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Abstract

This work presents an exploration of how machine learning models can be used to
determine legibility ratings for handwriting samples from sensor data, which was
recorded using the STABILO DigiPen. The new StabLe dataset consists of samples
written with this pen and was annotated with descriptive meta data and legibil-
ity ratings. This revealed that perceived legibility is correlated with characteristics
of the handwriting samples such as being written in cursive or print letters. The
performance reported for models, which were trained in related work to determine
handwriting legibility from movement sensor data, was shown to be compromised
by the design of training and evaluation. The agreement between models and indi-
vidual raters was suggested as a meaningful evaluation considering the subjectivity
of the ratings. Different ways of mapping varying ratings per sample to a single con-
sensus label were examined, as well as training a rater-specific model. In general,
trained models overfitted the training data and achieved low agreement with raters
on unseen samples. The best-performing model was shown to depend mainly on dis-
criminating between cursive and print-letter writing styles. Failing to train models
that accurately determine legibility ratings, this work highlights the challenges of
using machine learning methods for an automated assessment of legibility based on
time-series sensor data.

i



Acknowledgements

I am deeply grateful to Prof. Dr. Christian Ledig for his dedicated supervision and
constructive feedback, which guided me through the research process.

I would like to express my sincere gratitude to Dr. Jens Barth, Dipl. Ing. Peter
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1 INTRODUCTION 1

1 Introduction

This work contributes to the long-term goal of automating the assessment of hand-
writing legibility. In collaboration with STABILO International GmbH, the Chair of
Explainable Artificial Intelligence at Otto-Friedrich-Universität Bamberg, and the
Schreibmotorik Institut e.V., the STABILO Legibility dataset (StabLe) was created.
It contains subjective ratings of four criteria of legibility for handwriting samples
that were recorded with a sensor-enhanced ballpoint pen. The dataset was used
to analyze rater agreement and to train convolutional neural networks to predict
legibility labels based on the movement data of the pen.

1.1 Background and Motivation

The Role of Handwriting Legibility and its Assessment Studies on hand-
writing assessment have examined its significance in education and the relations
between legibility and various learning outcomes. A detailed review of these studies
is provided in Section 2.1. In summary, handwriting on paper constitutes a signif-
icant part of daily school life, and the ability to produce legible writing serves as
an indicator of pupils’ learning achievements. In addition, poor handwriting quality
has been linked to conditions such as dyslexia and attention deficit hyperactivity
disorder. Research on legibility assessment has led to the development of stan-
dardized handwriting scales designed to evaluate handwriting quality - particularly
legibility - as reliably as possible (Section 2.1.4). However, the applicability of these
approaches is hindered by two main limitations.

• Subjectivity Handwriting legibility is primarily assessed by teachers based
on personal experience and opinion, leading to inconsistencies both between
and within evaluations of individual raters. Although standardized assess-
ment methods can reduce this variability, it cannot be completely eliminated.
Firstly, legibility is inherently subjective, as it depends on the reader’s per-
ception. Secondly, differences in rater training and the application of rating
criteria contribute to persistent variability in legibility assessment.

• Resources The evaluation of handwriting requires considerable time and ef-
fort, as each student’s writing must be individually assessed. Although hand-
writing scales have been developed to improve consistency, their reliability
depends on proper rater training to ensure uniform application, which de-
mands significant resources. Even with standardized tools, ensuring accurate
and unbiased handwriting assessment remains challenging due to practical
constraints in educational settings.

Au et al. (2012) summarize that a reliable instrument for measuring changes in
handwriting ability over time remains elusive. They argue that, in the meantime,
individual clinicians can use handwriting scales to diagnose and rate legibility. Bar-
nett et al. (2018) describe the need for and the status quo of handwriting assessment:
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”Demands for the production of legible handwriting produced in a timely manner
increase as children progress through school. Despite the considerable number of
children faced with handwriting difficulties, there is no quick and practical tool to
assess legibility in this population.”

The Computerized Assessment of Handwriting Legibility Previous re-
search has explored various approaches to automating handwriting assessment. A
detailed review of the literature is given in Section 2.2. The approaches focus ei-
ther on the writing process (fluency, speed, and effort) or on the writing product
(letter shapes and forms). Legibility is assessed either on the character level or for
longer passages of handwriting. Tablet-based solutions provide rich spatial and tem-
poral handwriting data, but introduce an unnatural writing environment. Sensor-
enhanced pens, on the other hand, preserve a natural writing experience and do
not require a complex writing setup, but lack the detailed spatial information which
tablets capture. Despite advances in the use of deep learning models for handwriting
assessment, existing approaches face several limitations:

• User-Dependent EvaluationModels were evaluated on user-dependent data,
which means that they are evaluated on handwriting from known students.
How the model performs when assessing the writing of unknown students can-
not be said, but defines their applicability in real world educational settings.

• Unbalanced Test Data Studies used evaluation metrics that do not ade-
quately reflect the ability of models to distinguish different levels of legibility,
particularly when data was unbalanced.

• Inappropriate Labeling Labeling strategies in previous work introduced
inconsistencies, as legibility annotations were sometimes assigned at the sam-
ple level based on broader assessments or ambiguous legibility criteria, which
potentially obscured fine-grained variations of legibility.

While high accuracy has been reported for some models, closer analysis reveals that
these results are affected by the mentioned limitations, and often stem from dataset
biases rather than genuine advances in predicting ratings of legibility.

Motivation for a Pen-Based Solution The main arguments for an automated
assessment based on pen sensor data were the internal consistency that a solu-
tion based on machine learning could provide and the time-efficient application it
promises. The use of a sensor-enhanced ballpoint pen to record input data allows
seamless integration into students’ daily routines and could enable real-time legi-
bility assessment with immediate feedback. Together, the pen and deep learning
models could help identify children with learning difficulties and monitor learning
progress as children progress in their school careers. In the future, learning appli-
cations could support handwriting practice without requiring direct feedback from
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parents, teachers, or therapists, thus saving them time. This feedback could either
point out areas of improvement, like paying more attention to spacing between let-
ters, or encourage students by recognizing progress already made. As part of an
automated legibility advisor, the automated assessment could further reduce the
need for repetitive feedback on basic legibility criteria, allowing human advisors to
focus on students’ individual needs.

1.2 Problem Statement

Different approaches have been proposed to use deep learning for the assessment of
legibility (Section 2.2). As motivated above, an assessment based on data from a
sensor-enhanced ballpoint pen is desirable.

CNNs were used for such an assessment before, and the low accuracy reported by
Grabmann (2023) for user-independet models trained on balanced data presents the
status quo of training CNNs to determine legibility ratings from handwriting sensor
data. The expressiveness of this accuracy is diminished by the highly unbalanced
test set on which it was obtained. Therefore, it remains unclear how the CNN would
perform when applied for automated legibility assessment in practice.

Legibility is understood as a quality of the writing product (Section 2.1.1). The
sensor data collected with the DigiPen, an electronic pen developed by STABILO
International GmbH, captures the writing movement and pressure, which describe
the writing process rather than the product itself. How well features of the writing
product can be derived from this data is a subject of ongoing research. Consequently,
a careful evaluation is needed to examine whether models actually learn to detect
features of legibility in the sensor data (e.g. how consistent the slant of letters is) or
if they detect features of the process that correlate with legibility (e.g. the length
of pauses during writing).

Legibility itself is a loose concept that is understood and defined differently from
person to person. In view of supervised machine learning, which requires a single nu-
meric ground-truth label per sample, this subjectivity presents a challenge. Previous
work did not account for this subjectivity. How the variance of legibility ratings can
be modeled and how models can be evaluated given the ambiguous ratings require
further investigation.

In previous work, legibility was mostly assessed as a whole. To improve the explain-
ability of predictions and to enable specific feedback for improving ones handwriting,
a separate assessment of different criteria of legibility is needed.

In summary, imbalances and subjectivity in the data make training and evaluation
of models that predict legibility ratings challenging. Approaches to derive ground-
truth labels from varying ratings need to be investigated. Whether performances
can actually be attributed to models learning features of legibility itself was not
examined before. A meaningful way to evaluate models against varying ratings
is needed, and a compartmentalized assessment could improve explainability and
enable helpful feedback.
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1.3 Research Questions

This work investigates the applicability of automated handwriting legibility assess-
ment using time-series data recorded with a sensor-enhanced ballpoint pen. The six
main research questions are outlined below.

R1 Is the rater agreement found in the StabLe dataset comparable to the agreement
reported in related research?

The assembled dataset contained ratings of four legibility criteria. Similar criteria
were addressed in handwriting scales used in related research. The rater agree-
ment on the dataset was evaluated to show how reliable the collected ratings were
compared to the assessments with the reviewed scales. The measured variance and
reliability served as a baseline for model predictions.

R2 Is the rater agreement higher on the criteria that are assumed to be more
specific?

Compared to previous work, ratings were collected for different criteria of legibility
that were assumed to exhibit different levels of subjectivity, depending on how di-
rectly they assess specific characteristics of the writing product. Rating the overall
legibility of a handwriting sample was assumed to be highly subjective, while an
inquiry about the form of specific letters in the writing was assumed to be more
objective. To test this assumption, rater agreement was examined on the different
criteria.

R3 Can the results of previous work on automated legibility assessment be repro-
duced and are the results meaningful?

The findings of previous work by Grabmann (2023) were reproduced to consolidate
the status quo. Here, it was tested whether similar results were obtained when con-
ducting similar experiments and whether the reported results represent a meaningful
depiction of how close the existing solutions are to being applied in practice.

R4 Does reducing the variety of texts in the dataset help the models to find patterns
related to legibility?

It was hypothesized that reducing the variety of texts, which were recorded to build a
dataset for legibility assessment, makes the prediction task easier. Having a smaller
set of texts means that the sensor data of samples should be more similar because
the same letters and words were written. Therefore, differences in the sensor data
seemed more likely to be caused by differences in legibility. To check whether this
hypothesis holds, models were trained on both data from previous work, which
comprised many different texts, and on data collected in this work, which comprised
handwriting samples of a small set of reference sentences.
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R5 How can the uncertainty inherent in assessing legibility be addressed when
training supervised models?

A key problem of training models for legibility assessment lies in the subjectivity
of ratings. Assessments of the same sample can differ between raters. This uncer-
tainty is inherent in the task of assessing handwriting quality. To explore how this
uncertainty can be modeled, different strategies were tested to deduce ground-truth
labels from ratings.

R6 Do models perform better in assessing criteria that are assumed to be more
specific?

The criteria that were assumed to be more objective (R2) were also assumed to be
closer related to patterns in the sensor data. The overall perceived legibility is a
compound of many factors and, therefore, it seems unlikely that it is correlated to
specific patterns in the sensor data. On the other hand, the slant of the letters and
the appropriate length of strokes in specific letters were assumed to be deducible
from patterns in the sensor data. Writing with consistent slant should result in
a regular combination of accelerations measured along the different spatial axes.
Writing a letter too short should show in smaller amplitudes compared to writing
the letter with a longer stroke. To test this assumption, similar model architectures
were trained to predict the different criteria and then compared with respect to their
performance.

1.4 Outline

Next, Section 2 reviews the literature on legibility and its assessment. Methods for
creating and analyzing the StabLe dataset and experiments with CNNs trained on
this dataset are described in Section 3. Technical details on the preprocessing of
sensor data, the developed annotation tool, and the training of models are given in
Section 4. Section 5 provides a statistical analysis of the dataset and the evaluations
of the trained models. In Section 6 the results are summarized and interpreted with
respect to the stated research questions. In Section 7 observations and thoughts
are presented to point out limitations of this work. Finally, Section 8 proposes
approaches to handle limitations in future work.
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2 Literature Review

2.1 Legibility and its Assessment

2.1.1 Definitions of Legible Handwriting

Figure 1: The relation between dif-
ferent terms related to the quality of
handwriting.

The goal of this work is to examine whether
the legibility of handwriting can be as-
sessed computationally. For this purpose,
it is mandatory to specify what is gener-
ally meant by legible handwriting. There is
no universal definition of what makes hand-
writing legible; instead, an overview of how
it is understood in the literature helps to
distinguish legibility from other qualities of
handwriting. Rüb (2018) defines legibil-
ity as a subset of readability. Legibility
is determined by the geometric shapes and
strokes the writer produced, independent of
the meaning that this writing is meant to
transport. Readability indicates how un-
derstandable the text produced is. There-
fore, readability comprises legibility, syntax
and semantic meaning of the text. Feder
and Majnemer (2007) describe legibility as
a compound of letter formation, spacing, size, slant, and alignment. These criteria
affect the ease with which individual letters can be identified. The authors describe
legibility as one of the two main factors of handwriting performance, next to writing
speed or fluency. For Rosenblum et al. (2003) readability and legibility are quali-
ties of the handwriting product, that is, the shapes and strokes visible on the
paper. The authors distinguish between the product and the handwriting pro-
cess, which is the act of writing itself. Together, they determine the handwriting
performance, that is, how well someone writes overall (Figure 1).

Stefansson and Karlsdottir (2004) view handwriting as a means of communication.
If the writing is not legible to the reader, then the communication between the writer
and the reader is negatively affected. The authors state that handwritten text must
adhere to ”a sufficiently widely accepted standard, specifying the shapes, sizes, and
positions of the letters” in order to be perceived as legible by most readers. Following
the differentiation of legibility and readability, readable handwriting means that
communication between writer and reader works flawlessly. The legibility is then a
necessary but not sufficient requirement for flawless communication via handwritten
text. Viewing legibility as a requirement for successful communication points out the
highly subjective nature that is inherent in assessing legibility. In the end, legibility
is perceived by the reader and therefore depends on the reader.
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This is reflected in the varying inter-rater reliability found for different standardized
assessments, so called handwriting scales (Table 3). The assessor or rater introduces
a personal and subjective understanding of what legibility is in the assessment.
Furthermore, different assessments address legibility by asking different questions,
thus capturing different notions of how the concept of legibility is understood. This
is in tune with Harris and Association (1960) who state that terms like legibility
and readability ”resist precise definition and appear to be complexes with whole
and part attributes which may exist in many different combinations in handwriting
specimens”.

Consequently, legibility should not be viewed as a singular characteristic but rather
as a composite of multiple criteria that collectively shape its perception. If all the
criteria are met for some handwritten text, then the average reader should be able to
read the presented letter sequence without complications. Rosenblum et al. (2003)
give an overview of different handwriting scales developed in the past. They find
that scales which capture legibility as one holistic feature of handwritten text were
more common in the early days of this field of research. In more recent research,
the focus has shifted towards analytical scales which calculate legibility from a set
of more specific criteria, such as letter size or spacing.

This review of the term legibility informed how it was understood in this work. Leg-
ibility is the perceived quality of handwritten text that is determined by the criteria
listed in Table 1. In addition to syntax and semantics, legibility is a requirement
that must be met for handwriting to be readable. Legibility is subjective because it
represents the quality of text that is perceived by the reader. Consequently, there
is no hard truth about the legibility of a given piece of handwriting. This implies
limitations for any assessment that is meant to measure legibility.

Table 1: Criteria belonging to legibility based on the reviewed literature.

Criteria of Legibility Other Qualities of Handwriting
shapes and strokes of individual letters,

consistency of letter slant,
consistent size of letters,

adherence to line,
appropriate spacing in and between words

spelling, grammar,
semantics, writing effort,
writing speed, page layout

2.1.2 Correlations with Legibility and its Implications

This section reviews the literature that examines the role of handwriting legibility in
school life, the correlations that come with poorly or sufficiently legible handwriting,
and its diagnostic significance.

Benefits of Legible Handwriting A field study by McHale and Cermak (1992)
examined the fine motor skills required and exercised in American elementary school
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classes. This study found that children spent 31% to 60% of their school day per-
forming handwriting tasks. This supports Feder and Majnemer (2007) who consider
the development of handwriting ability to be an important requirement for success
in school. Steve Graham (2020) states that writing is essential not only for school,
but also for work and home life.

Further studies underscore the positive effects of acquiring sufficiently developed
handwriting skills.

McCarney et al. (2013) had primary school students participate in cognitive, literacy,
and writing tests. Through a group analysis, the authors found that the ability to
produce readable handwriting was weakly correlated with performance in a working
memory test, a verbal IQ test, and word reading and spelling tests.

Dinehart and Manfra (2013) measured the fine motor skills of preschool children.
Preschoolers were tested on writing and object manipulation tasks. As they reached
second grade, the children performed a variety of cognitive, reading, and mathemat-
ical tests. Modest but statistically significant correlations were observed between
these early motor skills and the achievements in the later tests. The authors con-
clude that fine motor skills, particularly the ability to produce well-formed letters,
can indicate the school readiness of a child.

The effect of writing well-formed letters is further examined in neurological studies.
James and Engelhardt (2012) measured the brain activity of preliterate children
while letters were presented to them. They compared the brain activation of chil-
dren who participated in free-form handwriting exercises, children who performed
tracing exercises, and children who typed letters on a keyboard. The authors doc-
umented that a ”reading circuit” in the brain was activated only when they had
performed free-form handwriting before being presented with the letter. This led to
their conclusion that handwriting helps develop the skill to process letters because
producing a well-formed letter on blank paper demands more attention to detail
than just tracing or typing it, thus forcing the child to build an understanding of
what makes up a certain letter.

Berninger and Richards (2002) come to a similar conclusion. They state that hand-
writing is a vehicle for children to develop patience and discipline because learning
to write a letter demands the student to maintain sustained focus and acquire fine
motor skills. Furthermore, connecting letters with the motor function of writing this
letter is believed to foster better memory retention and attention to detail.

Szymczak (2016) examined handwritten samples that were collected in a translation
competition. Each sample was scored by a jury to determine a ranking with regard
to translation quality. Subsequently, independent raters assessed the legibility of
those samples. A significant correlation was found between the legibility ratings
and the ranking in the translation quality competition. It is hypothesized that psy-
chological effects caused the jury to associate better translation quality with legible
handwriting samples. If this assumption holds, then this suggests that legibility is
taken into account subconsciously whenever handwritten text is assessed or graded
by humans.
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In summary, legible handwriting and the fine motor skills needed to produce such
writing are shown to play an important role in education. If a student writes legibly,
then this indicates that his or her perception of letters is connected with the skill of
persistently writing that letter. This connection is believed to decrease the workload
of all tasks related to writing or reading. Although the direction of causality or the
interaction with other latent variables is unknown, the literature has shown that
the ability to write legibly and precisely is at least weakly correlated with academic
success and can benefit other areas of life.

Problems with Illegible Handwriting In contrast, the inability to produce
legible handwriting can be an indicator of learning difficulties and has been shown
to have undesirable implications.

Berninger and May (2011) summarize the literature on learning disabilities and
found that impaired legible automatic letter writing is a common denominator in
research on dysgraphia (diagnosed writing difficulties). Automatic writing refers to
the ability to write fluently with minimal cognitive effort. Legible automatic letter
writing is a compound of legible writing and automatic writing. So diagnosing for
dysgraphia involves an assessment of legibility.

Similarly, Martlewm (1992) examined children with and without dyslexia (diagnosed
reading difficulties). They compared qualities of the writing process and product.
The handwriting of children with dyslexia was perceived as less legible.

Comparing both the writing process and the product of children with and with-
out attention-deficit hyperactivity disorder (ADHD), Sara Rosenblum and Josman
(2008) found that those with ADHD exhibit a comparatively poor spatial arrange-
ment of strokes and letters, as well as a higher frequency of unrecognizable letters.
This suggests that low legibility could be an indicator of this condition.

Dinehart (2014) and Barnett et al. (2018) summarize that students who failed to
acquire the skill of legible handwriting can develop a reluctance to write, which in
turn is detrimental to their success in school and affects self-esteem.

2.1.3 Informal Assessments in Practice

The ability to write legibly is a valuable skill. This motivates the intention to assess
the legibility of handwriting. According to a teacher survey conducted by Marquardt
et al. (2016), 31% of girls and 51% of boys in German schools exhibit some degree of
handwriting difficulty. A meta-study on handwriting difficulties and interventions by
Feder and Majnemer (2007) found that between 10% and 30% of school-aged children
are affected. They observed that these difficulties do not resolve without intervention
in most cases, while interventions were shown to improve handwriting, independent
of the specific treatment approach. An assessment of legibility as part of handwriting
performance as a whole could help to identify and target such difficulties, and could
positively impact a significant percentage of schoolchildren.
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Stefansson and Karlsdottir (2004) reviewed three studies that investigated how
handwriting is evaluated in school. They found that the assessment of handwriting
quality is usually based on informal observations by the teacher. Formal handwriting
scales are used less frequently.

Rondinella (1962) has shown that individual observations, which teachers base their
assessments on, are not reliable because they are determined by the individual stan-
dards of the teacher, rather than objective or standardized benchmarks. The indi-
vidual assessments of teachers were compared to the ratings obtained with a formal
handwriting scale, which revealed a wide spread in perceived handwriting quality.

2.1.4 Formal Assessments using Handwriting Scales

A handwriting scale is a standardized and quantifiable measurement of a qual-
ity of handwriting. Most scales rely on a subjective assessment conducted by an
individual rater, while some aspects of handwriting quality, such as writing speed,
can be objectively measured. As discussed above, legibility is a quality perceived
by the reader. Handwriting scales related to legibility mainly use questionnaires
and are subjective. Rosenblum et al. (2003) reviewed existing handwriting scales
and their application to detect handwriting difficulties. She categorized them as
global-holistic or analytical handwriting scales.

A global-holistic handwriting scale directly associates a single rating with the
quality inquired for the handwriting sample.

An analytical handwriting scale evaluates the quality of handwriting as a com-
plex compound. Samples are rated with respect to different criteria that are assumed
to affect quality. An overall score is then calculated from those more specific ratings.
The author found that analytical scales are more common in recent research. This
can be attributed both to the higher reliability found in analytical scales and to the
more detailed insights they provide. Analytical scales can point out which factors
make some handwriting illegible, helping to initiate appropriate measures.

2.1.5 Renowned Handwriting Scales

In the following, five analytical handwriting scales are described, which assess the
legibility through a questionnaire. For a detailed description of the scales and the
corresponding questionnaire items, refer to A.1.

SEMS and (SOS-2) The German Systematische Erfassung motorischer
Schreibstörungen (SEMS) is a handwriting scale developed to identify children with
handwriting difficulties, which was adopted from the Dutch SOS-2 (Waelvelde et al.,
2012). Suspects perform a copy writing task. The scale evaluates both the leg-
ibility of the produced writing as well as writing speed. With the corresponding
questionnaire, seven criteria related to legibility are rated as being satisfied mostly
(0), sometimes (1), or rarely (2). The ratings are summed to obtain a total score.
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Franken and Harris (2021) found that this total score can be used to accurately
identify children with handwriting problems in the second grade.

HLS Barnett et al. (2018) developed the Handwriting Legibility Scale (HLS) for
teachers to quickly assess legibility. The suspect performs a free writing task. A
legibility score is calculated as the sum of five criteria that are rated on a five-point
Lickert scale following the corresponding questionnaire.

ETCH The Evaluation Tool of Children’s Handwriting (ETCH) tests for many as-
pects of handwriting performance. The suspects participate in several writing tasks.
The examiner observes the suspect during the writing tasks because both the writ-
ing process and the writing product are assessed. Duff and Goyen (2010) describe it
as a criterion-referenced assessment that focuses on the readability of letters, words,
and numbers at a glance and out of context. The corresponding examiner’s manual
by Amundson (2004) provides detailed instructions on the preparation, execution,
and interpretation of the proposed assessment. This handwriting scale was designed
for use by occupational therapists.

HPSQ Rosenblum (2008) proposed the Handwriting Proficiency Screening Ques-
tionnaire (HPSQ) to identify handwriting difficulties among school-age children. It
is intended to be used by teachers to assess the handwriting of their students. The
questionnaire contains ten questions that are rated from one to five. A principal
component factor analysis of these ten criteria revealed two main factors. The first
comprises four questions, which the authors summarized as related to legibility.

MHT Following the description by Rosenblum et al. (2003), the Minnesota Hand-
writing Test (MHT) was developed to assist occupational therapists in identifying
school children with writing difficulties. Suspects copy a standardized set of words
for a fixed period of time. The examiner checks which of fourteen statements apply
to the writing of the suspect and then rates the produced writing according to six
criteria, of which five are related to legibility.

To summarize, the described handwriting scales use questionnaires to quantify the
judgment of legibility of the raters. The questionnaire items inquire ratings of differ-
ent aspects of legibility. Although precise definitions differ, there seems to be general
agreement on which legibility criteria need to be assessed on an analytical handwrit-
ing scale that focuses on legibility. Similar criteria are aggregated in Table 2 to give
an overview of how legibility is captured by the described scales. The checkmarks
indicate that a scale contains a questionnaire item that at least mentions the given
criterion in the rating instruction.
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Table 2: An overview of the legibility criteria inquired in handwriting scales.

Criterion Inquired in Questionnaire
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ETCH ✓ ✓ ✓ ✓ ✓

HPSQ ✓ ✓

MHT ✓ ✓ ✓ ✓ ✓ ✓

2.1.6 Limitations of Handwriting Scales

Rosenblum et al. (2003) point out the limitations of existing handwriting scales. One
drawback of questionnaire-based assessments is the dependence on the rater. For
many handwriting scales, there is no specification on who is qualified to administer
them. It seems plausible that the perception of legibility differs between therapists,
teachers, and laymen. Consequently, the same handwriting might receive varying
scores depending on the rater.

Furthermore, the scales differ in how the rater is instructed. The instructions range
from short textual descriptions of the writing task and questionnaire items to exten-
sive manuals that provide guidance on the preparation, administration, and interpre-
tation of the assessment. Both Barnett et al. (2018) and Franken and Harris (2021)
instructed the raters about the use of the handwriting scales personally. In contrast,
the MHT comes with an instruction manual for the rater, and in-person instructions
did not take place. Similarly, before administering an ETCH assessment, raters are
expected to practice with the corresponding manual. A trial assessment is provided
to check that the rater assigns the ratings according to the manual instructions.

These differences in the selection of raters and the provided instructions partially
explain the variation of reported inter-rater reliabilities shown in Table 3. The
metrics are described in Section 3.4.2. Barnett et al. (2018) instructed two teachers
to assess the handwriting according to the HLS. Based on the ratings given, the
handwriting samples were grouped into three classes of legibility (low, medium, and
high). The ICC indicated excellent agreement, but the authors did not report which
variant of the ICC was used. Cohen’s Kappa was lower but showed substantial item
agreement. Waelvelde et al. (2012) found good agreement on the total SOS-2 scores
using ICC (2,1) and varying agreements using Cohen’s Kappa agreement on the
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different items rated. For the other scales, only the ICC was reported either for
total scores or ratings of individual items.

Table 3: Inter-rater reliability of handwriting scales.

Scale
Intraclass
Correlation
Coefficient

Cohen’s
Kappa

HLS .92 .67
SOS-2 (SEMS) .77 0.39-0.77
ETCH .85-.92
HPSQ .92
MHT .77-.99

The described assessments are time-intensive. For example, the HPSQ can be con-
ducted by a teacher in about five minutes and an assessment using the ETCH is
expected to take 20 to 30 minutes. This investment of time per student hinders a
wide adoption of handwriting scales for legibility assessment.

2.2 Computerized Assessments of Legibility

Different machine learning based solutions have been proposed before for automated
handwriting assessment. They vary in the qualities of handwriting that they aim to
assess and in the data they operate on.

• Solutions focus on either the writing process or the writing product (Sec-
tion 2.1.1).

• Solutions use images of handwriting, trajectories recorded on tablets, or data
from sensor-enhanced ballpoint pens.

• Solutions assess single letters or longer passages of writing.

2.2.1 Predicting the Legibility of Single Characters using Tablets

The use of display tablets to record handwriting trajectories provides both tem-
poral and spatial descriptions of the writing, which makes them a popular choice.
The recorded data allows for a direct assessment of both writing product and pro-
cess. Hamdi et al. (2020) developed a system that assessed how well students wrote
single letters on a tablet computer. From the recorded trajectories, three representa-
tions were calculated using a beta-elliptic model, Fourier transformation, and CNNs.
These representations of the student’s attempt at writing the given letter were then
used to calculate the similarity with selected correctly written reference samples of
the given letter. In addition, support vector machines were used to calculate scores
that rated different aspects of the written letter. The similarity measurements and
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scores were then forwarded to a fusion model that combined inputs to determine
scores for the four criteria of interest.

1. Correctness of the overall shape of the letter.

2. Omission of required strokes of the letter.

3. Deformations like an unusual slant of a stroke in the letter.

4. Addition of strokes.

In summary, single letters written on a tablet are automatically rated with respect
to four criteria.

2.2.2 Predicting Handwriting Performance using Tablets

Mekyska et al. (2023) had children write paragraphs on a display tablet and used
the recorded trajectories to predict the scores of the HPSQ-C handwriting scale
(Section 2.1.4), which is used to assess the handwriting performance asking about
the writing process and product (Section 2.1.1). Manually engineered features, like
the time in air, were used as input to a gradient boosting algorithm to predict the
ratings of three items of the HPSQ-C questionnaire. The Mean Absolute Error
(see Section 3.4.1) between the model predictions and the ratings ranged from 1.79
to 2.67 for the three individual items and was 5.6 for the overall summed score.
With a range of one to five for the individual items and a range of three to fifteen
for the total score, these mean errors seem substantial. In a binary classification
task between dyslexic and normally developing children, an accuracy of 83.6% was
achieved based on the predictions on a balanced test set.

2.2.3 Predicting Legibility with the STABILO DigiPen

The use of sensor-enhanced ballpoint pens allows for an assessment of the natural
writing process on paper. The collected sensor data captures features of the writing
process and is less descriptive of the writing product than the images and trajecto-
ries recorded on tablets. Grabmann (2023) assembled the Curation Beauty dataset
from handwriting samples recorded with a pen similar to the one described in Sec-
tion 3.1.2. Ordinal legibility ratings from one to three were assigned to the samples
by the author. These ratings represent a count of legibility violations. For each
of the five legibility criteria that the annotator saw violated, the ratings increased
by one. Samples with more than three violations were assigned the maximum rat-
ing of three. Four deep learning network architectures were trained to discriminate
between the three legibility ratings. The models were trained and tested on four dif-
ferent categories of data, which dictated how the training and the test were derived
from the dataset. The models were compared on the basis of the mean accuracy
they obtained on unbalanced test sets in five-fold cross-validation.
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• Category 1 With unbalanced training data and user-independent evaluation,
mean accuracies for the different models laid between 41.12% (RNN) and
56.17% (CNN).

• Category 2 With balanced training data and user-independent evaluation,
the MLP achieved the highest accuracy of 45.54%, while both the RNN with
37.77% and the CNN architecture with 37.80% achieved equally poor results.

• Category 3 Unbalanced training data and user-dependent evaluation led to
the highest mean accuracies between 53.06% (RNN) and 63.38% (MLP).

• Category 4 With balanced training data and user-dependent evaluation,
mean accuracies were between 49.74% (RNN) and 62.47% (CNN).

In addition to the ratings by the author, a teacher also provided ratings for entire
pages of student handwriting. These pages were then divided into shorter hand-
writing samples, which were given the same rating as the entire page. Experiments
with these ratings used data of category three, so samples of the same student were
allowed to appear in the training and test set. An accuracy of 96.5% was reported
for the same CNN, which achieved 37.8% with category two data.

In the context of applying automated assessment in practice, the goal was to collect
annotated data for a group of students to train models that develop generalizable
features related to legibility. These features would then enable the models to assess
the legibility of unknown students. To avoid introducing bias into the assessment and
to test generalization, the second category holds the greatest significance. However,
the results reported for category two are hard to interpret. Possible problems lie
in the use of accuracy as metric for evaluation on unbalanced data, the unspecific
nature of labels in the dataset, and flaws in model architecture.

Unbalanced Test Data Given the highly unbalanced nature of the test sets, ac-
curacy does not appear to be a suitable or expressive metric. A model that always
predicts the most common of the three ratings would have achieved an accuracy
greater than 50%, which is higher than the reported accuracy of the four mod-
els. Training on unbalanced data makes the model favor the more common ratings,
which leads to higher accuracy on an unbalanced test set with a similar distribu-
tion of ratings. Consequently, all four models achieved higher test accuracies with
category-one data than with category-two data. This increase in accuracy cannot
be attributed to an increased ability to determine the legibility of samples. In the
dataset, the least frequent of the three legibility ratings marks the least legible sam-
ples. From a diagnostic point of view, it is important to reliably identify these
samples with low legibility.

Unsuitable Labeling - Ambiguous Ratings As a consequence of the labeling
scheme, the same rating can denote different shortcomings in a sample. For example,
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a rating of one indicates that one of five criteria was found to be violated in the
handwriting sample. A sample with irregular spacing received a rating of one, as
well as a sample with irregular letter heights. This makes it harder to relate one
rating to specific patterns in sensor data.

Unsuitable Labeling - Unspecific Ratings The accuracy of 37.80% measured
when the CNN was trained with individual ratings per sample and data category
two was compared to the 96.5% it achieved on samples annotated with ratings that
describe entire pages and data category three. This comparison reveals that having
identical ratings for all samples from an individual student in combination with a
user-dependent evaluation leads to misleadingly high accuracy. It is assumed that
samples of most students were contained in both the training set and the test set.
Consequently, the model probably learned to identify student-specific patterns in the
sensor data rather than finding features related to legibility. A model that is able
to tell apart the handwriting samples of the 37 students in the dataset will perform
well on the prediction task because all samples of the same student are annotated
with the same rating. Consequently, the results show the ability of the model to
learn the writing styles of 37 students, but not its ability to assess legibility.

Model Architecture The architecture of the CNN model is shown in Figure 8.
As explained in Section 4.3.2 all convolutional layers operate on data of the same
size. As a consequence, there is no incentive for the convolutional layers to condense
the input data into more abstracted features throughout the convolutional layers.
Without reducing the size of the feature map, the convolutional layers seem likely
to bring little benefit to the learning ability of the model. The prediction is assumed
to be determined mainly by the weights of the classification head.

2.2.4 Predicting Legibility with the SensoGrip Smart Pen

A similar approach to the automated assessment of legibility was described by Bublin
et al. (2023). Reviewing related literature, they stated that traditional methods
often relied on digital tablets and classical machine learning algorithms. In contrast,
the authors used the SensoGrip smart pen, which captures detailed handwriting
dynamics similarly to the pen described in Section 3.1.2. Raters assigned scores
between zero and twelve according to the SEMS handwriting scale (Section 2.1.5).
According to the study on the SEMS handwriting scale (Franken and Harris, 2021),
the students were grouped as having handwriting difficulties or not according to the
score assigned to their writing.

The models were trained for regression on the overall SEMS scores, rather than
predicting ratings for individual questionnaire items, which focus on different aspects
of handwriting performance separately. The dataset consisted of the handwriting
of 22 students, the corresponding sensor data, and the SEMS score given for each
piece of handwriting by a therapist. To increase the amount of training data, the 22
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pieces of handwriting were split into 20 shorter handwriting samples. Each sample
created this way was annotated with the overall SEMS score that was given for the
original piece of handwriting as a whole. The best performance was reported for a
long short-term memory network. It achieved a Root Mean Square Error (RMSE)
of 0.68, which corresponds to a Mean Squared Error (MSE) of 0.56. Given that
the model predicts values between zero and twelve, these errors appear to be low
and suggest that the model is able to predict scores similar to the therapists. An
accuracy of 99.8% was reported for the binary classification task, between samples
of students with or without handwriting difficulties. The limitations of the proposed
work put these results in perspective.

Unsuitable Labeling - Unspecific Ratings It seems questionable whether the
samples’ scores accurately describe their handwriting quality because the score is
inherited from the original longer piece of handwriting. For example, such a piece
of handwriting could start with a perfectly legible sentence and end with a sentence
that is hard to read. To increase the training data, the writing is split. The first and
last sentences are individual samples. With the explained annotation scheme, both
the perfectly legible and the problematic samples receive the same score, which was
assigned to the piece of writing as a whole and probably lies somewhere in between
the two scores that would suit the two individual samples.

User-Dependent Evaluation The issues described above that arise from the
approach of annotating samples for training and testing were intensified because
samples from the same student were contained in both the training and the test
set. As explained in the review of Grabmann (2023), the combination of having the
same score assigned to all samples from an individual student and evaluating the
model in a user-dependent way leads to high accuracies that are not generalizable
for the practical application of automated assessment. The reported performance
shows that the model is able to approximate the score by identifying who of the 22
students wrote a given sample.

Use of Additional Data In addition to the sensor signals, the age and gender of
a student were given to predict the legibility of a sample. This allows the model to
learn how age and gender are related to legibility. This learned bias helps improve
the accuracy on the test set, but detracts from learning patterns in the sensor data
that determine legibility.



3 METHODOLOGY 18

3 Methodology

The idea was to capture the perceived legibility of many raters for a large set of
handwriting samples. The ratings in this dataset represent an approximation of the
concept of legibility. An assessment system should be created that rates unseen
handwriting according to this approximation. Basing the assessment on the judg-
ment of different raters is a step towards more objectivity and robustness, compared
to relying on a single rater. Each time the system assesses a handwriting sample,
the judgment is based on the opinions of the whole pool of raters who annotated
the dataset. If the system gives ratings in accordance to the rater opinions, and
the pool of raters constitutes a representative subgroup of all people who assess
legibility, then the tool could be used to conduct the assessment in their place.

To train CNNs as such assessment systems and to address research questions, the
first step was to settle on the criteria of legibility to investigate. Then, ten sentences
were designed as reference text. Handwriting samples were recorded for these sen-
tences with the STBILO DigiPen and then rated according to the criteria to assemble
the StabLe dataset. The dataset was used to analyze rater agreement and to train
models for automated assessment.

3.1 Data Acquisition

3.1.1 Choosing Legibility Criteria

The literature review revealed similar criteria that are addressed to assess the legi-
bility in the handwriting scales discussed. For this work four legibility criteria were
chosen. Three factors informed the decision on the criteria that should be investi-
gated.

• The criterion must be grounded in research. There needs to be evidence that
the criterion is relevant for the overall perceived legibility of handwriting.

• Expert experiences (engineers involved in developing the sensor pen) and opin-
ions on whether a criterion can be assessed using only the sensor data provided
by the pen were taken into consideration.

• Criteria with different degrees of specificity should be investigated. A criterion
that asks for a general impression is said to be unspecific compared to one that
asks for a specific characteristic of the strokes or letters.

Based on these factors, the common criteria shown in Table 2 were considered and
refined to the four criteria shown in Table 4 together with the identifiers used later
for reference.

The global-legibility was chosen as the first criterion. The raters are asked to give
a rating that reflects their overall impression of legibility. An overall impression of
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legibility is commonly rated in the reviewed scales. This is the least specific criterion
because it is not directly determined by the specific characteristics of the shapes and
strokes.

The slant-consistency was chosen as the second criterion. The raters are asked to
give a rating that reflects how well the vertical strokes of the letters are aligned.
This criterion is more specific because it is determined by a characteristic of the
strokes, their slant, and it is common in the reviewed scales. It is assumed that
information about the slant can be reconstructed from the provided sensor data.

Table 4: The four legibility criteria.

Question
Identifier

Criterion

Q1 global-legibility
Q2 slant-consistency
Q3 letter-formation rnh
Q4 letter-formation ad

Letter-formation-ad and Letter-formation-rnh
were chosen as the third and fourth criteria.
The raters are asked to give a rating that re-
flects how well these letters are formed and how
easily similar letters can be distinguished out
of context. Letter formation was assessed in
most of the reviewed handwriting scales. The
correct form and shape of the individual letters
determine legibility. Lewis and Lewis (1965)
examined root causes for insufficient letter for-

mation. They found that the incorrect size of parts of letters is the most common
letter formation error. A large portion of letter malformations appears in a small
subset of letters, which are similar in shape. They explain that the letters ’a’ and
’d’ are produced by nearly identical hand movements, and their shapes only differ
in the extent of one stroke. The same holds for letters ’r’, ’n’, and ’h’. The question
of whether the extent of these strokes is appropriate and whether the letters are
distinguishable is specific.

3.1.2 Recording Materials

Different materials were used to record handwriting samples for the StabLe dataset.

Reference Sentences The text or content of the handwriting samples of StabLe
was designed according to the following considerations.

• Fixed Content Previous work attempted to predict legibility in a wide variety
of written text. According to the hypothesis that reducing the variety of
content benefits model performances (R1 in Section 1.3), this work altered
the prediction task to assess legibility in a small number of reference sentences
written by all subjects.

• Dictionary Because samples were planned to be recorded with students in
grades five and six, sentences were not allowed to contain complicated terms.
This was meant to ensure that students can read the sentences once and then
write them without interrupting the writing flow.
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• Sample Length To record uninterrupted writing, samples had to be short.
In addition, it was hypothesized that one single legibility label for a longer
text passage lacks detail. The rating that describes the passage as a whole can
differ from the rating that would apply to a shorter excerpt. Rating a long
passage requires the rater to summarize observations on different parts of the
text into one rating. It is assumed that this makes the ratings more subjective
and less reliable than they would be in shorter texts.

• Letters As criteria Q3 and Q4 focus on a comparison of letters ’r’, ’n’, and
’h’ or ’a’ and ’d’, respectively, sentences were designed to contain these groups
of letters.

Following these considerations, ten short sentences were designed as writing tasks for
the dataset. The process of finding appropriate reference sentences was supported
by members of the SMI, who could build on experience in the field of assessing
legibility and working with students. The ten sentences are:

1. Der Hahn und der Hund tanzen.

2. Er stand da und lauschte.

3. Hannah hat ein Buch gelesen.

4. Quark ist besonders lecker.

5. David der Kater schnurrt sanft.

6. Die Pförtner lassen dich herein.

7. Sie wandern in Richtung Strand.

8. Kinder spielen draußen.

9. Ein heftiger Blitz leuchtet.

10. Bellende Hunde beißen nicht.
Figure 2: The recording sheet.

Recording Sheet For previous handwriting recordings at STABILO, participants
wrote on regular lined, grid, or blank paper to collect samples for text recognition.
For this work, the goal was to reduce the variability in the recordings as much as
possible to make the task of predicting legibility as easy as possible. Furthermore,
single sentences had to be extracted from the scans of the sheets afterward to prepare
the labeling process. Therefore, uniform sheets with ten black lines numbered from
one to ten were used so that students could write each of the ten sentences on the
designated line. In case the students needed to correct themselves, a second gray
line was printed for a second attempt at writing the sentence. At the top, the sheets
contained a small box to fill in the student’s user ID so that the sheets could be
associated with the corresponding recorded sensor data afterwards. The sheet is
shown in Figure 2
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STABILO DigiPen and Recording App Students wrote with the STABILO
DigiPen, hardware version 6.3. This pen is a sensor-enhanced ballpoint pen that
writes on paper as a normal pen and captures the writing movement with an array
of sensors. A force sensor in the tip measures how strongly the pen is pressed onto
the paper while writing. In order to capture the movement of the pen, two sensors
combining three-axis accelerometers and gyroscopes are used, one in the front of the
pen and a second at the rear end of the pen. The pen and its technical components
are shown in Figure 3. Sensor signals are recorded with a sampling rate of 400. In
order to transmit the recorded sensor signals, the pen has internal data processing
capabilities and contains a radio datalink for communication. External devices can
be paired with the pen via Bluetooth to receive the stream of sensor data.

(a)

(b)

Figure 3: (a) Picture of the STABILO DigiPen used in this work. (b) The technical
components of the pen.

STABILO maintains the HwDon BASIC app, an Android app built to carry out
recording sessions with the described DigiPen. The app provides a user interface to
pair with an available pen. The pen streams sensor data to the paired device, where
it is stored locally and can be uploaded to the centralized Handwriting Donation
Server, which hosts a database of handwriting recordings.

In the recording app, users are identified with a unique profile that contains infor-
mation about the writer. Different projects prompt users with different sequences
of samples (texts) to write. Buttons are used to navigate between samples and to
restart the recording of a sample. Figure 4 shows the user interface subjects inter-
act with during a recording. For each handwriting an, unique sample id is stored
together with start and stop timestamps. After the recording session, the user is
asked to take a picture of the produced handwriting with the tablet. These images
are stored together with the recorded sensor data.
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Figure 4: The Handwriting Donation App displaying a sentence for recording.

3.1.3 Recording Sessions

Handwriting samples were collected from 202 students in two recording sessions. The
first recording session was conducted with 86 students in grade six at the Gymnasium
Hilpoltstein on 11.06.2024. The second recording involved 116 students in grade
five at Friedrich-Alexander-Gymnasium in Neustadt a.d. Aisch on 17.06.2024. The
children and their parents were informed beforehand and had agreed to participate
in the recording sessions.

Figure 5: Two images of individual
handwriting samples extracted from
the scan.

Two STABILO employees and two students
from the University of Bamberg prepared
and supervised the recordings, while the
schools provided the rooms and brought in
groups of students. A tablet, a sensor-
enhanced ballpoint pen, and the described
sheet, were placed on twelve desks to record
the handwriting of the students. They
were briefly instructed about the usage of
the recording app and could ask supervi-
sors for help at any time. The students
were advised to write in their natural writing
style. The handwriting samples or sentences
were recorded in the same order for all stu-
dents and the sheet was subsequently pho-
tographed by the supervisors. The sheets
were scanned afterwards to obtain higher-
resolution pictures without distortions. Due
to complications, sensor data was not prop-
erly recorded for all handwriting samples.
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3.1.4 Sentence extraction

Images of individual sentences were extracted from the scanned sheets. The main
steps of the sentence extraction process were as follows. The user ID was identified
within the scan, and the ID inside was read using pretrained optical character recog-
nition (OCR) models. Bounding boxes were placed around each line that contained
handwriting, and the content of each box was extracted and stored to a single im-
age. OCR was used to read the text of each extracted image. For each of the ten
sentences, the extracted image with the highest character match was stored.

3.1.5 Manual Curation and Validation

The recording and the sentence extraction produced handwriting samples consisting
of a sentence, a sample ID, sensor data and an image of the handwriting.

The samples were all examined manually to verify the sentence extraction, and
for later analysis and interpretation of the results. Tags were added to capture
information on flawed samples and characteristics of their content.

• cursive: The sample was written purely in cursive letters.

• typo: The sample contained a spelling error.

• correction: The sample contained some correction by the student, for exam-
ple a crossed out word.

• image: The image did not show the sentence as expected. Either parts were
cut of or the image showed text from other lines as well.

Tracking whether a sentence was written in print or cursive seemed relevant, be-
cause the movement of the pen was assumed to be different between the writing
styles. Furthermore, the writing style could affect how legible a sample is. The cur-
sive tag was added when a sentence was written in cursive letters only, while many
samples showed a mix of both cursive and block letters. If a sentence contained
a typo, then the recorded sensor data does not correspond to the writing of the
exact text of the reference sentence. Furthermore, spelling errors could affect the
legibility ratings. The same holds for sentences that contained corrections. For
samples with a flawed image the sentence was extracted manually from the scan.
This was the case for twelve images.

3.2 Data Annotation

The recording sessions and manual curation described above resulted in 2017 un-
labeled samples, of which sensor data was recorded for 1916. In order to train the
supervised models, a legibility label had to be assigned to each sample.
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To train models to assess the global-legibility the StabLe(Q1) dataset was created by
collecting ordinal ratings of this criterion for each sample. A global-legibility rating
of ’1’ denotes that the sample is perfectly legible and a rating of ’5’ marks it as not
legible. Similarly, ratings were collected to compile datasets for the other criteria
(Section 3.1.1).

To analyze and account for the suspected low inter-rater reliability, ratings for each
sample were collected from multiple raters. The level of expertise was suspected to
affect the ratings. Therefore, at least one rating per sample had to be collected from a
rater with experience in assessing handwriting. To examine the intra-rater reliability,
a subset of the samples was rated twice by some of the raters. Approximately 22000
ratings were needed for the 2017 samples and the four criteria.

3.2.1 Requirements to the Annotation Tool

To collect the ratings for the four labeled datasets, an annotation tool was needed.
The had to provide a seamless annotation process and data integrity.

Simple User Interface: The annotation had to be self-explanatory and the rater
had to be provided with all needed instructions. The tool had to provide a single
streamlined and linear user experience where raters were first instructed and then
rated the samples. To avoid problems, the user interface should not contain any
settings that the rater could change.

Web-App: To make the annotation tool easily accessible, a web app was preferred
over applications running locally. In this way, participants could annotate from any
device. A web app with a designated backend allowed to manage several raters in
parallel. Furthermore, the annotation process could be steered and adjusted in the
centralized backend without involving the raters themselves.

Rollout Management: To collect the redundant ratings required for a subsequent
analysis of inter- and intra-rater reliability, the tool had to provide logic for a planned
rollout. Therefore, the tool had to store which rater already rated which sample.
Based on this information and an adjustable prioritization, the next criterion and
samples to be prompted to a rater were determined.

Batching of Samples: When using the tool, raters were prompted with batches of
samples to increase efficiency. All samples in a batch were rated with respect to the
same criterion. That way, the rater read the task instructions once before rating a
batch of samples correspondingly.

Random Sampling: It was suspected that the order in which sentences were
displayed could affect the ratings given. To reduce the impact of such effects, samples
had to be displayed in random order within the constraints of the rollout strategy.
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3.2.2 Existing Annotation Tools

With the specified requirements, existing annotation tools were examined. For an
overview, the annotation tools mentioned in three lists maintained on GitHub were
systematically reviewed.

• ”awesome-data-labeling” by Tkachenko (2022) is a curated list of annotation
tools maintained by HumanSignal who develop LabelStudio.

• ”awesome-data-annotation” by Pungas (2022) is another curated list of anno-
tation tools maintained by Taivo Pungas.

• ”awesome-open-data-annotation” by van Linschoten (2024) is a curated list of
open-source data annotation tools maintained by ZenML GmbH.

The three mentioned lists overlapped partially. Together, they covered 52 image
annotation tools. Each tool was briefly examined by visiting the project GitHub
page to answer the following questions.

• Is the project an application that allows to mark images with class labels
(ordinal ratings)?

• Is the the application web based with a centralized backend?

• Does the web app offer a pure rater user role for which administrative func-
tionalities are hidden?

• Is the user interface self-explanatory to the extent that in-person instructions
are not needed to start annotating?

Ten listed applications supported image classification. Six of those were also web
apps with a centralized backend and only the Computer Vision Annotation Tool
(CVAT) offered a simplified rater user role. However, the user interface for raters,
CVAT’s job page, was still loaded with functionalities that were not crucial for the
presented scoring task.

The reviewed tools did not allow placing longer task instructions up front on an
onboarding page or similar. As raters would later use the tool without being taught
how to use it, having detailed instruction texts was crucial and was part of the
requirement for a simple user interface. Table 5 shows a subset of the tools reviewed
and the checklist for the specified requirements, the full list is given in . None of
the reviewed tools met all the defined requirements.
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Table 5: Depiction of the review process on a subset of the reviewed annotation
tools.

Name
Supports
classification

Centralized
web-app

Rater
user-role

Simple
user-interface

COCO
Annotator

no yes yes no

VoTT yes yes no no
LabelStudio
(community)

yes yes no no

CVAT yes yes yes no

3.2.3 Design of the Annotation Web App

A web application was developed to collect ratings for the four criteria. When the
raters entered the website, they were first shown a login screen. A successful log-in
led to a welcome page with a short description of the project goal. From there, users
reached the batch introduction page. Here, an instructional text was given for one
of the four criteria to explain how the next ten sentences should be rated. The full
description texts are given in A.4. In addition to the text, an example image showed
a handful of handwriting samples and suitable ratings for these. After the instruction
page, an image of the first sentence was displayed with a five-point scale below to
select a rating. Short interpretations of the numerical rating values were given to
provide guidance. Translations of these interpretations are listed in Table 6. Next
to the image, users could open a pop-up to review the example image or another one
to report issues. When the rater had rated the ten sentences in the batch, the batch
instruction page was shown again. Depending on the underlying configuration, the
raters were then asked to assess one of the other criteria or the same one again. The
user interface of the annotation tool is shown in A.4 and technical details are given
in Section 4.2.

Table 6: Interpretations for the five numeric ratings for each question.

Rating Q1 Q2 Q3 Q4

’1’ very legible
slant is

consistent
very easy

to distinguish
very easy

to distinguish

’2’ legible
minor variation

of slant
easy

to distinguish
easy

to distinguish

’3’ rather legible varying slant
rather

distinguishable
rather

distinguishable

’4’
rather not
legible

strong variation
in slant

hard
to distinguish

hard
to distinguish

’5’ not legible
very strong variation

in slant
very hard

to distinguish
very hard

to distinguish
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3.2.4 Analysis of Rater Agreement

With the collected ratings of the four criteria, the rater agreement was measures
using the ICC and Cohen’s Kappa (Section 3.4). The obtained values for inter- and
intra-rater reliability were compared to the agreement reported for the renowned
handwriting scales (Section 2.1.5) to examine how reliable the ratings in the StabLe
dataset are (R1 in Section 1.3). Furthermore, agreement between the different
criteria was compared to examine whether the criteria that were assumed to be
more specific were rated more reliably (R2 in Section 1.3).

3.3 Machine Learning

Several models were trained to examine how the legibility ratings of the StabLe
dataset can be modeled and to investigate the research questions. A list of all
models is given in Section A.7.

3.3.1 Setup of Training Runs

The models were trained to predict the legibility labels derived from the ratings in
StabLe. The preprocessing of sensor data described in Section 4.1 produced 1907
samples for model training and evaluation. Aspects of the training setup and model
evaluations are described in the following

Classification and Regression Models The task of predicting legibility was
initially framed as a classification problem because this resembles the act of rating
the sample with discrete legibility classes. Furthermore, this allowed to compare
results on the new dataset to results of classification models trained in previous work.
Subsequently, regression models were trained. Regression models were hypothesized
to make better use of ground-truth labels derived from the ratings because the
ratings represent an ordered sequence rather than distinct and unrelated classes.
A false prediction of the rating ’4’ while the ground truth is ’1’ leads to stronger
weight adoption than predicting ’1’ using a regression model. In a classification
model, both errors weigh equally.

Question-Specific Models and Datasets All models were trained to be specific
to a single question, which means that each model is trained to assess samples
according to the ratings collected for one of the legibility criteria (Section 3.1.1). The
dataset with ratings of global-legibility is denoted as StabLe(Q1) and the datasets
for the other criteria accordingly.

User-Independent Data Splits Models were trained on user-independent data,
so they learn to assess handwriting legibility solely based on sensor data recorded
during writing and without prior knowledge of the subject.
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Label Merging Strategies For each criterion, the according StabLe(QX) dataset
contains several ratings per sample. For example, a sample may have been rated
with respect to question Q1 by six raters. When this sample is fed into a network for
training, then the supervised models used in this work demand a single ground-truth
label. The mapping from all ratings of a sample to a single ground-truth label at
run-time is called label merging in the following. Figure 6 shows an example of how
the ground-truth label is derived from six ratings for a single sample with different
labeling strategies. The five label merging strategies are examined in this work are:

• rounded-mean-label The ratings are averaged and then rounded to obtain
a discrete ground-truth label.

• majority-label The most common rating is chosen as the discrete ground-
truth label. In case of a tie, the lower rating is chosen.

• random-label At runtime, one of the ratings is randomly chosen as the dis-
crete ground-truth label. Ratings of all raters have the same probability of
being picked.

• mean-label The ratings are averaged to obtain a continuous ground-truth
label.

• rater-specific-label Ratings from a specific rater are used directly as discrete
ground-truth labels, ignoring the other ratings of the sample.

Figure 6: Exemplary depiction of four label merging strategies.

Data Balancing In all datasets StabLe(Q1 - Q4) ratings were not evenly dis-
tributed. The ratings ’1’, ’2’, and ’3’ were assigned frequently while ’3’ and ’4’ were
rather rare. For the purpose of training machine learning models, unbalanced data
is undesirable because it can introduce bias into the predictions, which detracts
from learning features in the data that are decisive of each label. This problem
was addressed by oversampling samples with rare ratings during training. That is,
a handwriting sample with rare ratings was drawn several times per epoch. Con-
sequently, the model was exposed to samples with rare ratings more often than it
would be when sampling randomly (unweighted) or without replacement. Technical
details on balancing the training data are given in Section 4.3.4.
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Validation and Testing of Models The validation set is used for model com-
parison, that is, for experiments that examined how architecture, label merging,
machine learning tasks, and other parameters affect model performance. The val-
idation set was also for model selection within the training runs to determine a
winning epoch and the corresponding model (Section 4.3.1). The test set was kept
for final evaluations. That way, the selection of parameters was tuned towards the
validation set, but not the test set. Once the best models were found, their perfor-
mance was evaluated on the test set. These results serve as a point of comparison
with other work.

3.3.2 Comparative Experiments

To explore how the ratings of StabLe(Q1) can be predicted using CNNs and to
address research questions R3 and R4 (Section 1.3), a range of models were trained
and compared changing different parameters of the training setup. The models were
trained as part of the following experiments. For these experiments, models were
evaluated on the validation set only.

Reproducing Results of Previous Work (Repr) As described in Section 2.2.3,
Grabmann (2023) trained several machine learning models on the Curation Beauty
dataset of 3290 handwriting samples. The samples are labeled with one of the three
legibility classes. Both the code and the dataset were available for this work. To
check if the results were reproducible (R3 in Section 1.3), the described CNN was
recreated and trained with the given dataset. The model A (Table 7) consists of
the CNNbroad convolutional layers followed by the 1l class head (Section 4.3.2).
Here, the described approach to balancing the training data was applied while data
balancing was done by removing samples with more frequent ratings before.

Table 7: The models trained to compare the different CNN architecture (CnnArc).

Model CNN Head Dataset Label Task
A broad 1l Curation Beauty - 3 class
B cone 1l Curation Beauty - 3 class
C broad 1l StabLe(Q1) mean-rounded 3 class
D cone 1l StabLe(Q1) mean-rounded 3 class
E broad 1l StabLe(Q1) mean-rounded 5 class
F cone 1l StabLe(Q1) mean-rounded 5 class

Comparing CNN architectures (CnnArc) Potential shortcomings were iden-
tified within the CNNbroad architecture previously used. These issues were ad-
dressed in the CNNcone architecture (Section 4.3.2. To test whether this change
in architecture benefits performance, three pairs of models, which differ only in the
architecture of convolutional layers, were trained and compared. All models use the
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single-layer classification head 1l class. Models A and B were trained on the Curation
Beauty dataset. Models C and D were trained on StabLe(Q1) using rounded-mean
labels but with the five legibility labels mapped to just three legibility classes. For
that, labels ’1’ and ’2’ (very legible, legible) make class 1, ’3’ (rather legible) is class
2 and ’3’ and ’4’ (rather not legible, not legible) make class 3. Models E and F were
trained on the original StabLe(Q1) dataset using rounded-mean labels with original
legibility ratings ranging from one to five. The models are summarized in Table 7

Comparing Datasets (CompDs) To test whether models perform better in
predicting legibility labels when the variety of texts is reduced (R4 in Section 1.3),
models trained on the Curation Beauty dataset were compared to models trained
on the StabLe dataset. Handwriting samples of the Curation Beauty dataset were
recorded for a wide variety of texts. The StabLe dataset contains samples of just
ten fixed sentences. In the Curation Beauty dataset, a rating resembles a count
of legibility violations, so the same rating can result from different combinations
of violations. As a consequence, the curation beauty ratings were assumed to be
coupled rather loosely with qualities within the handwriting samples. The legibility
ratings of the StabLe dataset refer to individual legibility criteria, which could be
related more directly to patterns in the data. Models A and B were compared to
models C and D to assess if the ratings and reduced variety of texts of the StabLe
dataset allow for better generalization. The models are summarized in Table 8

Table 8: The models trained to compare different datasets (CompDs).

Model CNN Head Dataset Label Task
A broad 1l Curation Beauty - 3 class
B cone 1l Curation Beauty - 3 class
C broad 1l StabLe(Q1) mean-rounded 3 class
D cone 1l StabLe(Q1) mean-rounded 3 class

Comparing Prediction Heads (HeadArc) This experiment tested different
prediction head architectures. The models discussed so far used a single-layer classi-
fication head. This design was compared to a three-layer head that contains nonlin-
ear activation functions. This was believed to increase the capability of the model
to map embedding vectors to wanted labels because the head is able to learn more
complex functions that map the features from the CNN layers to final outputs. Fur-
thermore, two similar regression heads were tested. The four prediction heads are
described in Section 4.3.2. Models F and H were compared to G and I to see if more
complex prediction heads improve performance. Models F and G were compared to
H and I to see if a classification or regression task is better suited for the prediction
of legibility labels. The models are summarized in Table 9
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Table 9: The models trained to compare different prediction heads (HeadArc).

Model CNN Head Dataset Label Task
F cone 1l StabLe(Q1) mean-rounded 5 class
G cone 3l StabLe(Q1) mean-rounded 5 class
H cone 1l StabLe(Q1) mean-rounded reg
I cone 3l StabLe(Q1) mean-rounded reg

Comparing Label Merging Strategies (LabMerg) The StabLe dataset con-
tains ratings of several raters per sample. The experiments described so far used
the rounded-mean strategy to derive the single ground-truth label of a sample at
runtime. Different label merging strategies were examined to handle the variety of
ratings per sample for supervised training (R5 in Section 1.3). Model H (rounded-
mean-labels) was compared to models J (majority-label), K (random-label), L (mean-
label), and M (rater-specific-label). Model M was trained on all samples with Q1
ratings of rater ’4’ (the author). The models are summarized in Table 10.

Table 10: The models trained to compare label merging strategies (LabMerg).

Model CNN Head Dataset Label Task
H cone 1l StabLe(Q1) mean-rounded reg
J cone 1l StabLe(Q1) majority reg
K cone 1l StabLe(Q1) random reg
L cone 1l StabLe(Q1) mean reg
M cone 1l StabLe(Q1) rater-specific reg

Hyperparameter Tuning (HypPar) Based on previous experiments, the mod-
els K and L appeared to be best suited to predict legibility labels. It was examined
how adjusting classical hyperparameters affected the performance of these models.
The models were trained with different learning rates, kernel sizes, and regulariza-
tion parameters.

3.3.3 Evaluating and Verifying Experiments

Previous experiments explored the performances of models with respect to predicting
labels of the StabLe(Q1) dataset. These models were evaluated only on the validation
set. The two models K and L, which achieved the highest agreement with the raters,
were further evaluated, as well as the rater-specific model M. StabLe(Q1) was filtered
to train variations of model L to investigate how different uncontrolled independent
variables in the samples contributed to model performance. Furthermore, variations
of model L were trained with ratings of questions Q2, Q3, and Q4 to examine
whether more specific criteria can be predicted more accurately (R6 in Section 1.3).
Performances on the held-out test set were examined to assess the models based on
data that they had not seen and toward which they had not been tuned.
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Evaluation of Models on the Test Set For previously trained models K, L, and
M, the test set was used to obtain generalizable measurements on unseen samples.

Ratings were used to derive ground-truth labels and to evaluate model agreement,
introducing data leakage. Rater ’4’ rated all samples with respect to Q1, so these
ratings directly influenced the ground-truth labels. The model, trained to approxi-
mate these labels, was then evaluated against rater ’4’ and the other raters, making
the agreement value a reflection of how well the model aligns with a rater whose rat-
ings influenced the training data. To evaluate the model in an application-oriented
way, the ratings of a benchmark rater were excluded from the training and only used
for evaluation. Here, rater ’4’ is the benchmark rater, while raters ’3’, ’16’, ’25’, ’27’,
’29’, and ’30’ form the training rater group. The ground truth-labels were derived
from StabLe(Q1)*, which contained only the ratings of the training raters. With this
adopted dataset, a variation of model L, termed L*, was trained accordingly. The
model was then compared to the benchmark rater, which is similar to measuring
the agreement of two independent raters. If a model achieves an agreement with
independent raters (excluded from training data) as high as the agreement between
such raters, then this would suggest that the model could be used to complement
or even perform the legibility assessment in their place. The four models that were
evaluated are listed in Table 11.

Table 11: The models evaluated on the test set.

Model CNN Head Dataset Label Task
K cone 1l StabLe(Q1) random reg
L cone 1l StabLe(Q1) mean reg
L* cone 1l StabLe(Q1)* mean reg
M cone 1l StabLe(Q1) rater-specific reg

Evaluation of Models for the Different Legibility Criteria The four models
L, N, O and P were each trained identically withmean-labels derived from the ratings
given for the four questions Q1, Q2, Q3 and Q4, respectively. The models’ perfor-
mance was analyzed to determine whether the specific criteria - slant-consistency,
letter-formation rnh and letter-formation ad - could be more accurately derived
from sensor data compared to the broader criterion of global-legibility (R6 in Sec-
tion 1.3). The four models that were evaluated are listed in Table 12.

Table 12: The models evaluated on the test set to compare the four legibility criteria.

Model CNN Head Dataset Label Task
L cone 1l StabLe(Q1) mean reg
N cone 1l StabLe(Q2) mean reg
O cone 1l StabLe(Q3) mean reg
P cone 1l StabLe(Q4) mean reg
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Evaluation of Models Considering Uncontrolled Variables So far, models
were trained and evaluated on all samples of the StabLe dataset. Based on the tags
described in Section 3.1.5 three filtered datasets were created and then used to train
variants of model L to examine the effect of so far uncontrolled variables in the sam-
ples on model performance. At first, the 369 samples tagged as being written purely
in cursive letters were excluded from StabLe(Q1) to obtain StabLe(Q1\cursive). The
70 samples that were tagged as containing a spelling error were removed for Sta-
bLe(Q1\typo). The third dataset StabLe(Q1\correction) excluded the 98 samples
with corrections. The corresponding models are listed in Table 13.

Table 13: The models evaluated on the test set to examine uncontrolled variables.

Model CNN Head Dataset Label Task
L cone 1l StabLe(Q1) mean reg

L\cursive cone 1l StabLe(Q1\cursive) mean reg

L\typo cone 1l StabLe(Q1\typo) mean reg

L\correction cone 1l StabLe(Q1\correction) mean reg

3.4 Evaluation Metrics

Previous work on predicting legibility ratings from sensor data was discussed in
Section 2.2.3 and Section 2.2.4. As noted, the chosen metrics in combination with an
unbalanced test set and user-dependent evaluation weakened the informative value
of the reported results. Although the test set was unbalanced in this work as well, all
evaluations were user-independent. Furthermore, classical machine learning metrics
were complemented with agreement evaluations to assess the reliability between
predictions and individual raters.

3.4.1 Machine Learning Performance Metrics

Classical machine learning metrics were recorded for each epoch with the train-
ing and validation set to track the training process of the models and to compare
their learning capabilities. These metrics compare predictions with the correspond-
ing ground-truth labels, which were derived using different label merging strategies
(Section 3.3), so that they do not account for the uncertainty of the ratings when
derived deterministically.

Cross Entropy Loss (CE) was used as loss to train classification models and to
select the best performing model within a training run. It measures the difference
between the predicted probability distribution and ground-truth labels. The nega-
tive log-likelihood of the correct class gives the training loss, encouraging the model
to assign higher probabilities to the correct class.

The Mean Squared Error (MSE) measures the average squared difference be-
tween predictions and ground-truth labels. It was used as loss to train regression
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models and for model selection. Used as training loss it encourages the model to
predict values as close to the ground-truth label as possible while penalizing greater
errors more heavily.

The Mean Absolute Error (MAE) measures absolute differences. It is less
sensitive to outliers and more straightforward to interpret.

Accuracy (Acc) is the ratio of correctly predicted labels to the total number of
samples. It was used to state the performance of classification models, noting that
it is likely to produce misleading values due to unbalanced data.

Precision measures the proportion of true positive predictions out of all positive
predictions made by the model. It evaluates how accurate the model is when pre-
dicting a positive class. It can only be calculated for binary classification tasks.
Here, it was first calculated for each class against the remaining classes and then
averaged to be applicable to the three- and five-class settings (Prec).

Recall measures the proportion of true positive predictions out of all actual positive
samples. It evaluates the model’s ability to correctly identify all positive samples.
Similarly to precision, it is only applicable to binary classification tasks and was
averaged to be applied with three and five classes (Rec).

3.4.2 Rater Agreement Metrics

To put the performance of the models in perspective with the uncertainty of the
legibility ratings, trained models were evaluated with respect to their agreement with
the raters. The agreement assesses the association between two attempts to measure
the same construct (Liu et al., 2016), here the concept of legibility. An assessment
of agreement comprises intra- and inter-rater reliability. Both were assessed when
the reliability of the StabLe dataset was examined (Section 3.2.4). As models are
deterministic, they exhibit perfect intra-rater reliability. Consequently, only inter-
rater reliability between the model and the raters was evaluated.

Table 14: Interpretations of Co-
hen’s Kappa.

Kappa
Strength of
Agreement

< 0 Poor
0.01 - 0.20 Slight
0.21- 0.40 Fair
0.41 - 0.60 Moderate
0.61 - 0.80 Substantial
0.81 - 1.00 Almost Perfect

Cohen’s Kappa measures the inter-rater relia-
bility with respect to class-level agreement. It
is calculated for pairs of raters based on the
samples they both rated. In this work, Kappa
was used to measure the intra-rater reliability
between the discrete ratings of different raters
and between models and raters. To measure the
agreement between regression models and raters,
the continuous predictions were rounded to ob-
tain discrete class labels. To state the agree-
ment of models with multiple raters, Kappa is
calculated between the model and each individ-
ual rater pairwise and the averaged (Kappa)).
Interpretations of Cohen’s Kappa values according to Sim and Wright (2005) are
given in Table 14.
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Table 15: Interpretations of ICC.

ICC
Strength of
Agreement

< 0.50 poor
0.51 - 0.75 Moderate
0.76 - 0.90 Good
0.91 - 1.00 Excellent

The Intraclass Correlation Coefficent (ICC)
measures the agreement between continuous rat-
ings of the same concept. It is calculated for
samples with multiple ratings. Its applicability
in this work was reduced because the raters pro-
vided ordinal ratings that were then compared
to discrete outputs of the classification models
or continuous outputs of the regression models.
There are variations of the ICC, each suitable
for a different study setup as described by Shrout and Fleiss (1979). ICC(3,1) was
chosen following the guidelines of Koo T. K. (2016), who also provide the interpreta-
tions for the ICC shown in Table 15. The ICC was assessed for different fixed pairs
of raters. The raters were not randomly chosen to participate. So, the observed
reliability cannot be generalized to be the reliability found in the total population
of raters. Therefore, Two-Way Mixed-Effects Model=ICC(3,-) was chosen. The
reliability of individual rater pairs was assessed instead of measuring agreement for
groups of raters. Therefore, ICC(-,1) was chosen.
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4 Implementation

This section covers technical details of the sensor data preprocessing, the developed
annotation tool and implementations related to machine learning, like the model
architectures or the data balancing approach.

4.1 Preprocessing of Sensor Data

For each sentence that a student had written, the pen streamed ten sensor channels
to the connected tablet. After the recording sessions, this sensor data was uploaded
to the Handwriting Donation Server. Figure 7 displays a subset of the files stored
for the recording of each student.

Figure 7: Sketch of the data format of
the Handwriting Donation Server.

The ”meta” file contains information such as
the user ID, profile data the student entered,
the version number of the pen, and the sam-
pling rate. The ”calibration” file stores data
for calibrating a compass. The table stored
in the ”labels” file contains a row for each
recorded handwriting sample. For each sam-
ple the ’Label’, that is, the text that was
copied, is stored alongside two timestamps
of when the text was starting to be displayed
in the app and when the user pressed ’con-
tinue’. Lastly, each row contains a unique
sample ID. The ”StreamData” file contains
one line per time step in which the signals
were read from the pen sensors. Each line contains a timestamp and the ten signals
of the four sensors. The two accelerometers and the gyroscope record three signals
each because they register movement along three axes. The force sensor produces a
single signal. Due to complications, not all sentences were recorded properly. The
data consisted of 1916 handwriting samples with properly recorded sensor data.

A preprocessing pipeline was developed to extract the sensor data of each handwrit-
ing sample from the stream data files and to prepare the sensor data for further use.
For each preprocessing step, a corresponding preprocessor class was created to carry
out the necessary manipulations. The pipeline consisted of the following six steps.
Table 16 shows how the sensor data changed during preprocessing.

1. ReadInXaiDatasetPreprocessor The processor extracted the stream data
corresponding to individual samples and stored it to a separate file for direct
access.

2. DownSamplingDatasetPreprocessor The sensor data was down-sampled from
400 values per second to 100 by replacing each subsequent four values by their
mean.
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3. TrimDatasetPreprocessor The force sensor values were used to detect the
timestamps that were recorded before and after writing. Data was cut to
include only the time steps between the first and last contact with the paper.

4. RemoveLongSamplesDatasetPreprocessor Samples that were longer than 60
seconds after trimming are removed.

5. AddPaddingDatasetPreprocessor All samples shorter than the longest re-
maining sample were padded with zero values in the end to have matching
length.

# samples mean min max rate storage
1 1916 29.5 8.0 729.4 400 3.04
2 1916 29.5 8.0 729.4 100 0.87
3 1916 21.6 3.9 685.6 100 0.65
4 1907 21.1 3.9 59.4 100 0.63
5 1907 59.0 59.0 59.0 100 0.93

Table 16: Descriptive statistics of the sensor data after each preprocessing step. The
number of samples contained in the dataset, mean, minimum and maximum length
of samples in seconds, sampling rate in times per second and storage in GB.

4.2 Data Annotation Web Application

The backend application with the REST API shown in Table 17 was developed in
Kotlin using the Spring Boot framework. The frontend shown in A.4 was developed
with ReactJs and provides functionalities only for the raters. All administrative
functionalities were implemented in the backend and can be steered using the admin
endpoints. The rollout configuration provided a way to prioritize the criteria. By
updating this configuration, ratings for specified questions were collected first until
the data was complete, before raters were asked to rate other criteria. The backend
and the frontend web application were combined in a wrapping GitHub project and

Endpoint Type Role Description
/users/login POST User Authenticate to use the application

/batch GET User Prepare a batch of ten handwriting samples
/files/image GET User Load the image of a sample from the server
/batch/score POST User Store the selected rating for a sample

/users POST Admin Create a new user account
/config POST Admin Update the configuration that steers the rollout
/answers GET Admin Export answers from the raters and meta data
/reports Get Admin Export all reports

Table 17: Short descriptions for the endpoints of the annotation tool backend.
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dockerized. The applications resided on a privately hosted server and the web app
was accessible under labeling.stabilodigital.de.

4.3 Machine Learning

4.3.1 Setup of Training Runs

All models were trained on an NVIDIA GeForce RTX 2080 SUPER GPU provided
by STABILO. With the compact network size of the CNNs used, the training runs
took about five to ten minutes. The computational effort was not a focus in this
work and was not tracked further.

The datasets contain multiple discrete ratings per sample and criterion. Based on
labels derived from these ratings (Section 3.3), the supervised classification and
regression models were trained. The classification models were trained using CE
with three or five classes and regression models were trained using MSE as loss
(Section 3.4.1).

Maxabs normalization was applied in the training, validation and test sets sepa-
rately. This avoids data leakage that would be introduced when the StabLe dataset
would be normalized as a whole before splitting it.

Xavier uniform initialization (Bengio and Glorot, 2010) was used for the linear layers
of all models. For convolutional layers, Kaiming uniform initialization (He et al.,
2015) was used.

AdamW (Kingma and Ba, 2014) was used as the optimizer in all training runs. Unless
stated differently, a learning rate of 0.001 was chosen and no regularization was
introduced as weight decay was set to 0.

All models were trained for 100 epochs. For all training runs, improvements with
respect to the validation set stalled before the 100th epoch, so that this fixed number
of epochs seemed appropriate.

Model selection within single training runs was done based on the validation set. For
both classification and regression, the model at the epoch with the lowest loss on the
validation set was chosen as the best-performing model. As some models performed
best within the first epochs, where the training error was still high, a minimum of
50 was introduced for the winning epoch. The model of the winning epoch was then
evaluated on the validation set. The evaluation of the winning model on the test set
was only performed for the final models after architecture, label merging, machine
learning tasks, and other parameters were selected based on previous experiments.

4.3.2 Network Architectures

Two CNN architectures were compared. The first architecture was adopted from
Grabmann (2023) and is called CNNbroad in the following. As discussed in Sec-
tion 2.2.3, this architecture does not make perfect use of its convolutional layers,

https://labeling.stabilodigital.de
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because channel lengths are not scaled down as data is fed through the network.
This is illustrated in Figure 8. After each convolutional layer (and the trailing batch
normalization and ReLU activation), channels have the same length. After the last
convolutional layer, the resulting 64 channels are each reduced to a single scalar
value by calculating the mean per channel. This is referred to as GlobalAvgPool1d,
although it was implemented using the AvgPool1d PyTorch class with the kernel
size equal to the channel length. The resulting vector of 64 scalar values is the
embedding of the input data. A classification or regression head takes it as input
to produce the corresponding prediction. Reducing each channel to a single value
in this one single pooling step was assumed to lead to a loss of information. The
convolutional layers before do not reduce the channel size, as is often done with
CNNs. It was assumed that this CNN fails its main purpose of condensing large
input data into few information-rich features step by step.

(a)

(b)

Figure 8: Architecture of CNNbroad : (a) Displays the layers the model is composed
of and (b) illustrates feature map sizes as a sample of ten sensor channels with 5900
time steps each is fed through the different layers. Layer names are adopted from
the corresponding PyTorch class names. The convolutional and pooling layers in (a)
are represented by boxes of similar color in (b), while other layers are left out. The
number of input and output channels of convolutional layers are denoted as c in and
c out.

To address these issues, a CNN called CNNcone was constructed from the same
building blocks as the CNNbroad. Average pooling is applied after each convolu-
tion, so that the length of data is reduced every time the number of channels is
increased. This results in the desired progressive reduction in spatial dimension,
which is indicated by the cone shape visible in Figure 9. After each block consisting
of a convolutional and a pooling layer, less data points are available per channel.
The number of channels increases with each such block. This is an incentive to
dissect the input data into different features relevant to predicting the target label
because not all information can be held on to (as it is possible with CNNbroad). The
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input length of 5900 time steps (for sample of 59 seconds Table 16) leads to channels
of length 23 after the last convolution. A final average pooling layer with a kernel
width of 23 (referred to as GlobalAvgPool1d) reduces each of the 256 channels into
a single scalar, yielding an embedding vector of length 256.

(a)

(b)

Figure 9: Architecture of CNNcone: (a) Displays the layers the model is composed
of while (b) illustrates feature map sizes as a sample is fed through the network.

To summarize the two CNN architectures, the CNNcone reduces the input data to
an embedding vector in incremental steps. CNNbroad does this by a single pooling
layer without any learnable parameters. Subsequent to the described layers, a clas-
sification or regression head maps the embedding to a single prediction. Grabmann
(2023) used a single fully connected layer together with the CNNbroad architecture.
The layer takes in the embedding and outputs three scalar values corresponding to
the three classes in the dataset used. The last Softmax layer rescales the values to
resemble a probability distribution. In addition to the CNNcone architecture, three
new prediction heads were created. The four prediction heads are depicted in Fig-
ure 10. 1l class is the previously used single-layer classification head, and 1l reg is a
single-layer regression head. 3l class and 3l reg both consist of three fully connected
layers that reduce the embedding vector to class outputs and a single scalar. The
classification heads were adjusted to the three or five classes in the datasets.

4.3.3 Data Splits

After the preprocessing described in Section 4.1, the StabLe dataset contains 1907
handwriting samples, which were written by 202 students. All experiments in this
work were conducted with the same data splits. To train user-independent models,
all samples written by the same student were assigned to the same split. Approx-
imately 70% of the students were randomly assigned to the training set, 20% to
the validation set, and 10% to the test set. Both the validation and test sets were
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checked to contain the least frequent ratings ’3’ and ’4’ as answers to Question Q1.
Table 18 shows the number of samples, the number of students, and the number
of ratings for question Q1 of each split. For the other questions, refer to A.5. The
displayed distribution shows the total counts of ratings. The ground-truth label
distributions drawn and derived during training deviated from the displayed distri-
bution depending on the question and the label merging strategy (Section 3.3).

Table 18: Composition of training, validation, and test splits for StabLe(Q1).
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Train 1398 140 2758 2133 1535 719 191
Validation 410 41 836 672 417 174 31

S
p
li
t

Test 209 21 270 282 272 202 45

4.3.4 Data Balancing

The balancing was implemented with the PyTorch WeightedRandomSampler. This
sampler associates a weight with each sample. When samples are drawn to assemble
a batch, they are chosen randomly and with replacement, while the probability of
drawing each individual sample is dictated by its weight.

Let x1, ...,xn ∈ Rc×l be the samples of the data set with the number of channels
c and the length l. Then y1, ...,yn with yi ∈ Rmi are the corresponding lists of
labels available per sample with varying lengths m1, ...,mn. For each scalar y that

(a) (b) (c) (d)

Figure 10: Architectures of prediction heads: (a) Displays the single-layer classi-
fication head 1l class, (b) is the single-layer regression head 1l reg, (c) shows the
classification head with three layers and 3l class (d) shows the corresponding regres-
sion head 3l reg. The number of input and output features of the fully connected
linear layers are denoted as f in and f out.
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appears as a label of a sample in some yi a label weight wy is calculated as the
inverse frequency of this label score:

wy =
# all labels

# y

For each sample xi its intermediate sample weight is then given as the mean of its
label weights:

w∗
i =

1

mi

mi∑
j=0

wyi,j

A trade-off between balancing the training dataset and overfitting to single rare
samples was taken by limiting the weight of each sample to be at most ten times
the weight of the sample with the lowest weight w∗

min = min(w∗
1, ..., w

∗
n). So the final

weight of each sample is given as:

wi = min(w∗
i , 10w

∗
min) (1)

As explained, the WeightedRandomSampler randomly draws samples from the entire
dataset with replacement. Therefore, the samples drawn per epoch vary, which
affects the exact distribution of samples and labels fed to the model. Figure 11
showcases how this procedure produced a more balanced distribution of labels in an
exemplary drawing. Without balancing, labels ’4’ and ’5’ (”rather not legible” and
”not legible”) would make up a negligible portion of samples fed to the models.
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Figure 11: The distributions of ground-truth labels derived with differen label merg-
ing strategies from StabLe(Q1) for all 1320 samples in the training split. The distri-
bution when each sample in the training split is drawn exactly one time is displayed
in blue, and the distribution of one epoch where the WeightedRandomSampler drew
the same number of samples is given in green (hatched).



5 EVALUATIONS AND RESULTS 44

5 Evaluations and Results

This section reports descriptive statistics on StabLe dataset described in Section 3.1
and Section 3.2, and the performance of the models described in Section 3.3.

5.1 Dataset Statistics

This section provides descriptive statistics on the assembled StabLe dataset.

5.1.1 Annotation Process

With the annotation web app (Section 3.2.3), user accounts for 38 raters were cre-
ated. Ten of the raters were experts whom the SMI had reached out to, the rest were
laymen. The labeling process started in August 2024 and ratings were collected until
the end of December. Question Q1 was prioritized. Once the StabLe(Q1) dataset
was completed, the ratings were analyzed and used to train the models. The exact
progress of collecting ratings is shown in Figure 12. Figure 13 shows the contribution
of individual raters to the total number of ratings in the dataset.

Figure 12: The number of ratings collected per day.

Figure 13: Contribution of individual raters to the total number of ratings collected.
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5.1.2 Tagged Samples

As described in Section 3.1.5, all handwriting samples have been validated manually
and tagged with additional information. The numbers of samples with each tag are
shown in Table 19. Images of the sentences written by the students were also
extracted and shown in the labeling app when the sensor data was not recorded
properly. Therefore, the total number of tagged samples is shown as well as the
number of tagged samples with recorded sensor data. The tags were used in the
further analysis of the StabLe dataset and to verify model performance.

Table 19: Number of samples tagged according to the criteria described above.

Tag Cursive Typo Correction
# All Samples 403 76 104

# Sensor Samples 369 70 98

5.1.3 Distribution of Ratings

Table 20 shows how often each rating was assigned to samples for each question.
The distribution leans heavily towards the better ratings ’1’, ’2’ and ’3’ which cor-
responded to ratings of criteria as being fully, mostly, or sufficiently fulfilled. The
ratings ’4’ and ’5’, which marked samples that exhibit deficiencies, make up only
5.5% to 12.9% of the ratings. This relative distribution of the ratings is shown
in Figure 14, where the ratings were counted for each question and sentence. Not
all sentences contained the letters ’a’ and ’d’, so question Q4 was not applicable
to all ten sentences. The proportion of ratings provided by raters with experience
in assessing handwriting is depicted. Expert ratings were collected for almost all
questions and sentences.

Table 20: The distribution of ratings for the different questions.

Question Rating ’1’ Rating ’2’ Rating ’3’ Rating ’4’ Rating ’5’
Q1 3675 2971 2123 1043 254
Q2 2117 2181 1062 315 30
Q3 2390 1654 839 456 179
Q4 1541 674 284 111 35

The experts’ ratings were marginally lower for Q1 and Q2 than the ratings of the non-
experts, and marginally higher on Q3 and Q4. As described above, all handwriting
samples have been validated manually and tagged with additional information. The
samples written in cursive letters were perceived as less legible on average, indicated
by a mean of 2.93 for the Q1 ratings compared to the mean of 2.13 for all samples.
Spelling errors and corrections also significantly influenced Q1 ratings. This was
also observed for the other questions, but there the effect was not as strong. The
averages of the filtered ratings on subsets of StabLe are given in Table 21.
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Figure 14: (top) The total number of ratings collected per question and sentence.
The share of ratings given by experts and non-experts. (bottom) The relative dis-
tribution of ratings per question and sentence.

Table 21: Average ratings of different groups of raters and different data subsets.

Question All Experts Non-Experts Cursive Typo Correction
Q1 2.13 2.11 2.16 2.93 2.65 2.83
Q2 1.95 1.83 2.11 2.00 2.10 1.99
Q3 1.99 2.01 1.95 2.26 2.09 2.31
Q4 1.65 1.67 1.63 1.72 1.75 1.64

5.1.4 Inter-Rater Reliability

Table 22: The average num-
ber of ratings per sample and
the average of variances cal-
culated per sample.

Question Count V ar
Q1 5.22 0.65
Q2 2.98 0.59
Q3 2.86 0.79
Q4 2.56 0.53

To assess the inter-rater reliability, the variance of
the ratings given to the same samples was examined.
Furthermore, the ICC and Cohen’s Kappa were cal-
culated for pairs of raters who had rated the same
samples. For each question, the variance of the rat-
ings was calculated per sample. The averages of
these variances per sample are shown in Table 22.
For question Q1, the variance was calculated from
five ratings per sample on average, while fewer rat-
ings were collected for the other questions. The av-
erages of variances were between 0.53 and 0.79, so
ratings of the same sample and criterion tend to dif-
fer. This indicates low inter-rater reliability of the ratings in the StabLe dataset.
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(a) (b)

Figure 15: (a) The pairwise ICC and (b) the pairwise Cohen’s Kappa in StabLe(Q1).

Table 23: The number of rater pairs who rated
at least 50 samples for the same question and
the mean agreement of those pairs.

Questions # Pairs ICC Kappa
Q1 44 .54± .10 .15± .09
Q2 24 .35± .10 .12± .06
Q3 21 .36± .11 .11± .06
Q4 12 .36± .21 .16± .10

The agreement was calculated be-
tween pairs of raters. A minimum of
50 samples had to be rated by both
raters to examine their agreement
on the ratings for those samples.
Figure 15 shows all pairwise agree-
ments of ratings in StabLe(Q1). Ac-
cording to the ICC, poor reliabil-
ity (below 0.50) was found for 33
pairs and moderate agreement (0.50
to 0.75) was found for 11. Cohen’s Kappa values indicate slight agreement (0 to
0.2) for 11 pairs and fair agreement (0.2 to 0.4) for 33. For the other questions, the
reliability measured by the ICC is about 0.2 lower and is interpreted as poor. The
values for Cohen’s Kappa were lower as well, and indicated slight agreement. The
averages of the pairwise agreements are given in Table 23. Following these measure-
ments, the inter-rater reliability of the ratings collected with the annotations app is
far below the renowned handwriting scales discussed in Section 2.1.5. All but one
of the reviewed scales reported good reliability based on the ICC (above 0.75).

5.1.5 Intra-Rater Reliability

A subset of handwriting samples was displayed to the same raters twice. The ratings
from the same rater for the same question and sample were compared to evaluate the
intra-rater reliability of the collected ratings. For each question, the mean variance
of all samples that were rated twice was calculated. This analysis included about 200
samples per question. For question Q1 this resulted in a mean variance of 0.65, for
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Q2 it was 0.59, 0.79 for Q3, and 0.53 for Q4. These mean per-sample variances were
comparable to the mean per-sample variances between different raters. This suggests
that the low reliability of the ratings cannot be explained by different opinions on
legibility by different raters alone because the ratings by the same rater tend to
vary as much. The high variances showcase how hard it is to assess differences in
legibility reliably.

5.1.6 Qualitative Inspection of Ratings

Figure 16 shows the samples that received the best and worst average ratings in
StabLe(Q1) and StabLe(Q3). Although differentiating between ratings of the criteria
was not done reliably (as shown above), the perception of very good or very poor
samples seems to be reasonably accurate (a completely subjective observation by
the author). The extremes for all four criteria are given in Section A.6.

(a) (b)

(c) (d)

Figure 16: (a) (c) The five best and worst rated handwriting samples in StabLe(Q1).
(b) (d) The five best and worst rated handwriting samples in StabLe(Q3).
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5.2 Results of the Comparative Experiments

This section reports performance on the training and validation set for models de-
scribed in Section 3.3.2. The winning epoch and the corresponding best-performing
model were selected based on performance on the validation set as described in
Section 4.3.1.

5.2.1 Reproducing Results of Previous Work (Repr)

Model A replicated the CNN architecture used by Grabmann (2023) and was trained
on the same Curation Beauty dataset with a changed approach to balancing. Fig-
ure 17 shows the learning curves of the model for accuracy and CE loss. The training
accuracy increased steadily and reached 75% around epoch 100, similarly to the ref-
erenced model in previous work. The validation accuracy oscillated strongly from
one epoch to the next, reaching peaks at 57% (refer to Table 24). Similar behavior
was reported for the referenced model, where the validation accuracy reached a peak
of about 55% but oscillated more strongly between epochs. So model A behaved
similarly, but the results could not be reproduced exactly.

Figure 17: The learning curves of models A and B, which differ in CNN architecture.
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5.2.2 Comparing CNN architectures (CnnArc)

The learning curves of models A and B are shown in Figure 17. The CNNcone
architecture was able to better fit the training data. Both training accuracy and loss
improved more steadily with model B. This indicates an improved learning capability
with the adopted architecture, but the validation metrics revealed that this did not
carry over to unseen samples. Model B overfits to the training data. The evaluation
of the winning epoch models revealed only minor differences in performance. Model
A beat model B with respect to accuracy on the validation set, while model B
achieved higher mean precision and recall (Table 24).

Figure 18: The learning curves of models C, D, E, and F, which differ in their CNN
architecture and the number of legibility classes they were trained to predict.

The learning curves of models C and D are depicted in Figure 18. Again, the
CNNcone architecture led to lower training losses. The validation loss did not follow
the training loss and oscillated rather than exhibiting a clear downward trend for
both models. An evaluation of the winning epoch models did not show a clear result.
Model D performed slightly better with respect to CE, MSE, accuracy, and mean
precision, while model C achieved slightly better mean recall and ICC (Table 24).

The learning curves of models E and F are shown in Figure 18. As expected,
discriminating between five classes was harder than three classes, so the losses were
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higher for the five-class models. This harder task seemed to highlight the improved
learning capability of the CNNcone as model F performed better than model E
with respect to all metrics (Table 24). Although most of the improvements were
marginal, MSE and ICC improved substantially. These are the two metrics that do
take the degree of error into account, so a false classification where the difference
between the prediction and ground-truth label is higher weighs more.

It should be noted that the improvements were only marginal and do not allow a
reliable conclusion. The fluctuation of the validation loss between subsequent epochs
was greater than the improvement from one architecture to another. CNNcone was
chosen as the CNN architecture for subsequent experiments due to its improvements
in the five-class setting.

Table 24: Performances of winning epoch models on the validation set. Model
performances showcase the effect of using different datasets and CNN architectures.

Model CE MSE Acc Prec Rec ICC Kappa
A .95 .57 .57 .40 .40
B .97 .57 .56 .44 .41
C .83 .42 .71 .48 .49 .24 .04
D .80 .38 .75 .50 .47 .20 .04
E 1.46 1.26 .43 .39 .42 .21 .13
F 1.41 .75 .49 .43 .44 .41 .14

5.2.3 Comparing Datasets (CompDs)

Models A and C used the same CNNbroad architecture, but they were trained
on different datasets. Model C was trained on StabLe(Q1) and performed better
than model C, which was trained on the Curation Beauty dataset, with respect
to all metrics. The same was found for the two CNNcone models B and D. The
improvements were substantial. Between models A and C, the CE loss decreased
by 0.12, the MSE by 0.15, the accuracy improved by 14%, the mean precision by
8% and the mean recall by 9%. Between models B and D, the CE loss decreased
by 0.17, the MSE by 0.19, the accuracy improved by 19%, the mean precision by
6% and the mean recall by 6%. So, fitting to the training data generalizes better to
unseen samples with StabLe(Q1) than with the Curation Beauty dataset.

5.2.4 Comparing Prediction Heads (HeadArc)

Model F used the single-layer classification head 1l class. Its performance was com-
pared with model G, which used the three-layer classification head 3l class to ex-
amine how a more complex prediction head affects performance. Similarly, the two
models H and I with regression heads 1l reg and 3l reg were trained and compared.
The two classification models F and G were compared with the regression models
H and I to examine which prediction task was better suited.
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Table 25: Performances of winning epoch
models on the validation set. Models were
compared to assess how different predic-
tion heads affect the performance.

Model CE MSE ICC Kappa
F 1.41 .75 .41 .14
G 1.43 .83 .37 .13
H .48 .48 .15
I .51 .43 .12

The learning curves of the four train-
ing runs are shown in Figure 19. The
addition of linear layers and ReLU ac-
tivations did not lead to lower losses.
Table 25 displays the recorded winning
losses and the agreement metrics. For
classification and regression, the three-
layer head performed slightly worse with
respect to all metrics. The regression
models outperformed classification with
respect to MSE and agreement metrics.

Figure 19: The learning curves of models F, G, H, and I. Models F and G were
trained for classification while H and I were trained for regression. Models F and
H used a single fully connected layer as the prediction head, while G and I used a
head of three layers with ReLU activation functions in between (Section 4.3.2).

5.2.5 Comparing Label Merging Strategies (LabMerg)

The five models H, J, K, L, and M were trained with different label merging strate-
gies. The corresponding learning curves are shown in Figure 20.
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Table 26: Performances of winning epoch
models on the validation set. For models
H, J, K, and M. The models were com-
pared to assess how different strategies of
merging the ratings of samples affects per-
formance.

Model MSE ICC Kappa
H .48 .48 .15
J .70 .41 .09
K .85 .49 .18
L .35 .49 .16
M .76 .43 .10

As shown in Table 26, the model trained
on majority-labels (J) performed worse
than model trained with rounded-mean-
labels (H) with respect to all metrics.
Model K, which was trained on random-
labels, achieved the worst MSE of 0.85.
This approach introduced the uncer-
tainty found in the ratings into the
training process, whereas this uncer-
tainty is hidden behind deterministi-
cally derived labels for the other models.
This makes the prediction task inher-
ently harder than the other four, as indi-
cated by the training loss, which stayed
higher with random labels. Compared to the other label merging strategies, the
training and validation loss did not diverge in the later epochs. Despite the higher
MSE, model K outperformed other models with respect to Cohen’s Kappa and
shared the first place with the mean-label model (L) with respect to the ICC. Here,
it should be noted that the performance of model K depends on random selection
at runtime. For experiments to be reproducible, random seeds were set to be the
same for all training runs.

Figure 20: The learning curves of regression models H, J, K, L and M, which were
trained with the different label merging strategies described in Section 3.3.
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Model M, which was trained with rater-specific-labels (the ratings of rater ’4’),
achieved similar results as training on the majority labels. The model overfitted
the training data, as indicated by the high validation loss. The agreement on the
validation set between the model and rater ’4’ measured with the ICC was 0.42,
which was lower than the average ICC of 0.43 between the model and all raters.

Model L, which was trained with the floating point mean of ratings for each sample,
performed best with respect to all metrics. Training on randomly chosen ratings as
labels seemed to counteract overfitting. Therefore, models L and K were chosen for
further experimentation.

5.2.6 Hyperparameter Tuning (HypPar)

Models K and L from previous experiments were trained with different learning
rates, kernel sizes, and regularization parameters to examine how tuning these hy-
perparameters affected performance.

Learning Rates Previous models were all trained with a learning rate of 0.001.
In this experiment, the seven learning rates 0.0001, 0.0003, 0.001 to 0.1 were tested
for both models K and L. Similar performances were found for both label merging
strategies. The learning rates of 0.001 and 0.003 were among the best when testing
for low MSE and performed the best with respect to the ICC and Cohen’s Kappa.
For the following experiments, a learning rate of 0.001 was chosen.

Kernel Sizes Previous models all used a one-dimensional kernel with a size of
three. Six different kernel sizes from three to 41 were tested. The padding of the
convolutional layers was increased accordingly to keep the data sizes consistent. For
model L a kernel size of seven achieved the best MSE of 0.33 on the validation set,
beating the MSE of 0.35 with kernel size three. For model K the kernel size of 21
achieved the best MSE of 0.79 on the validation set, beating the MSE of 0.85 with
kernel size three. With respect to ICC and Cohen’s Kappa the models with kernel
size three beat all other variants. A kernel size of three was chosen for the following
experiments.

Regularization Parameters Except the random labels model K, all models over-
fitted the training data. Five variants of model L were trained with the six values
of 0.0, 0.0001, 0.001 to 0.1 for the regularization term λ, which determines how
strongly L2-Regularization is applied. The learning curves were inspected to see
if the regularization prevented overfitting. Both training and validation loss be-
haved similarly for all tested parameters. The best MSE on the validation set was
0.33 and just below the worst MSE of 0.37. ICC and Cohen’s Kappa were only
marginally affected by regularization as well. Since the experiment did not reveal a
clear benefit in introducing regularization, the following experiments did not apply
L2-Regularization.
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5.3 Results of the Evaluating and Verifying Experiments

This section reports performance on the training, validation and test set for models
described in Section 3.3.3. The winning epoch of a training run was selected based
on the validation set (Section 4.3.1). The corresponding model was then evaluated.

5.3.1 Evaluation of Model L

The best performance on the validation set was achieved by model L, which was
trained for regression on mean-labels derived from StabLe(Q1). Here its performance
was evaluated further.

Figure 21 shows the MSE and the MAE the model achieved on the three data splits.
To put model performance into perspective, the mean errors between individual
raters and ground-truth labels are given. Model L achieved the lowest mean errors
on the training data. As it was trained with MSE as the loss function, this reflects
the low training error observed in the learning curves. On the validation set, it
achieved the third lowest errors. With the test set the model lies in the middle. The
MAE on the test set shows that the model on average predicts labels that are 0.65
off the target mean-label for the 196 samples in the test set.

(a)

(b)

Figure 21: (a) The MSE and (b) MAE between individual raters (or the model) and
the mean-labels of the training, validation and test split of StabLe(Q1). Includes
model L and raters who rated at least 50 samples in each of the three data splits.
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The raters contributed to the ground-truth labels of the samples, so that the raters
who rated most of the samples tend to have low mean errors. For example, rater ’4’
rated all samples for question Q1 and is among the lowest mean errors.

In Figure 22 model predictions are plotted against the corresponding ground-truth
labels for the different data splits. A line was fitted to the data points by minimizing
the sum of squared residuals (SSR) to visualize the linear relationship between
targets and predictions. The model fit the training data well, as indicated by the
almost diagonal line (slope = 0.93). In the validation set, this relation was weaker,
as indicated by the less steep line (slope=0.60). In the test set, the slope dropped to
0.37. This shallow slope of the best-fit line indicates the low discriminative power of
the model for unseen samples. The mean errors on the test set show that the model
was closer to the average rating of unseen samples than three raters. On the test
set, model L achieved poor agreement with respect to a ICC of 0.34 and a slight
agreement indicated by a Kappa of 0.08.

Figure 22: Predictions of model L plotted against the ground-truth mean-labels.
The best-fit lines were fitted to minimize SSR.

5.3.2 Evaluation of Model K

Model K was trained on random-labels picked from ratings in StabLe(Q1) at runtime.
Having varying labels per sample in different draws made this training objective
more difficult than training on deterministic mean-labels as done for model L. This
was reflected in the higher MSE of 0.82 on the the training set compared to model
L with a MSE of 0.20. On the validation set, the MSE increased minimally to 0.85,
and then jumped to 1.35 on the test set.

Figure 23 shows the mean errors between model K and the ground-truth labels
drawn from the data splits, as well as the mean error between the raters and the
ground-truth labels. The MSE of model K behaved similarly to model L with respect
to its ranking among raters. Based on the MAE model K ranked worse than model
L with the second highest error on the test set. Plotting the predictions against
the ground-truth labels indicated a weak linear relationship (Figure 24). The slope
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of the best-fit line is 0.52 on the training set and drops to 0.30 and 0.15 on the
validation and test sets. On the test set, model K achieved poor agreement with
respect to a ICC of 0.29 and slight agreement indicated by a Kappa of 0.04.

(a)

(b)

Figure 23: The MSE (a) and MAE (b) between individual raters (or the model) and
the random-labels of the training, validation, and test split of StabLe(Q1). Includes
raters who rated at least 50 samples in each of the three data splits and model K.

Figure 24: Predictions of model K plotted against the ground-truth random-labels.
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5.3.3 Evaluation of Model M

Model M was trained with rater-specific-labels corresponding to the ratings of the
rater with user ID ’4’ in StabLe(Q1).

On the validation set, it performed worse the models L and K, which used ground-
truth labels derived from several raters. Figure 25 opposes the ratings, which are
the targets, and the predictions of the model. Compared to model L, the best-fit
lines indicate a weaker linear relationship between targets and model predictions,
with a slope of 0.76 on the training, 0.36 on the validation, and 0.17 on the test
split. The agreement with rater ’4’ was poor as indicated by the ICC of 0.25 and
slight with a Cohen’s Kappa of 0.03.

Figure 25: Predictions of model M plotted against ground-truth rater-specific-labels.

5.3.4 Evaluation of Model L*

Rater ’4’ is the benchmark rater for the evaluation of model L*. The benchmark
rater gave ratings for all samples of StabLe(Q1), so these ratings co-determined
the mean-labels used to train model L. Model L* was trained on mean-labels of
StabLe(Q1)*, which contained ratings of the six training raters and excluded ratings
of the benchmark rater.

Consequently, the MAEs between the ground-truth labels and the ratings of the
benchmark rater were lower (0.44 - 0.46 in Figure 21) on StabLe(Q1) and higher
(0.55 - 0.57 in Figure 26) on StabLe(Q1)*.

Similarly, the agreement between the benchmark rater and model L was higher than
with model L* as shown in Table 27. The agreement between the benchmark rater
and model L* shows how well the model predictions align with the ratings of an
unknown rater. The average of the agreement between the benchmark rater and
the training raters served as baseline. On the training set, model L* was in greater
agreement with the benchmark rater (ICC of 0.67), than the individual training
raters were on average (mean of pairwise ICCs of 0.59). On the validation set, the
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agreement of model L* and the benchmark rater decreased to 0.38, which was lower
than the mean agreement of the training raters and the benchmark rater (0.52).
This went hand in hand with the mean errors of the model increasing from the
training to the validation set (see Figure 26). This discrepancy was the greatest
on the test set, where the benchmark rater agreed more with the training raters
(average of pairwise ICCs of 0.64) than with the labels predicted by model L* (ICC
of 0.31). So, the agreement between the benchmark rater and the training raters
was significantly higher than the agreement between model L* and the benchmark
rater. This finding was in tune with the weak linear relationship of predicted and
target labels on the test set observed above.

Figure 26: Mean absolute errors between raters (and model L*) and the ground-
truth labels of StabLe(Q1)*, which excludes ratings from rater ’4’.

Table 27: The agreement (ICC) with the benchmark rater ’4’ on samples of the
three data splits. Ratings from the benchmark rater were compared to predictions
from model L and L*, and to ratings from the six training raters. The mean of
pairwise agreements between the benchmark rater and each of the training raters is
given as Raters.

L L* 3 16 25 27 29 30 Raters
ICC (Train) .71 .67 .68 .53 .60 .54 .58 .58 .59
ICC (Val) .50 .38 .68 .59 .48 .52 .42 .46 .52
ICC (Test) .40 .31 .76 .70 .68 .47 .64 .58 .64

5.3.5 Evaluation of the Legibility Criteria

The four models L, N, O, and P were each trained with mean-labels of the four
datasets StabLe(Q1) to StabLe(Q4) respectively. The corresponding learning curves
are shown in Figure 27. All models were able to fit to the training data, reducing the
MSE to between 0.10 and 0.21 on the training set. For Q1 the best MSE increased
to 0.35 on the validation set. For the questions Q2, Q3, and Q4, the validation MSE
was higher and oscillated between values already achieved in the first few epochs.
Similarly, on the test set the lowest MSE was achieved for Q1.
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For Q1 the ICC between the model and the raters decreased from 0.49 on the vali-
dation set to 0.34 on the test set. For the other questions, the ICC was substantially
lower on the validation set and decreased further in the test set. A similar picture
emerged for the values of Cohen’s Kappa. For Q2, Q3, and Q4, the rater’s agree-
ment was lower than for Q1 as shown in Table 23. Similarly, the agreement between
the model and the raters was the highest for Q1 on all data splits, and low for the
other questions (Table 28).

Figure 27: The learning curves of the models L, N, O, and P, which were trained on
ratings corresponding to the four questions Q1, Q2, Q3, and Q4.

Table 28: Lowest MSE achieved on the data splits and the agreement between the
best-performing model and raters on validation and test set for models L, N, O, and
P, which were trained on ratings from questions Q1, Q2, Q3, and Q4, respectively.
Mean agreement of raters within the corresponding data sets and splits is given in
brackets where enough data was available.

Question,
Model

MSE
Train

MSE
Val

MSE
Test

ICC
Val

Kappa
Val

ICC
Test

Kappa
Test

Q1, L .10 .35 .65 .49(.50) .16(.14) .34(.58) .08(.14)
Q2, N .11 .61 .75 .10(.32) .02(.09) .02 -0.04
Q3, O .21 .83 1.18 .11(.28) -0.01(.09) .09(.36) -0.02(.12)
Q4, P .17 .82 .88 08 .03 .05 -0.03
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5.3.6 Evaluation of Uncontrolled Variables

Table 29: Agreement on the test set of
four models trained on different filtered
variants of StabLe(Q1) and the number of
samples in those subsets.

Model # Samples ICC Kappa
L 1907 .34 .08

L\cursive 1537 .17 .09

L\typo 1837 .34 .08

L\correction 1809 .28 .09

Three variations of model L were
trained, where samples with cursive
writing, spelling errors, or with correc-
tions were excluded from StabLe(Q1).
Table 29 shows that the removal of the
cursive samples strongly decreased the
performance of the model. The ICC on
the test set fell from 0.34 with all sam-
ples to 0.17 without the cursive sam-
ples. Removing the the few samples
with spelling errors did not affect the
agreement and removing the corrections
resulted in a decreased ICC.



6 CONCLUSION 62

6 Conclusion

The presented work produced the StabLe dataset, which allowed to examine how
the legibility of handwriting was perceived by different raters. The data set com-
prises images of individual handwriting samples, sensor data recorded while writing,
information on the produced writing like the presence of spelling errors, and lastly
ratings on its legibility according to four different criteria. The rater agreement was
analyzed for each criterion and compared with the agreement reported in related
work (R1). The performance achieved with the Curation Beauty dataset and the
model architecture used in the corresponding work was measured and interpreted
(R2). The models were trained with samples of StabLe to see whether reducing the
variety of written texts helped the models to pick up legibility related features (R3).
The dataset was used to examine whether the reliability was higher for the legibility
criteria that appeared to be more specific (R4). Accordingly, it was tested whether
the models could predict more specific criteria more accurately (R5). Performances
were compared for models trained with different label merging strategies to explore
how the uncertainty between raters can be addressed when training supervised mod-
els (R6). In the following, these questions are addressed and answered based on the
results of this work as far as possible.

6.1 Rater Agreement in the StabLe Dataset

R1 Is the rater agreement found in the StabLe dataset comparable to the agreement
reported in related research?

Results For each handwriting sample and each of the four legibility criteria, rat-
ings were collected from two to six raters. With these redundant ratings, the raters’
agreement was measured (Section 3.2.4). In studies on legibility assessment, the
ICC was the most commonly reported metric on inter-rater reliability and served as
the best option to compare rater agreement across different studies. In the StabLe
dataset the highest pairwise ICC of 0.68 was found for raters ’3’ and ’4’ on the
ratings for global-legibility. Averaged among the pairs of raters, the highest ICC
of 0.54 was found for question Q1 as well. Following the interpretation of ICC val-
ues, that means that the two raters with the highest agreement fall into the higher
range of moderate agreement. The mean of pairwise agreements falls into the lower
range of moderate agreement with poor agreement detected for 33 out of 44 pairs
of raters. For the other legibility criteria, the agreement was found to be poor
across the board. For the two questions Q3 (letter-formation rnh) and Q4 (letter-
formation ad) a ICC of 0.36 was measured. For question Q4 (slant-consistency)
the lowest ICC of 0.35 was found.

Interpretation For the handwriting scales reviewed in Section 2.1 the reported
inter-rater reliability of either the total scores or per-item ratings laid between 0.39
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and 0.99. The agreement found in the StabLe dataset is comparable to the agree-
ments reported for the ratings of the mETCH handwriting scale and is significantly
lower than the agreements reported for the other scales. To conclude these find-
ings, the measured agreement could not compete with that reported for renowned
handwriting scales.

6.2 Reproducing Results on the Curation Beauty Dataset

R2 Can the results of previous work on automated legibility assessment be repro-
duced and are the results meaningful?

Results As described in Section 2.2.3, the work by Grabmann (2023) was under-
stood to represent the status quo for predicting the legibility of handwriting from the
writing of movement sensor data. Accuracies obtained by five-fold cross-validation
laid between 37.77% and 45.54% for different deep learning models. Of the four
models, the described CNN architecture was recreated and trained on the Curation
Beauty dataset to verify the results. Despite small differences in the training setup
(balancing), the reported and recreated training runs appeared similar. The highest
validation accuracies of 55% and 57% seemed comparable.

Interpretation To conclude, the reported results could not be recreated exactly,
but were found to be reasonably similar given the differences in the training runs.

The reported accuracies were obtained on a highly unbalanced dataset. This is
believed to diminish the expressiveness of the results. Furthermore, the strong test
accuracy oscillation in the previous work indicates that the model failed to generalize
from training samples to unseen samples. If weight adjustments from a single epoch
lead to higher differences in validation or test metrics than on the training set, this
indicates that the model is probably not learning generalizable features. Instead, it
is assumed that the model mainly memorizes the training samples, which by chance
leads to more accurate predictions on unseen samples in one epoch and to lower
accuracy in another.

Looking at an application of the described models to assess how legible students
write, it must be concluded that the models, which represent the status quo, are far
from being able to approximate ratings given by humans sufficiently.

6.3 Effects of Focusing on a Reduced Reference Text

R3 Does reducing the variety of texts in the dataset help models to find patterns
that are related to legibility?
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Results Two pairs of models were trained, where both models of a pair were
the same except for the dataset they were trained on. One model was trained on
the Curation Beauty and the other one on the StabLe dataset. This allowed for a
comparison between a dataset with a wide variety of texts and one with only ten
reference sentences. In both pairs, the model trained on StabLe performed better
on all tracked metrics.

Interpretation From these observations, it was concluded that the ratings in the
StabLe dataset are more closely correlated with the patterns in the sensor data
than is the case for the ratings and sensor data of the Curation Beauty dataset.
One key difference between the two datasets was that StabLe consists of samples
corresponding to a fixed set of reference texts. It is assumed that the reduced variety
in texts also reduced the variety in the sensor signals, so that the differences between
samples are smaller and related to the level of legibility more closely. This suggests
that reducing the variety of texts helped the models to find patterns related to
legibility.

6.4 Reliability of Different Criteria

R4 Is the rater agreement higher on the criteria that are assumed to be more
specific?

Results With the StabLe dataset, the hypothesis was tested that fine-grained
criteria are assessed more reliably than broader criteria. The highest and lowest
per-sample variances were found for the two criteria of letter-formation rnh and
letter-formation ad. These criteria were both believed to be very specific because
the raters were instructed to inspect specific letters in detail. The variance measured
for the least specific criterion of global-legibility was between the variances of the
specific ones. With respect to ICC, a fair agreement was found among raters for
global-legibility on average, and the agreement was poor for the other three criteria.

Interpretation The per-sample variance did not exhibit the assumed relationship,
and the ICC agreement values contradict the assumption as well. Consequently, it
cannot be said that the criteria that were said to be more specific were rated more
reliably.

6.5 Prediction of Different Criteria

R5 Do models perform better in assessing criteria that are assumed to be more
specific?
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Results Similarly to the reliability of the ratings, it was assumed that the models
would perform better in predicting the labels of StabLe(Q3) and StabLe(Q4), be-
cause those criteria are determined by the shapes of specific letters. How well-formed
these shapes are in a handwriting sample was believed to be indicated by patterns
in the sensor data. Following this intuition, the models should be able to predict
the corresponding labels. The same argument suggested that detecting the slant-
consistency would be feasible from the sensor data. The perceived global-legibility,
on the other hand, seemed to be less closely related to specific writing movements,
so that identifying corresponding features in the sensor data would pose a more
challenging task.

The experiments did not show success in predicting the labels for questions Q2, Q3,
and Q4. For the least specific question Q1, models were able to learn the labels to
some degree, but these results had shown to be mainly a product of discriminating
between cursive and block letter writing styles.

Interpretation The results do object the assumption that models would perform
better on the more specific criteria. Due to the poor performance of all trained
models, a clear conclusion about which criteria can best be predicted from sensor
data cannot be drawn.

6.6 Effects of Label Merging Strategies

R6 How can the uncertainty inherent in assessing legibility be addressed when
training supervised models?

Results The different ratings of each sample were used to derive ground-truth
labels for the training of supervised models. Using the mean of the ratings yielded
the best performance regarding MSE and performed second best with respect to rater
Agreement. Rounding the mean ratings to integer labels led to worse performance
and using the majority vote performed worst.

Training with the ratings of one individual rater was assumed to allow the model to
capture the rater-specific perception of what makes handwriting legible. However,
the rater-specific model achieved lower agreement with the rater it was trained on
than the model trained on the mean ratings.

Lastly, a model was trained with labels randomly chosen from the available ratings
of each sample. As expected, the training loss showed that this prediction task was
more challenging because labels were not deterministic and, therefore, could not be
memorized for individual samples.

The training and validation loss did not diverge in later epochs as it did with differ-
ently derived labels. This suggests that the harder training task offers less oppor-
tunity for the model to memorize and overfit the training data. In other words, the
features learned on the training data seemed to generalize to unseen samples better.
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Training on random labels led to the highest agreement with the raters on unseen
samples. Thus, introducing the uncertainty of legibility ratings into the training
process benefited model performance with respect to agreement with a group of
raters.

Interpretation These findings indicate that the average of the raters’ opinions
presented the most consistent approximation of what legibility is.

The ratings of an individual rater seemed to be internally inconsistent because the
model was unable to detect patterns that correlate with the ratings. The ratings
from a single rater might tend to vary due to unwanted effects during the rating
process. For example, the perception of when a sample is not legible could change
depending on how many non-legible samples the rater has seen recently. After
grading many samples that were perfectly legible, the judgment could have shifted
to be more rigorous when the next lower legible sample comes along. Such effects
would decrease the internal consistency of ratings from a single rater and were
assumed to be counteracted by using the average of several ratings

Training with randomly drawn ratings is believed to introduce the degree of uncer-
tainty inherent in the ratings into the training process, acting as a way of regular-
ization that benefits the generalizability of learned features.

7 Limitations

7.1 Low Comparability of Reported Rater Agreements

Comparing ICC values reported in different studies does not tell the whole story. The
ICC values of the reviewed handwriting scales (Table 3) were obtained for different
measurements. For the HLS the given ICC refers to the agreement between raters
with respect to a differentiation between three legibility classes derived from the
overall score ranging from zero to 25. For SOS-2 the ICC was calculated directly on
the total score ranging from zero to 12. These differences limit the comparability of
the ICC values and prohibit a final conclusion on whether the agreement was lower
in StabLe than in the related work (R1).

7.2 Confounding Variable in Comparing Datasets

The comparison model performances obtained on two different datasets suggested
that focusing on a set reference text benefited the model with respect to learning
generalizable features for determining legibility labels. However, another difference
between the two datasets was the rating scheme. The ratings of Curation Beauty
presented a count of different violations, the ratings in StabLe state the legibility di-
rectly. It seems plausible that these direct ratings were more strongly correlated with
patterns in the data than the counts, which could result from different combinations
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of violations that each show differently in the sensor data. This second uncontrolled
variable reduces the expressiveness of the presented results to tell whether reducing
the variety of texts was the reason for the improvement of model performance (R3).

7.3 Limited Comparison of Agreement on Criteria

The lowest variance in ratings was found for question Q1, for which the highest
number of ratings per sample was collected. Consequently, the expressiveness of
comparing the variances and agreement metrics between the questions was decreased
by different and rather small sample sizes (two to six ratings per sample). Another
possible reason for the low agreement found for more specific criteria are insufficient
instructions. Although most raters are assumed to have a notion of what handwrit-
ing they perceive as legible, the same does not hold for the other criteria, which
are probably less natural. The criterion of global-legibility refers raters to their own
opinion of what writing is legible, which in turn means that the instruction does not
affect the ratings that much. For the other criteria, instructions are needed to sen-
sitize the raters to actively look for the specified characteristic of the handwriting.
Following this argumentation, insufficient instructions would affect how individual
raters understand the more specific criteria more strongly. Each sample was rated
by a potentially different subgroup of the raters. So, the reported variances were
probably influenced by the random assertion of the raters. These possible causes for
different levels of rater agreement impede a definitive conclusion on how the reliabil-
ity of ratings and the specificity of rated criteria are related (R4). As models were
trained based on these ratings, limitations affect conclusions on how well models
can predict criteria of different specificity as well (R5).

7.4 Uncontrolled Variables Affecting Evaluation

Considering how much of the performance on StabLe(Q1) originated from discrimi-
nating between cursive and printed typefaces, it seems plausible that the only fea-
tures that the model was able to pick up were the characteristics of the writing
process, but not the product. Whether a sample was written in cursive or print
letters can likely be detected from the frequency with which the pen is lifted off the
paper or the number of stops and starts with regard to accelerations. Longer pauses
also seem likely to be correlated with low legibility. These characteristics are all
only indirectly related to legibility in that they could not be obtained by looking at
the handwriting product itself. Legibility, as defined for the scope of this work, is
understood as a quality of the handwriting product. Following this explanation for
the observed model performances, it must be concluded that the models were prob-
ably unable to detect the features of legibility itself. The best models are believed
to have identified features of the handwriting process that were correlated with low
legibility. The findings question results of previous work, where factors like writing
style and the frequency of spelling errors and corrections were not examined. This
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highlights the importance of controlling for independent variables such as gender,
handedness, and writing style to evaluate whether models actually detect legibility.

7.5 Unbalanced Data Affecting Evaluation

A main limiting factor throughout this work was that few samples with low legibility
were available. This shortage gave models less opportunity to find patterns in the
sensor data that correlate with low legibility. Issues regarding the expressiveness
of metrics in light of a highly unbalanced test set were identified in previous work
but were not overcome in this work. MSE, MAE, ICC and Kappa weigh errors on
samples with low ratings equally as errors on samples with high ratings. StabLe
comprised more samples with low ratings (legible) than with high ratings (illegible).
This was counteracted by balancing the training set, but the test set remained
unbalanced. Therefore, being able to produce correct predictions for the many
samples with low target labels benefited the named metrics more than being able to
produce correct predictions for the few samples with high target labels. Especially
with an outlook towards using such models for diagnostic purposes, where identifying
weak students (high ratings) is the goal, this is a problem.

7.6 Improper Use of the Validation Set

In the comparative experiments described in Section 3.3.2, the validation set was
used for the model selection within training runs. The model with the weights from
the epoch with the lowest validation loss was then evaluated on the validation set
again to obtain metrics like the ICC. This drastically decreased the meaningfulness
of the reported metrics because those were no results on unseen data, but results
on data the model was cherry-picked for among the models of all other epochs. In
hindsight, using the mean of validation metrics in the last few epochs or even just the
last epoch would have allowed for a better approximation of how the model would
later perform on the test set than the described practice. Instead, performances were
believed to be reasonably close to training performances based on the cherry-picked
validation metrics, just to be undercut by the results on the test set. Cherry-picking
models for validation had forestalled realizing how low the generalization from the
training data to unseen data was.

8 Future work

8.1 Increasing the Comparability of Rater Agreement

For better comparison, future work should use ratings to discriminate between
groups of students similarly to the groups derived in related work, so that inter-rater
reliability can be compared for similar rating tasks. Furthermore, it is plausible that
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conducting the annotation process online brought limitations, especially compared
to setups where the raters were instructed together and in person. Instructions be-
ing supplied differently and varying in their extent should be examined with respect
to the effect on measured rater agreement, as well as the effect of the rating setup
(in person, on paper, online). In addition, a more controlled setting for the annota-
tion process, where a fixed group of raters all provide ratings for the same samples,
could provide data for a more meaningful examination of the suspected relationship
between the reliability of ratings and the specificity of a given legibility criterion.

8.2 Modeling a Renowned Handwriting Scale

In this work, legibility criteria were adopted from related work and instructions on
how to rate them were created. Instead of creating a new handwriting scale for
the annotation, future work could focus on ratings from an existing and proven
handwriting scale with higher inter-rater reliability. This would probably increase
the reliability of collected ratings and would allow to use measurements of agreement
to test results reported for the given scale. Furthermore, modeling a handwriting
scale that is already being used in practice increases the applicability of the trained
models in case they reach sufficient performance.

8.3 Recording of Suitable Handwriting Samples

For this work, the supervisors instructed the students to write the sentences in one go
and to repeat the recording when they needed to correct their writing or when they
paused writing mid-sentence. The high frequency of corrections found in the manual
validation of the dataset showed that this might not be sufficient. In a setting where
each student is overlook by a supervisor, who interrupts when necessary, the recorded
sensor data could be assured to capture only the movement related to writing the
sentence. This in turn could benefit models trained on this data. However, training
only on this kind of high-quality data might miss the purpose of models trained
for legibility assessment. Another approach could investigate how sensor data can
be preprocessed to reduce the variety of sensor signals originating from writing
pauses or corrections. Furthermore, future data acquisition should attempt to collect
more illegible handwriting samples to avoid problems that originated from strongly
unbalanced data. For example, it could be examined whether instructing students
to write quickly results in a greater share of hard to read samples.

8.4 Detecting and Controlling the Confounding Variables

As pointed out earlier, confounding variables, like the writing style, strongly affect
model performance and decrease the expressiveness of evaluations. It is believed that
characteristics like the writing style or the presence of corrections can be detected
by machine learning models. This would allow to add this meta information to all
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samples of a dataset, so that the variables can be accounted for in training and
evaluating models.

8.5 Refining the Deep Learning Approach

All models trained in this work were simple CNNs of moderate size. Only one-
dimensional kernels were used so that sensor channels were processed separately. It is
suspected that the use of other deep learning architectures could drastically improve
the performance of the model. Different approaches to modeling, such as allowing
features to be learned for channels jointly, using RNNs or Transformers to capture
the sequential nature of the sensor data, or pretraining on unlabeled handwriting
sensor data, are believed to present opportunities for more accurate predictions of
legibility labels. In case future models perform better, the rater-specific approach
could be revisited to train several models that imitate different individual raters.
These models could then form an ensemble and provide a distribution of ratings per
sample instead of a single value prediction.
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A Appendix

A.1 Descriptions of Reviewed Handwriting Scales

SEMS and (SOS-2) The German Systematische Erfassung motorischer Schreib-
störungen (SEMS) is a measurement tool to identify children with handwriting dif-
ficulties adopted from the Dutch SOS-2. Waelvelde et al. (2012) reported high
construct validity as well as high intra- and interrater reliability for the original
Dutch SOS-2. The construct validity was evaluated using the scale to discriminate
between children with and without motor difficulties. Suspects perform a near-copy
writing task. The scales evaluate both the legibility of the produced writing as well
as writing speed. Franken and Harris (2021) found that the SEMS score can be used
to accurately identify children with handwriting problems in the second grade, but
its sensitivity as a diagnostic test decreased when used in fourth grade. In the corre-
sponding questionnaire, legibility is assessed through questions about seven criteria.
For each legibility criterion, the rater states if it is fulfilled mostly (0), sometimes
(1) or rarely (2).

1. Are the letters correctly formed?

2. Are letters written without (...) interruptions?

3. (...) are the joins fluid and correct?

4. Is the child’s writing the correct size (...)?

5. Are all of the letters approximately the same size?

6. Does the child leave enough space between words?

7. Does the child write on the line (...)?

HLS Barnett et al. (2018) developed the Handwriting Legibility Scale (HLS) as
a quick and easy-to-use tool to assess the legibility of handwriting. Its construct
validity was evaluated using the scale to discriminate between children with Devel-
opmental Coordination Disorder (DCD) and normal developing children. A holistic
legibility score is computed from five criteria that are rated on a five-point Lickert
scale following the corresponding questionnaire. The suspect performs a free writing
task. After instructions from the authors, the rater makes a judgement on each of
the five criteria ranging from A to E. The questionnaire contains verbal explana-
tions of scores between one and five for each criterion. The global legibility score is
calculated as the sum of these five scores that capture the impression of the rater:

A An overall impression of global legibility based on your first reading of the
text.
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B An overall impression of the amount of effort required for you to read the
script the first time.

C An overall impression of the layout of the writing on the page.

D An overall impression of letter formation.

E An overall impression of the attempts made to rectify letters within words.

ETCH The Evaluation Tool of Children’s Handwriting (ETCH) tests for many
aspects of handwriting performance. The suspects participate in several writing
tasks. The examiner observes the writing process to assess aspects of the writing
process, for example, how the pen is gripped. Afterwards, the writing product is
examined. Duff and Goyen (2010) describe it as a criterion-referenced assessment
that focuses on the readability of letters, words, and numbers at a glance and out
of context. The corresponding examiner’s manual by Amundson (2004) provides
detailed instructions on the preparation, execution, and interpretation of the pro-
posed assessment. This tool was designed for use by occupational therapists. Duff
and Goyen (2010) displayed its construct validity by using the scores to discriminate
between children with and without handwriting dysfunctions.

HPSQ Rosenblum (2008) proposed the Handwriting Proficiency Screening Ques-
tionnaire (HPSQ) as a standardized practical tool to identify handwriting difficulties
among school-age children. To examine its construct validity, participants were di-
vided into two groups based on their HPSQ score. The authors found significant
differences between handwriting scores measured in the two groups using the Hebrew
Handwriting Evaluation (HHE) which is taken as an indicator that the underlying
latent construct of legibility is assessed. It is intended to be used by teachers to as-
sess the handwriting of their students. The questionnaire contains ten questions that
the examiner rates from one (”never”) to five (”always”). A principal component
factor analysis of these ten criteria revealed two main factors. The first comprises
questions one, two, four, and ten. The authors summarized those as being related
to legibility.

1 Is the handwriting difficult to read?

2 Do you have difficulty reading the handwriting?

4 Does the child often erase while writing?

10 Are you satisfied with the handwriting?
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MHT Following the description by Rosenblum et al. (2003), the Minnesota Hand-
writing Test (MHT) was developed to assist occupational therapists in identifying
school children with writing difficulties. Suspects copy a standardized set of words
for a fixed period. Subsequently, the examiner checks which statements from a set
list of fourteen observations apply and rates the produced writing on six criteria
of handwriting quality. For each such criterion, the rater checks which of the three
statements best describes the proficiency of the suspect in this area. The statements
reflect how the suspect is performing in comparison to his or her peers. The exam-
iner checks whether the suspect performs ”Like Peers”, ”Somewhat Below Peers” or
”Well Below Peers”. Five of these criteria are related to legibility.

1. Legibility

2. Form

3. Alignment

4. Size

5. Spacing
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A.2 List of Examined Labeling Tools

A list of all the labeling tools that were reviewed.

Table 30: Listing of all the reviewed labeling tools. ?? indicates that the docu-
mentation did not give sufficient information to judge whether the requirement is
met.

Name
Supports
classification

Centralized
web-app

User
management

Simple
user-interface

labelImg no no no no
cvat yes yes yes no
labelme yes no no no
VoTT yes yes no no
imglab no no no no
YOLO mark no no no no
PixelAnnotationTool no no no no
OpenLabeling no no no no
imagetagger no yes ?? no
ImageAnnotation no yes ?? no
deeplabel no no no no
MedTagger no yes yes no
LabelBox ?? ?? ?? ??
turktool no yes no no
Pixie no no no no
OpenLabeler ?? no no no
Anno-Mage no no no no
CATMAID ?? yes ?? no
make-sense yes no no no
LOST ?? yes yes no
Annotorious yes yes no no
Sloth ?? no no no
Pixano yes yes no no
Alp’s labeling too (ALT) no no no no
Classifai no no no no
COCO Annotator no yes yes no
commacoloring no no no no
DataGym.ai yes yes ?? ??
diffgram yes yes ?? ??
dsgou/annotator no no no no
Etiketai no no no no
(FIAT) no no no no
Grid-Annotation-Tool-2 no no no no
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Table 31: Continuation of the listing of all the reviewed labeling tools.

Name
Supports
classification

Centralized
web-app

User
management

Simple
user-interface

labelImg no no no no
ilastik no no ?? ??
imannotate no yes yes ??
labelml ?? ?? ?? ??
labeld ?? yes ?? ??
label-studio(community) yes yes no no
react-image-annotation yes no no no
scalabel ?? yes ?? ??
tator no yes yes no
universal-data-tool yes yes no no
Slicer ?? no no ??
anylabeling no no no no
autodistill no ?? no ??
bbox-visualizer no no no no
BoundingBoxEditor no no no no
knossos no no no no
labelCloud no no no no
labelflow ?? yes ?? ??
myvision ?? no no ??
OHIF/Viewers ?? no no no

A.3 Instruction Texts for the Four Criteria

A.3.1 Q1 global-legibility

Bitte lies den unten angezeigten Satz. Bewerte anschließend, wie leserlich du die
Schrift findest. Achte darauf, ob du den Satz mehrfach lesen musst, oder ob du ihn
in einem Schwung lesen kannst. Musst du den Satz oder einzelne Wörter mehrfach
lesen, dann ist der Satz weniger leserlich. Vergleiche den Satz mit den angezeigten
Beispielen, um besser einschätzen zu können, welche Bewertung zutreffend ist.

1 - Die Bewertung 1 bedeutet, dass der Satz sehr leserlich ist. Du konntest ihn
schnell und problemlos lesen. Du bist nicht in Stocken gekommen.

5 - Die Bewertung 5 bedeutet, dass der Satz sehr schwer leserlich ist. Selbst nach
mehrfachem Lesen ist mindestens ein Wort nicht eindeutig zu entziffern.

A.3.2 Q2 consistent-slant

Bitte lies den unten angezeigten Satz. Nachdem du den Satz einmal gelesen hast,
schaue dir einen Buchstaben nach dem anderen an. Achte auf die Neigung der ver-
tikalen Striche. Sind alle Buchstaben in die gleiche Richtung geneigt (nach links
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oder rechts)? Ist die Neigung bei allen Buchstaben gleich, ähnlich, oder unter-
schiedlich? Vergleiche den Satz mit den angezeigten Beispielen, um besser ein-
schätzen zu können, welche Bewertung zutreffend ist. Die Bewertung richtet sich
nach dem größten Neigungsunterschied zweier Buchstaben und nicht nach der durch-
schnittlichen Abweichung.

1- Die vertikalen Striche aller Buchstaben sind einheitlich geneigt. Mit dem blossen
Auge lässt sich keine Abweichung im Winkel erkennen.

5- Verschiedene Buchstaben sind unterschiedlich ausgerichtet. Zwischen mindestens
zwei Buchstaben mit vertikalem Strich ist eine starke Abweichung des Winkels zu
erkennen.

A.3.3 Q3 letter-formation rnh

Bitte lies den unten angezeigten Satz. Achte dabei auf die Buchstaben ’r’, ’n’ und
’h’. Diese drei Buchstaben entstehen durch einen ähnlichen Schwung des Stiftes.
Sie unterscheiden sich nur darin, wie weit oben der vertikale Strich beginnt und wie
weit unten der Bogen endet. Sind diese Buchstaben einzeln eindeutig zu erkennen?
Oder sieht eines der ’n’ eher aus wie ein ’r’ oder ’h’ bzw. andersherum.

1 - Alle Vorkommen der Buchstaben ’r’, ’n’ und ’h’ sind wohlgeformt und eindeutig
zu erkennen. Der vertikale Strich des ‘n’ ist deutlich kürzer als der eines ‘h’, deshalb
sind die beiden Buchstaben leicht zu unterscheiden. Der Bogen des ’n’ reicht weiter
hinunter zur Grundlinie als der eines ’r’, deshalb sind die beiden Buchstaben leicht
zu unterscheiden. Es bedarf nicht den Kontext im Wort, um zu wissen, dass es sich
um den jeweiligen Buchstaben handelt.

5 - Es gibt mindestens ein ’n’, das eher wie ein ’r’ oder ’h’ aussieht, bzw. ander-
sherum. Ohne den Kontext im Wort könnte man diesen Buchstaben auch für einen
anderen halten.

A.3.4 Q4 letter-formation ad

Bitte lies den unten angezeigten Satz. Achte dabei auf die Buchstaben ’a’ und
’d’. Diese zwei Buchstaben entstehen durch einen ähnlichen Schwung des Stiftes.
Sie unterscheiden sich nur darin, wie weit nach oben der vertikale Strich gezogen
wurde. Sind diese Buchstaben einzeln eindeutig zu erkennen? Oder sieht eines der
’a’ eher aus wie ein ’d’, bzw. andersherum.

1 - Alle Vorkommen der Buchstaben ’a’ und ’d’ sind wohlgeformt und eindeutig zu
erkennen. Der vertikale Strich des ‘a’ ist deutlich kürzer als der eines ‘d’, deshalb
sind die beiden Buchstaben leicht zu unterscheiden. Es bedarf nicht den Kontext
im Wort, um zu wissen, dass es sich um den jeweiligen Buchstaben handelt.

5 - Es gibt mindestens ein ’a’, das eher wie ein ’d’ aussieht, bzw. andersherum.
Ohne den Kontext im Wort könnte man diesen Buchstaben auch für einen anderen
halten.
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A.4 User Interface of the Annotation App

Figure 28: The login page of the Labeling App.

Figure 29: The welcome page of the Labeling App with brief introduction to the
project.
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Figure 30: The batch introduction page of the Labeling App. The criterion which
was to rate on the next sides was explained in a text and with an example image.
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Figure 31: The scoring page of the Labeling App, where raters inspect the image of
a sentence and select a suitable score. Raters can review the example image from the
batch introduction page by clicking ”view example” underneath the image. ”report
issue” did open a popup where raters could leave a message.
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A.5 Data Splits

Table 32: Composition of training, validation and test splits. Distribution of the
ratings given in response to questions Q1, Q2, Q3 and Q4.
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Q1 Train 1398 140 2758 2133 1535 719 191
Q1 Validation 410 41 836 672 417 174 31
Q1 Test 209 21 270 282 272 202 45
Q2 Train 1398 140 1598 1596 763 206 20
Q2 Validation 410 41 444 469 222 70 8
Q2 Test 209 21 177 225 157 52 0

S
p
li
t
an

d
Q
u
es
ti
on

Q3 Train 1398 140 1732 1211 619 313 134
Q3 Validation 410 41 523 352 168 99 24
Q3 Test 209 21 225 178 90 62 32
Q4 Train 1398 140 1085 462 203 79 24
Q4 Validation 410 41 317 136 49 19 10
Q4 Test 209 21 145 80 35 14 0
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A.6 Outlier Samples

Figure 32 shows handwriting samples with best and worst scores in StabLe(Q1) (a)
(b), StabLe(Q2) (c) (d), StabLe(Q3) (e) (f), and StabLe(Q4) (g) (h).

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 32: The five best and worst scores handwriting samples per question.
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A.7 Models

Table 33: Listing of the models that were trained for the different experiments.
Models differ in the architecture of the convolutional layers and the prediction head,
in the data they were trained on, the label merging strategy, and the prediction task
they were trained for.

Model Experiment CNN Head Dataset Label Task

A
Repr,
CnnArc,
CompDs

broad 1l
Curation
Beauty

- 3 class

B
CnnArc,
CompDs

cone 1l
Curation
Beauty

- 3 class

C
CnnArc,
CompDs

broad 1l StabLe(Q1) mean-rounded 3 class

D
CnnArc,
CompDs

cone 1l StabLe(Q1) mean-rounded 3 class

E CnnArc broad 1l StabLe(Q1) mean-rounded 5 class

F
CnnArc,
HeadArc

cone 1l StabLe(Q1) mean-rounded 5 class

G HeadArc cone 3l StabLe(Q1) mean-rounded 5 class

H
HeadArc,
LabMerg

cone 1l StabLe(Q1) mean-rounded reg

I HeadArc cone 3l StabLe(Q1) mean-rounded reg
J LabMerg cone 1l StabLe(Q1) majority reg

K
LabMerg,
HypPar

cone 1l StabLe(Q1) random reg

L
LabMerg,
HypPar,
Eval

cone 1l StabLe(Q1) mean reg

L* Eval cone 1l StabLe(Q1)* mean reg

L\cu Eval cone 1l StabLe(Q1\cu) mean reg

L\ty Eval cone 1l StabLe(Q1\ty) mean reg

L\co Eval cone 1l StabLe(Q1\co) mean reg

M
LabMerg
Eval

, cone 1l StabLe(Q1) rater-specific reg

N Eval cone 1l StabLe(Q2) mean reg
O Eval cone 1l StabLe(Q3) mean reg
P Eval cone 1l StabLe(Q4) mean reg



B COLLABORATION IN THIS WORK 83

B Collaboration in this Work

For this work I collaborated with colleagues at STABILO, members of the Schreib-
motorik Institut (SMI) and Lukas Pieger to realize different parts of the described
project. Employees of STABILO helped with the data recordings and supported
the creation of the StabLe dataset by giving valuable feedback. Furthermore, they
supported the training of the models by setting up the GPU server and giving advice
when needed. Members of the SMI supported by providing relevant literature on
the assessment of legibility, in choosing the legibility criteria, in designing the refer-
ence sentences, and by labeling the handwriting samples. Lukas Pieger conducted
a master thesis project that was carried out in parallel to this work. Where this
work focused on sensor data, he was concerned with image data. We collaborated
to create the reference sentences and to create the sheet for the recordings. We both
supervised the two recording sessions and developed the annotation app together,
where he fully implemented the sentence extraction. The descriptive analysis of the
collected ratings was also done collaboratively.

C Use of Generative AI

Generative AI, such as ChatGPT has been used as search engine and to formulate
passages based on bulletpoints by the author, to paraphrase text written by the
author and to help summarize text by the author for reference in other sections. All
generated text was carefully proofread, manually adjusted, and paraphrased.
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