Gulin. CatBoost Documentation. https://catboost.ai/en/docs/, 2023.

Shereen Ismail, Zakaria El Mrabet, and Hassan Reza. An Ensemble-Based Machine
Learning Approach for Cyber-Attacks Detection in Wireless Sensor Networks.
Applied Sciences, page 30, 2023.



BIBLIOGRAPHY 79

Manu Joseph. PyTorch tabular: A framework for deep learning with tabular data.
CoRR, 2021.

Spyridon Kardakis, Isidoros Perikos, Foteini Grivokostopoulou, and Ioannis Hatzi-
lygeroudis. Examining Attention Mechanisms in Deep Learning Models for Sen-
timent Analysis. Applied Sciences, page 3883, 2021.

Guolin Ke. LightGBM 4.0.0 documentation.
https://lightgbm.readthedocs.io/en/stable/index.html, 2023.

Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. LightGBM: A Highly E�cient Gradient Boosting Decision
Tree. Curran Associates, Inc., 2017.

Ivana Marin, Ana Kuzmanic Skelin, and Tamara Grujic. Empirical evaluation of
the e↵ect of optimization and regularization techniques on the generalization per-
formance of deep convolutional neural network. Applied Sciences, 2020.

Hildegard Müller. VDA Jahresbericht.
https://www.vda.de/de/aktuelles/publikationen/publication, 2022.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Courna-
peau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research, pages 2825–2830, 2011.

Liudmila Prokhorenkova, Gleb Gusev, Aleksandr Vorobev, Anna Veronika Doro-
gush, and Andrey Gulin. CatBoost: Unbiased boosting with categorical features.
2017.

Babak Bashari Rad, Harrison John Bhatti, and Mohammad Ahmadi. An Introduc-
tion to Docker and Analysis of its Performance. 2017.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
Language Understanding by Generative Pre-Training. 2018.

B. Ramsundar and R.B. Zadeh. TensorFlow for Deep Learning: From Linear Re-
gression to Reinforcement Learning. O’Reilly Media, 2018.

Sebastián Ramı́rez. FastAPI. https://github.com/tiangolo/fastapi, 2018.

Sebastian Ruder. An overview of gradient descent optimization algorithms. 2016.

C E Shannon. A Mathematical Theory of Communication. Bell System Technical
Journal, pages 379–423, 1948.

Gregory G Slabaugh. Computing Euler angles from a rotation matrix. 2020.

Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks. 2017.



BIBLIOGRAPHY 80

Mohammad Mustafa Taye. Understanding of machine learning with deep learning:
Architectures, workflow, applications and future directions. 12(5), 2023.

David Tolin. Doing CBT: A Comprehensive Guide to Working with Behaviors,
Thoughts, and Emotions. 2016.

Gokul Yenduri, Ramalingam M, Chemmalar Selvi G, Supriya Y, Gautam Srivastava,
Praveen Kumar Reddy Maddikunta, Deepti Raj G, Rutvij H. Jhaveri, Prabadevi
B, Weizheng Wang, Athanasios V. Vasilakos, and Thippa Reddy Gadekallu. Gen-
erative Pre-trained Transformer: A Comprehensive Review on Enabling Technolo-
gies, Potential Applications, Emerging Challenges, and Future Directions. 2023.

Dongyang Zhang and Yicheng Gong. The comparison of lightgbm and xgboost
coupling factor analysis and prediagnosis of acute liver failure. IEEE Access,
pages 220990–221003, 2020.



Declaration of Authorship
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