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Abstract

We evaluate Brunnermeir’s Theory of Resilience in the context of complex system dynamics where
there, however, can be local and global resilience, vulnerability, loss of resilience, cycles, disruptive
contractions, and persistent traps. In the paper, we refer to three-time scales. First, for shorter
time scales, for the short-run market dynamics, we evaluate resilience in the context of complex
market dynamics that have been studied in the history of economic theory for long. Second, with
respect to a business cycle medium-term dynamics, we analytically study an endogenous cycle
model, built upon Semmler and Sieveking (1993) and Semmler and Kockesen (2017), and discuss
the issue of loss of stability, corridor stability, multiple attractors, and trapping dynamics also in
the light of complex dynamics. In a financial-real business cycle model, we demonstrate forces that
indeed can exhibit multiple dynamic features such as local resilience, known as corridor-stability,
but also other dynamic phenomena. Corridor stability pertains to small shocks with no lasting
effects, but large enough shocks can lead to persistent cycles and/or contractions. We refer to the
Hopf-and-Bautin-Bifurcation theorems, to establish corridor stability, and local resilience, for the
interaction of real and financial variables where the trajectories can be stable or unstable in the
vicinity of the equilibrium. Thus they can switch dynamic behaviour for small or large shocks.



Similar complex dynamic phenomena can be obtained from Kaleckian-Kaldorian nonlinear real
business cycle models, in particular when time delays are allowed for. Third, whereas the analytical
study of the dynamics is undertaken for the above second-time scale, for the longer time scale
we study, in the context of multiple equilibria models, the issue of thresholds, tipping points and
disruptive contractions, and persistence of traps.
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contractions
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1. Introduction

Brunnermeier’s recent book “The Resilient Society” has initiated an extensive
discussion of how to deal with economic, social, and political shocks and what pre-
emptive policies should be pursued. Conventionally it is presumed that after some
shocks — mostly assumed exogenous shocks — the economy rebounds quickly com-
pared to endogenous shocks, characterized by the build-up of imbalances and delayed
re-adjustment. Brunnermeier (2021) theory of resilience helps explain well some as-
pects of social, economic, and political dynamics. His paradigm of resilience also
brings in a fresh perspective on the great meltdowns such as the financial crisis,
COVID-19 pandemic, and climate disasters but also on specific macro issues, such
as the dynamics of innovation, inequality, currency, inflation-deflation risks, debt
dynamics, health care system, fiscal and monetary space, and the global economy.
Though his new paradigm is a very refreshing one, it is challenging to evaluate his
theory from the perspective of complex system dynamics.

Recent work on shocks in complex economic dynamics has already challenged
traditional wisdom on economic dynamics. Generically, those shocks can be absorbed
by factors increasing resilience or producing dynamic processes with multiple stability
regions. Research has utilized complex system models to study the mechanisms that
explain how stability and mean reversion dynamics can be achieved or not. As known
by now, for example, weakening economic conditions are likely to generate adverse
feedback loops in the financial sector. The application of complex system models can
reveal quite adverse effects of shocks, the existence of tipping points, and multiple
features in the dynamics. Economic research has, in particular, recently set out to
explore the dynamic paths of variables in various fields of economics, from finance
to climate change research. Time scales also play an important role in the evolution
of the effects of shocks. Here, related to economic shocks, we examine dynamic
economic paths for shorter and longer time scales.

First, we discuss shorter time scales in economic dynamics that have been ex-
plored in studies of how markets behave, explored since classical economics. Those



studies usually refer to the issue of whether the demand and supply in markets will
converge — a major theme of Adam Smith’s theory of the “invisible hand”. This has
been explored under the topic of the dynamics of excess demand functions where
excess demand is supposed to converge to zero responding disequilibrium in prices
and quantities: If prices for products are too high due to a shortage of goods, there
will be gains by the producers of those supplies, and this gives rise to more supply
and eventually decreases prices since more products will be offered. This has been
called excess demand theory (see Hahn (1982)). Such a classical mechanism has been
extended by Flaschel et al. (1997) to a dual process where prices respond to imbal-
ances of supply and demand and supply changes due to differences in profitability
across sectors. Here then, since 1930, the issue has come up whether small shocks to
supply and demand may indeed be self-stabilizing through a kind of local resilience
or corridor stability (see Fisher (1933)). Still, large shocks may lead to resilience
breakers and generate instability.

Second, in the literature on the business cycle time scale, roughly considered to be
7 to 10 years, we first propose a nonlinear model of the financial-real interaction that
replicates many of the above-mentioned complex features. Local resilience has been
featured here as corridor stability, on which there is already much economic literature.
This pertains to small shocks with no lasting effects. However, large enough shocks
can lead to different phenomena, for example, persistent cycles (limit cycles) but also
persistent contractions, disruptions, and traps. In this context, one can refer to the
Hopf-bifurcation (locally unstable) and Bautin-bifurcation (locally stable) theorem
to characterize local and global resilience (stability) for the interaction of real and
financial variables over the business cycle where the trajectories can be stable or
unstable in the vicinity of the equilibrium. Corridor stability (local stability) pertains
to small shocks with no lasting effects, but large enough shocks can lead to persistent
cycles, contractions, or persistent traps. Thus, small shocks do not matter (keep
resilience), i.e., they are mean reverting, but large shocks do matter. On the other
hand, there are business cycle models considering less the financial-real interactions
and more the role of nonlinearities in conjunction with time delays on the real side of
the economy. We can call them real business cycles. Complex dynamic phenomena
can also be obtained from the Kaleckian-Kaldorian nonlinear real business cycle
model (when particular time delays are allowed for) or, for example, from Harrod’s
knife-edge instability principle!.

Third, whereas the above dynamics usually assume that the relevant equilibria

1On business cycles an control, see Orlando and Sportelli (2021a;b), Orlando (2021), Stoop
(2021).



are unique, there can be multiple equilibria. The system dynamics can move to any
of those on a longer time scale after passing some tipping points and thresholds. We
provide examples of loss of resilience, disruptive contractions, convergence to differ-
ent attractors caused by thresholds, triggering different dynamics, and generating
economic traps with considerable lock-ins. Large financial crises, such as the one
in 2007/9 and the subsequent meltdowns, the spread of infectious diseases such as
the COVID-19 outbreak, climate extreme events and disasters, and wars, can trigger
such complex system dynamics with more or less persistent traps.

We want to note, however, that in the current paper, we do not study and evalu-
ate empirical and econometric work that supports the dynamics on shorter, medium-
and long-run time scales. We review and model continuous time approaches. There
have been many empirical approaches to verify and confirm some of the complex dy-
namic processes discussed above, using data working with discrete time econometric
methodology. This is called nonlinear econometrics. We only occasionally will refer
to such work.?

The remainder of the paper is organized as follows. Section 2 refers to the studies
of the shorter-run market dynamics, elaborating on local and global resilience (cor-
ridor or global stability). Section 3 presents an analysis and numerical results on
the relation of resilience and complex dynamics in a business cycle model of business
cycle medium run-time scale building on financial-real interactions. Section 4 stays
with the medium run, but focuses only on the real side, yet studies the role of time
delays. Section 5 moves to the theory and works on the longer time scale, referring
to multiple equilibria, thresholds, tipping points, disruptions, and trapping regions.
Finally, Section 6 concludes the paper. The appendix provides some technical deriva-
tions.

’In the empirical part, we study some features of Brunnermeier (2021) theory of resilience
by using some work of Semmler and Kockesen (2017) and undertake some nonlinear econometric
study. We can show the existence of cyclical solution paths and demonstrate that the empirics of
financial-real forces indeed can exhibit multiple features such as endogenous resilience (robustness
against shocks) but of a globally attracting type. The essential nonlinearities and regime changes
can generate a locally unstable equilibrium but global resilience (limit cycles), as reflected by the
Hopf-bifurcation type dynamics. The econometrically estimated model shows local non-resilience
but global resilience. For the locally unstable but globally bounded fluctuations, we can also detect
asymmetric responses to shocks.



2. Shorter - run: Market dynamics and resilience

The concept of corridor stability was proposed initially by Leijonhufvud (1973)
to represent the response of a market economy to an adverse income shock. Leijon-
hufvud suggested that the system could convert to the original equilibrium position
or be taken out of the stability region and diverge, depending on the shock size.
The concept that a system behaves differently given shocks of diverse intensities
shows validity to theories of systemic fragility, including Minsky’s theory of financial
fragility.

Corridor stability measures how resilient an economy is to external shocks or
disturbances, by which resilience implies local resilience (corridor stability) or global
resilience — robustness against small or large shocks. Correspondingly, mean reversion
refers to the return to their long-term averages or trends over time. This concept is
based on the idea that extreme values or fluctuations in these variables are usually
temporary and tend to balance over time as markets and economies adjust to new
conditions. Overall, it refers to the natural tendency in economies and markets to
maintain balance and stability over time.

However, corridor stability implies only a turn to equilibrium near the stable
equilibria or stable steady states. If there are multiple equilibria, a more significant
shock or disturbance can cause the economy to move from one stable state to another
rather than return to its original state. Nonetheless, corridor stability may meet
some tipping points and represent rapid deterioration, moving into traps and regime
changes.

Brunnermeier’s theory elucidates that the lack of mean reverting dynamics can
destroy the ability to bounce back due to resiliency destroyers. These are often seen
as externalities that break society’s collective contract. In a given society, social
contracts help address externalities and protect against shocks. These destabilizing
loops or points of no return have potentially devastating effects on macro dynamics.
However, if resiliency is present, it can help take more risks, and the ability to
rebound allows for more space to grow.

Economics literature presents local and global resilience using the concept of cor-
ridor stability. The economic theory of local and global stability deals with the
stability of microeconomic (market) dynamics and macroeconomic dynamics, where
local stability refers to the stability of equilibrium in a small neighbourhood around
the equilibrium point. In contrast, global stability refers to the stability of equilib-
rium for any initial condition of the economy. For an equilibrium to be locally stable,
adverse economic conditions or policy changes should not cause significant economic
fluctuations. Conversely, an equilibrium is globally stable if it is a basin of attrac-
tion for all other feasible economic outcomes, regardless of the initial conditions or



disturbances.

Historically, classical writings on market mechanisms have already described
views on market mechanisms as mentioned in Section 1. The classical market mecha-
nism is often described as driven by market forces leading to local and global resilience
(convergence) through the adjustment of excess demand functions, see Hahn (1982).
This view was corrected later: Prices adjust due to quantity imbalances (excess de-
mand), and supply adjusts through profitability differences. The classical mechanism
has been extended by Flaschel et al. (1997), which is then described as a dual process
where prices respond to imbalances of supply and demand and supply changes due
to differences in profitability across sectors. Here then, it can already be shown that
there might be convergence but also persistent cycles in prices and quantities in mar-
ket economies. Since 1930, the issue has arisen whether small shocks to supply and
demand may be self-stabilized through a kind of local resilience or corridor stability.
Still, large shocks may lead to resilience breakers and generate instability.?

Those thinking on the market mechanism also impacted the research on macroe-
conomic adjustment mechanisms. For example, macro dynamics often present macro
mechanisms leading to convergence (stable equilibrium) (see Pigou (1933; 1941)). An
example is, in fact, Pigou’s real balance effects that are stabilizing or globally mean
reverting.* The study of economic dynamics of the macroeconomy was also changed
when Fisher (1933), after the depression of 1929, referred to the debt-deflation pro-
cess as severe enough to “rock the boat” and start its capsizing. A lasting major
depression followed Fisher’s analysis of the stock market crash of 1929 and during
the subsequent deflation period. Later, along these lines, Keynes (1937) chapter 19
and Tobin (1975; 1980) specified the concept of corridor stability in the case when
a market economy absorbs small shocks and self-adjusts enough to leave it within
a corridor. Still, additional demand is however needed to correct the shocks. In
disequilibrium, market economies need that additional demand when exposed not to
small shocks, but to large ones.

Corridor stability and an economy’s absorption of shocks on the micro and macro
levels can now be found in much economic literature. For example, Dimand (2005)
discussed Tobin (1975) approach, drawing an understanding from Keynes and Fisher
that included corridor stability. Furthermore, Tobin (1969; 1975) notes liquidity
buffer stocks as a device against funding constraints that absorbs small shocks. Nev-
ertheless, Dimand (2005) also based his approach on Keynes (1937), helping portray

3See Fisher (1933) illustration where he uses the metaphor of a capsizing boot when extensively
rocked.
4See also Keynes (1937), chapter 19.



his work on how the experience of the disruptive effect of rapid deflation on the
system of financial intermediation led to the later analysis of financial instability by
Minsky (1975). Minsky noted that a prolonged period of stability, as a period of tran-
quillity with larger risk-taking, would induce vulnerabilities and a non-sustainable
process and eventually produce a fragile system, leading to disruptions, see Semmler
(1987). Dimand (2005) scrutinized how Keynes’s General Theory excluded extreme
instabilities when small shocks occur.

In brief, the same system can exhibit different properties than those that char-
acterized it before a shock, given how it adapts to adverse shocks and the growth
dynamics leading to corridor stability (see also Semmler and Sieveking (1993)). Fi-
nally, as mentioned in Dimand (2005), Galloway et al. (1933), and Blakey (1939)
believed deflation was an impeding factor to recovery. Some of those aspects of
many of these ideas at the micro and macro levels will be further discussed next.

3. Medium-run: Business cycles, resilience, and complex dynamics

Other recently studied dynamics that allow the interpretation of the concept of
resilience in a more complex light related to the time scale of business cycles which
can be considered a medium-term time scale. We introduce and study here some
typical model versions based on some financial-real interactions and present some
simulations to illustrate some features of the dynamics.

3.1. A model of the real-financial interaction

The basis of our presentation here is the model by Semmler and Sieveking (1993),
which is grounded in an IS-LM version for a growing real economy that links output
to liquidity and credit flow. It assumes that financial flows to economic agents
(to households and firms) are enhanced and credit conditions improved when the
variables pass through certain thresholds.®

We assume that when the agents’ balance sheets deteriorate (improve), credit-
worthiness deteriorates (improve). Using the above-cited literature, we presume that
credit conditions (creditworthiness), and thus the spending of economic agents, de-
pends on liquidity and output (or real income). As a measure of liquidity, we refer

5Also, liquidity and available credit may also have smoothing effects on production or con-
sumption, at least for small shocks. Thus, actual economies may exhibit corridor stability (see
Leijonhufvud (1973) and Semmler and Sieveking (1993)). In this view, small shocks do not give rise
to deviation-amplifying fluctuations, but large shocks can lead to different propagation mechanisms.
Thus, only large shocks are predicted to result in magnified economic activities.



to the broad definition of liquidity, including liquid assets.® At high levels of eco-
nomic expansion, liquidity rises, default risk falls, asset prices, and creditworthiness
rise.” The reverse may be assumed to happen during a low level of economic activity.
As liquidity shrinks, default risk rises asset prices, and creditworthiness fall.® This
is posited to occur after the variables have passed certain thresholds. Concerning
spending, we may thus assume that spending accelerates (decelerates) when output
and liquidity rise above (fall below) some threshold values.

The main features of a dynamic model of liquidity, credit, and output in a growing
economy can give rise to regime changes through state-dependent reactions that can
be represented in a deterministic form as follows.” We presume that economic agents
respond to both financial variables (balance sheet variables) and real variables.'Y The
model is written in the following generic form:

A= A\ )p)
N (1)

p o= ppAp)
where A = L/ K, p = Y/K, with L denoting liquid assets, a balance sheet variable,
Y, output (or real income), a real variable, and K the capital stock, while 5\()\, )
and p(A, p) represent their growth rates, respectively. When we want to undertake
the empirical estimate with data on firms, we interpret real income, Y, as firms’
income and p as firms’ income relative to capital stock. Thus, p denotes the rate
of return on capital. A model of the type (1) can be derived from an aggregate
model assuming that firms’ income is linear in aggregate income. Roughly speaking,

6Moreover, liquidity can be a result of the central bank’s monetary policy. In particular, quanti-
tative easing provided an excess of finance for asset purchases, amplifying an asset price boom but
also possibly generating its collapse when liquidity shrinks. So liquidity affects both the real and
financial side of the economy.

"Ideally, one would like to employ net worth as collateral for borrowing, as referred to by the
recent theory of the financial accelerator. Net worth should then be computed in terms of the net
present value of the economic actions, where net worth is the present value of the agents’ income
flows reduced by the current and future debt payment commitments. Economic proxies for this
variable are, however, hard to obtain. Alternatively, one could take credit lines as a proxy for
creditworthiness. Time series data of sufficient length also do not exist for this variable. We are
therefore left with other balance sheet variables. Given the above-mentioned role of liquidity for
economic activity, one could take liquid assets as the balance sheet variable.

8Tt is thus only in this narrow sense that our model resembles the financial accelerator.

9For details of the model and its analytical and numerical study, the reader is referred to Semmler
and Sieveking (1993).

10Semmler and Kockesen (2017) shows that one can also incorporate a monetary policy reaction
function.



model (1) connects the fluctuations in income and liquidity with the fluctuations in
liquidity and income, respectively, since the growth rate of each variable depends on
the other state variable. Moreover, it explains the fact that fluctuations in income
and liquidity are more volatile the more liquidity and income are available. Note
that due to this last property of model (1) the positive quadrant A > 0,p > 0 is
invariant, which means that if we start with positive liquidity and income they will
remain positive forever.

As shown in Appendix B, the model can be thought of as being composed of
two parts. First, a basic part of the model that exhibits no thresholds and regime
changes, that can be expressed linearly as

AN, p) = a—aX—[Pp ()
pA.p) = —7—ep+ A

where the coefficients a, 3, 1,7, d,e9 are positive. In model 2, «a represents the
natural liquidity growth for example through the central bank’s growth rate of lig-
uidity (money) supply. The term —fp denotes the liquidity that is used for growth
and new transaction and is thus used in the second equation with the term +dA.
v is the natural loss of value of any investment, due to the ageing of capital (de-
preciation). The terms €1\ and e9p prevent the liquidity and income from growing
without bounds. On the other hand, in the absence of a new injection of liquidity,
the income growth rate is firmly negative, thus pushing the income toward zero if no
new liquidity is provided.

Note that a non-trivial financial regime exists, i.e. that it is possible that both
income and liquidity growth rate vanishes (so both income and liquidity stop their
evolution) at

)\*:a52+677 p*:aé—ew. 3)
ﬂ(5+61€2 /35+€152

As noted above, the sign of the coefficients of model (2) makes A* > 0, while p* > 0
only if ad > €17, i.e. a positive financial regime is possible only when the product of
the natural liquidity growth o and the efficiency of the liquidity injection ¢ is greater
than the product of the extra loss €1 and the investment loss .

Model (2) can be derived from a conventional IS-LM approach for a growing
economy, see Semmler and Kogkesen (2017), although, as pointed out in Appendix B,
the positivity of the model coefficients should still be subject to empirical verification.
A similar system is discussed in Ozaki and Ozaki (1989), where, however, a nonlinear
model in the interest rate and income is proposed.

The second part of our model explicitly allows regime changes due to state-
dependent reactions. Referring to the above discussion, we may postulate regime



changes to occur when the variables pass through certain thresholds. We posit that
spending may accelerate (decelerate) when income and liquidity rise above (fall be-
low) some threshold values. On the other hand, liquidity may also respond positively
(negatively) when income or liquidity rises (falls) above (below) some thresholds.
More formally, a model with regime changes in the cross effects between the vari-
ables can be written as follows

P
|

04—51/\—5P+91(/\a,0) (4)
—y —eap+ 0N

>
I

where g1 (), p) satisfies

g1(A,p) 20 for A > py and p > ¢y,
g1\, p) <0 for A < py and p < o, (5)
g1(\, p) =0 otherwise.

We further assume that p; > A\* and ps < A*, as well as p; > p* and ¢ < p*, so
that the regime changes can happen only ’far’ from the financial regime.

Assuming the positivity of the model coefficients and the above sign structure of
the perturbation terms, we can state the following propositions.!!

Proposition 1. If the perturbation terms gi(A\,p) = 0 the system (1),(2) has a
unique equilibrium globally stable.

Proposition 2. The trajectories of model (1),(2) remain in a positively compact
invariant set for any gi(A, p).

Proposition 3. If there exist A such that the perturbation term gi(\, p) < elA VA >
A, then the system (1),(4) cannot indefinitely grow.

Proposition 4. For the perturbation terms gi(A, p) # 0 the trajectories of system
(1),(4) with €1 = g9 = 0 diverges.

We also want to note that the system ((1),(4)) may exhibit, when Proposition 3
holds, corridor stability in the sense of Leijonhufvud (1973) and Fisher (1933). For

HF¥or details of the following results, see Semmler and Sieveking (1993) and the numerical exten-
sions in Semmler and Kogkesen (2017). Note that the subsequent statements hold when the above
sign structure holds. To what extent this can be empirically confirmed will be studied in another

paper.
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the purpose of our study, we assume the perturbation term g, to be concave in A
and p; for example,

91\, p) = v [max(X — ju1,0) max(p — 1, 0)]'/*

where v > 0. In the next sections, a sampling of computer simulations illustrates the
effects of perturbations of the dynamics in the different regions of the state space.
As shown in Semmler and Sieveking (1993), all perturbations of the basic part of the
model lead to bounded fluctuations (limit cycles, see also Appendix B). Two limit
cycles can arise, a repelling and an attracting one.!?

3.2. Numerical treatment and simulations

Further background explanations can be found in Semmler and Kogkesen (2017).
The basic part of our model is consistent with a monetary growth model with an
explicit LM schedule.'® In this section, we perform a series of simulations to demon-
strate the possible dynamics of the model. The solution method for our complex
dynamics is with several features discussed in Appendix B.

Dynamic I
We first analyze model ((1),(2)) for 1 = €2 = 0. In this case, the system dynamics

reduces to )
).‘ = )‘(a - ﬁp)y (6)
p=p(=7+0N).
Model (6) is the well-known Lotka-Volterra model (Lotka 1910). In Appendix B
it is shown that the quantity

V(A p) =alogp+~ylogh—Bp—0A (A>0,p>0)

is constant along the trajectories of the system (6), thus allowing one to obtain the
trajectories of this nonlinear system by simply looking at the contour plot of V' (A, p).

Figure 1 depicts the trajectories of system (6) for a specific choice of the param-
eters. The trajectories that oscillate around a common centre point \* = ~/§, p* =
a/3. The resulting phase plane plot in Figure 1 makes the cyclical relationship be-
tween the two variables very clearly showing how the swings in the income influence
the swings in the liquidity and vice versa.

12The existence of corridor stability which gives rise to two limit cycles, a repelling and an
attracting one, is studied in Semmler and Sieveking (1993).
I3For details, see Flaschel et al. (1997, chapter 4)
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Figure 1: Simulations of model (6) with o = 0.1,y = 0.07,5 = 0.6, = 0.7 for various initial
conditions. The left panel shows the phase portrait of the system, while the right panels the time
evolution of each trajectory.

Dynamic I1

We now analyze model ((1),(2)) for (e1,£2) # 0. The system dynamics is therefore
described by

A =XMa—fp—e))
p = p(=7+0A—ep) ")

System (7) is a nonlinear system of differential equations of Lotka-Volterra type
where with £ and e, as perturbations terms. However, this system has three equi-
libria (Ao, po) = (0,0), (A1, p1) = (£,0) and, if ad > 17, a non-trivial equilibrium
representing the positive financial regime (\*, p*) as in system (3). The first two are
saddle points and the last one is an attraction point. Except for those which start
on one of the axes, all of the trajectories converge to the unique attracting point
(A", p").

The dynamic of system (7) is simulated by choosing economically realistic pa-
rameters in Figure 2. The economically relevant equilibrium is A* = 0.12,r* = 0.16.
Figure 2 depicts the trajectories of system (7) where it shows that the trajectories,
though they are oscillating, asymptotically approach (A*, p*).

12
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Figure 2: Simulations of model (7) with & = 0.1, = 0.07,&; = 0.045,3 = 0.6, = 0.7,e5 = 0.078
for various initial conditions. The left panel shows the phase portrait of the system, while the
right panels the time evolution of each trajectory. Black dots represent the starting point of each
trajectory, while the green point is the asymptotically stable equilibrium (A*, p*).

Dynamic 11T

For the next case, we evaluate the case in which function g, (), p) is activated.
The system dynamics is therefore described by

A =XMa—=B8p—ecA+a(\)p) (8)
p p(—v 4+ oA —e3p)

Function g¢;(\, p) represents the notion that in business contractions, lenders’
willingness to provide liquidity may depend on the state of the firms (balance sheet).
In addition, agents faced with bankruptcy risk may become reluctant to use liquidity
for current spending (but tend to preserve financial assets for bad times). The
dissipation of liquidity, however, will entail a decline in capital outlay and investment
of firms setting in motion a complicated dynamic.'4

We assume that if the income is below a certain rate of return o (with ¢y < p*)
and simultaneously liquidity drops below a certain threshold ps (with py < A*)

140One may also argue that a similar effect might occur in expansions. Since booms usually are
resource constrained, we want to neglect this slight complication which is of course important as a
driver of inflation rates in expansions, see Gross and Semmler (2019).
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liquidity is dissipated, correspondingly affecting capital outlay and investment of
firms. This mechanism can be seen as a control term in our dynamic system by the
providers of liquidity representing, for example, the response of banks and firms to
a decrease in liquidity and income.!®

We shall assume that g; (), p) in (4) is a smooth function satisfying

(ii) g1(A, p) = 0 in the neighborhood of (A\*, p*),

(iii) g1(A, p) # 0.

Furthermore, if we assume that the perturbation is limited in size by the liquidity
injected (subtracted) in the economy, we add |g1(),0)] < «. Note that system (8)
share the same equilibrium as system (7), since g, (\*, #*) = 0 due to assumption (ii).
Effectively, due to the assumptions made on ps and s, in a neighborhood of (A*, u*)
g1(\, ) = 0: so even the property that (A\*, u*) is asymptotically stable is preserved.
This is because the Jacobian matrix of system (8) is the same as the one of system
(7) in a neighbourhood of (A*, u*). On the contrary, the term g;(A, ) pushes the
trajectories toward the axes as soon as A and p decline below o and @9, respectively.
Note that the terms €1, and €5 guarantee that Proposition 3 holds, i.e. that system
cannot diverge, since they make the growth rate negative as A and p becomes too big,
keeping the trajectories in a compact set. The exact analytical study of the impact
of the perturbation terms on the Lotka-Volterra dynamics is given in Appendix B.
These results serve as a hint to understand the possible effect of the perturbation to
system (7). In the following, we illustrate the possible scenarios through a simulation
study. To create our simulation, we choose:

g1(\, p) = —v[max(uz — X, 0) max(ypz — p, 0)]/ (9)

with uo = @9 = 0.15, and v = 0.5. The state portrait of the system is shown in
Figure 3.

We can distinguish three scenarios. For small shocks trajectories still converge
toward the equilibrium (violet trajectory): in fact, since g;(A, p) = 0 in a neighbour-
hood of (A*, p*), the state portrait of the system in that neighbourhood is the same as
the one of system (7), shown in Figure 2. Since g1 (], p) is continued, the state portrait
then deforms with continuity as we leave (\*, p*). At a certain distance, trajectories

150n the other hand, one can think that central banks can inject liquidity, impacting or modifying
this dynamics. A magnifying effect can also come from the financial market; shrinking liquidity
and falling income are usually highly correlated with asset prices shrinking.
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Figure 3: Simulations of model (8),(9) with @ = 0.1,y = 0.07,e; = 0.045,3 = 0.6,5 = 0.7,¢e2 =
0.078 for various initial conditions. The left panel shows the phase portrait of the system, while
the right panels the time evolution of each trajectory. In green, are the two possible attractors of
the system.

stop converging (A*, p*), and a repelling limit cycle is present (yellow trajectory). If
we start outside that limit cycle, the system will converge toward another attractor,
a stable (attracting) limit cycle (highlighted in green), that can be generally reached
starting from an initial condition ’sufficiently’ far from (\*, u*). Note that this means
that there exist shocks that can bring our system from the non-trivial (stationary)
financial regime to a new oscillatory regime, with oscillations that persist in time.
Technically speaking, the system is bi-stable and presents two alternative asymptotic
regimes, one stationary and one characterized by persistent oscillations, and a shock
can bring the economy from one to the other behaviour.

On the other hand, as can be shown if the reaction coefficient v becomes larger
than 2 a disruptive behaviour can emerge where both liquidity and income go to
zero. If we think that the stationary regime is more desirable, so, for example, if
monetary policy prevents g; to be ’activated’ for a sufficiently long period, then the
system will spontaneously enter the basin of attraction of (A*, u*) - resulting in local
corridor stability (local resilience).

15



4. Medium-run: Delays, complex dynamics, and policy impacts

Another well-known medium-run framework to be discussed in the context of
the resilience concept is the real business cycle modelling, with their assumption of
time-to-build, see Kydland and Prescott (1982). Real business cycle models with
time-to-build, are models of time delay. Such models with a time delay between
investment decisions and actual investment were already developed in 1930. Thus,
real business cycle models due to delays were already developed earlier, using nonlin-
earities, possibly resulting in complex dynamics, such as the one devised by Kaldor
(1940), and with reference to delay effects by Kalecki (1935; 1937). Kalecki hereby
used a differential delay system in which the idea of lag related to the implementation
of investment decisions was introduced. For delay effects in monetary policy causing
possibly destabilizing dynamics see Chen et al. (2022)

For Kalecki, investment is key to determining aggregate demand and production
and the course of the business cycle because investment expenditure determines the
level of savings by changing the level of national income and the economic recovery
and declines follow the movement of investments (Lopez and Mott 1999). The level
of economic activity, among other things, depends on the pricing policy of enterprises
and the distribution of income. Moreover, the ratio of investment to total production
and employment under conditions of 'imperfect’ competition, the rate of change
of production equals the rate of change of investment, provided that the 'degree
of monopoly’ is unchanged. However, if the degree of monopoly were to decline
while investment was falling, then the output would drop proportionately less than
investment (at the limit, it might not drop at all) as decreases in prices relative
to money wages would increase real wages and consumer spending. Thus, Kalecki
anticipated, but with altogether different arguments, the ‘New Keynesian’ idea that
unemployment may be partly due to rigidities in prices and profit margins” (Lopez
and Mott 1999).

It should be stressed, however, that Kalecki’s conclusion contrasts with that of
the New Keynesians in that he demonstrates that real wages must rise for increases
in consumption to compensate for decreases in investment. In stark contrast to the
'neoclassical synthesis’ or hybrid Keynesian precept, wage stickiness is something
to be desired, rather than avoided. This is because it prevents profit margins from
expanding when capital expenditure falls. Keynes himself argued in Chapter 19 of
The General Theory that downward flexibility of wages might decrease aggregate
demand.!®

160n the points in common and the differences between Kalecki and Keynes, a reader may refer
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Back to the business cycles modelling, still in the 1930s, Kalecki (1937) and
Kaldor (1940) suggested ordinary differential equations and nonlinear investment
and savings functions to model business cycles. The latter is key in determining en-
dogenous oscillations between economic growth and recession. Periodic solutions and
the existence of limit cycles were extensively investigated in the literature through
the years Chang and Smyth (1971), Varian (1979), Semmler (1987), Grasman and
Wentzel (1994), De Cesare and Sportelli (2022). Among the others, Szydlowski and
Krawiec (2005) proposed a modified Kaldor model with Kalecki time delay in invest-
ment via a second-order nonlinear delay differential equation with negative feedback

Y =all(Y(t),K(t) - SY(t), K@)

K =IY({t—-T),K(t))—0K(t) (10)

where investment /(Y, K) and saving S(Y, K') depend on income Y and capital K and
the parameters «, §, and 1" denote the speed of adjustment in the market of goods, the
capital depreciation rate, and a time delay in the investment function, respectively.
The authors show that the system (10) is equivalent to an autonomous dynamical
system of infinite dimension and, by means of the central manifold method, they
provide the condition for the stability of a limit cycle solution. The latter is important
for deciding on the economic relevance of the solutions. As for the central manifold
method, it is a useful tool for finding supercritical and subcritical Hopf bifurcations
that occur when linear stability is lost.

Among the extensions, we mention Sasaki (2013) who presented a disequilibrium
macrodynamic model incorporating employment and income distribution from Good-
win, investment function independent of savings and mark-up pricing in oligopolistic
goods markets from Kalecki, and the reserve army from Marx. The model describes
the dynamics of profit share, rate of utilization, and rate of employment and displays
limit cycles depending on the size of the unemployment rate. The author shows that
7if the stable long-run equilibrium corresponds to the profit-led growth regime, an

to Kregel (1989). Here we just recall Kalecki’s aphorism that capitalists 'get what they spend’
while workers ’spend what they get’. This means that capitalists cannot decide to earn more but
they can decide to spend more. Workers can neither decide to earn more nor to spend more. So,
for Kalecki, the distribution of income determines aggregate spending and money plays no role.
For Keynes, instead, through the interest rate, money affects the propensity to consume and the
marginal efficiency of capital. The distribution of income plays a secondary role. On the empirical
side, Fazzari and Mott (1986) undertook a study of the investment theories of Kalecki and Keynes
and confirmed that effective demand and firms’ financial conditions are primary determinants of
investment. This in turn implies that macroeconomic dynamics depend on the availability of finance,
as also suggested by Minsky and Davidson.
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increase in the bargaining power of workers increases the rate of unemployment; con-
versely, if the equilibrium corresponds to the wage-led growth-regime, an increase in
the bargaining power of workers decreases the rate of unemployment” (Sasaki 2013).

4.1. Chaotic businesses cycles within a Kaldor-Kalecki framework

A version of the Kaldor model with lagged investment ’a la Kalecki’, has been
proposed by Orlando (2016; 2018).17

Yign =Y = a(l; — 8) = a[l; — (Y, — Cy)]

(11)
Ky — Ky =1 — 0K,

where Y, I, S, K denote income, investment, saving and capital, respectively. As
before, the parameter a represents the rate of adjustment of production to excess
investment and 0 is the depreciation rate of capital. Moreover, I = I(Y, K) and
S = S(Y, K) are nonlinear functions of income and capital where the first depends
on the difference between desired capital K¢ and owned capital K, i.e.

L =K1 fi(KL — Kiq) (12)

Instead of modelling savings, we model its complement, i.e. the consumption
which we assume depends on the difference between desired Y¢ and current income
Y, ie.

Ci =Y (Y = Y) (13)

Regarding the mappings f; and f;, they are increasing and s-shaped. In addition,
fi(K?— K) and fo(Y? —Y) (representing the consumed fraction of Y') is bounded
from below i.e. exists a constant ¢ > 0 such that ¢ < f, < 1 everywhere. Contrary to
most of the literature, instead of taking a trigonometric function as arctangent, we
consider an expanding form as the following two variants of the hyperbolic tangent:

exp(2z/m)
pexp(Qx/Tl) +1

and fa(y) = p(2y/75) F ¢

hiw) = N exp(2y/m) + 1

(14)

so that fi(x) goes to 0 as  — —oo and tends to p as © — oo whereas f5(y) goes to
c as y — —oo and tends to 1 as x — co. The parameters 7, and 7, are the ’knees’ of

ITFor an alternative model addressing both growth and business cycles in an open economy see
Orlando and Della Rossa (2019). In that work, Harrod’s speculation that opening the economy to
foreign trade could lead to a reduction in cyclical instability is tested on real-world data.
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the function determining the reactivity of the dependent variable to the independent
variable, p is the upper bounds to investment. At this point, we assume that,

Y, - Y K, — K,
K| — t— 11 By t—1 15
t t (51 ( }/;_1 Kt_l ( )

Vi-Yi1 G —Cia
Y-V, = - 16
CoTE ( Vi Cia o)

where g; = g2 = g takes the form
h forall z<0

g(x) =
—log((k/x)*—1) forall z € (0,k]

with A < 0 such that f; is close to zero and k a parameter depending on the state
of the economy. In other words, a higher k£ correlates with a more volatile economic
period. Notice that the shape of the g function is an approximation of the value
function by Kahneman and Tversky (1979) where on the left the function is assumed
to be straight. This lower bound accounts for a minimum level of subsistence in case
of consumption or a minimum level of capital upkeep in case of investment.

To sum up, the proposed modified Kaldor-Kalecki model is

Vi —Yi=a [fi (g (Mg - Kooy 4 p (g (e - 9500)) )

Ky — Ky = hi (g (Ytiﬁl/;?iz B Ktifl(t_jti(z)) o

(17)

The model described by (17), for a rather wide range of parameters, shows chaotic
dynamics and is capable of endogenously generating black swan events (Orlando
and Zimatore 2020a). Figure 4 shows a strange attractor for the USA GDP time
series BEA, U.S. Bureau of Economic Analysisis (2020) and a simulated time series
from system (17) as obtained with Van den Bleek (1994). The attractor of the
dynamical system is reconstructed using Takens embedding rule and singular value
decomposition Takens (1981). Notice that "the resilience of complex systems is a
critical ability to regain desirable behavior after perturbations” (Zou et al. 2023), the
presence of an attractor ensures the said resilience at least within a given domain.
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(b) Phase space along second and third dimension for the system in (17)

Figure 4: Strange attractor for the real versus simulated data. The plot shows the third principal
component of the variable on the Y-axis as a function of the second principal component of the
variable on the X-axis. Notice that real data consist of 290 (quarterly) points while simulated data
are 10,000. Source (Orlando and Zimatore 2020a)

Moreover, Figure 5 depicts a simulation of the four macroeconomic variables Y, I,
S and K as generated by the system (17) which displays a black swan event.

In terms of empirical tests, business cycles versus the model proposed in system
(17) have been extensively investigated through recurrence quantification analysis
(RQA) Marwan et al. (2007), Orlando et al. (2021b), principal component analysis
(PCA) and Poincaré Plot with related quantifiers. Chaos analysis brought evidence
on the fractal dimension and entropy measures for both real data and model sim-
ulations. Therefore, it has been shown that the real and simulated business cycle
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Figure 5: A simulation of the system Eq. (17) for Y, K, I and C with a black swan event. Source
(Orlando and Zimatore 2020a)

dynamics share characteristics that make the proposed model a suitable tool to sim-
ulate economic reality Orlando and Zimatore (2020b). In particular, in the case of
RQA, it has been demonstrated that it can be used for the early detection of reces-
sions and that it can distinguish between stock and flow macroeconomic variables as
well as between real and nominal data Orlando and Zimatore (2017; 2018b;a). The
above methodology is useful for discovering the underlying dynamics of economic
time series, especially where other methods may fail due to the randomness, nonlin-
earity and non-stationarity of the data. Given that the economy may be deterministic
and chaotic, a number of empirical studies have been performed on real-world data,
from the market share of operating systems such as Android Stoop et al. (2022), to
financial markets Orlando et al. (2022), from credit risk Orlando and Bufalo (2022c)
to corporate dynamics Orlando (2022). In the studies mentioned above, it has been
shown that real data can be explained by a deterministic model that mimics the
bursts and chaos regularization of a neuronal brain cell. Furthermore, the afore-
mentioned model is at least on par in data explanation and prediction (in-sample
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and out-of-sample performance) with the classic ARIMA-GARCH (and related vari-
ants) econometric model explicitly designed to model autoregression, cointegration,
moving average, and heteroscedastic volatility.

5. Longer-run: Multiple equilibria, thresholds, disruptive contractions,
and traps

Concerning longer time scales, we want to study the issue of thresholds, tipping
points, disruptive contractions, and persistent traps in the context of multiple equi-
libria models. Recent economic history, in particular of advanced market economies,
has shown that there might be some longer period of growth and tranquillity, whereby
imbalances and vulnerability have been built up. Then there might be some sudden
disruptive contractions and, at times, longer trapping periods. Those are not much
captured in the concept of resilience since, in those cases, there does not seem to be
robustness to shocks. Brunnermeier mentions those features as a result of what he
calls points of resilience destroyers.

Some recent examples are the financial market meltdown of the years 2007-9,
and the European sovereign debt crisis, triggering a great and long recession. Other
examples are known as growth and development traps, climate extreme events and
disasters, and the sudden disruptive contractions caused by the spread of epidemi-
ological diseases — all those might generate persistent trapping periods. Many of
those disruptive meltdowns have been studied and characterized by features such as
rising vulnerability, imbalances and risks built up, that lead to those disruptions and
partly longer periods of stagnation.

Most of these have the feature that there are multiple equilibria involved, with
sudden shifts from one to another equilibrium triggered by the above-mentioned
thresholds and tipping points. We will restrict ourselves here to three examples,
where we will not explicitly present the analytics and numerics. We employ here
a recently developed solution methodology, the NMPC method, for rather simple
models and depict graphs to illustrate those complex dynamics.'®

Financial and sovereign debt crises

The financial market meltdown of the years 2007-9, and the European sovereign
debt crisis, can be described by a nonlinear macro model where some longer-term
forces are at work. Before the large meltdown of those years, the housing prices went
up steeply, mortgages were easily granted at flexible rates, and the banking sector

18See Griine et al. (2015) and for a sketch of the method see Appendix A.
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outsourced the mortgage risks, also for low-income households with a high risk of
insolvency using financial engineering methods such as mortgage and asset-backed
securities.

But once the mortgages could not be repaid, insolvency started in the housing
sector when the interest rate rose, spread to the banking system, and became a
worldwide meltdown. In Europe, this accelerated through the sovereign debt crisis
to the point that, in the years of 2011-12, sovereign debt was at the centre of the
storm, with the threat of sovereign debt defaults and fast jumping up of risk premia
for sovereign debt, particularly for Greece, Italy, Spain, Portugal, and Ireland.

The features of sovereign debt dynamics and crisis can be stylized as follows. We
use a slightly modified approach suggested by Blanchard (1983). The below sovereign
debt dynamics equations represent an extension of the Blanchard (1983) study of
sovereign debt, whereby we follow Blanchard (2019) who introduces a “good” and
“bad” debt equilibria that can be solved by NMPC as in Griine et al. (2015). We
write a finite horizon decision problem for sovereign debt as follows.

V (k1) = max / U ((er) — x(pn — )2t (18)
jft = (gt - 5)k‘t (19)
I}t = (rby — (g — ¢t — 1y)) (20)

Alternatively, equation (20) can be formulated as

be = (r(sely, )by — (ye — e — i) (21)

with a state-dependent risk premium in equation (21) such as:

7(s¢]y,¢) = [1 4+ exp(—v(s; — )],y > 0,¢" >0 (22)

with sovereign debt b, capital stock k, the growth rate of capital stock g, de-
preciation rate of capital stock 9§, and a pay-off from welfare from consumption
U((ct) — x(pe — p*)?) reduced by adverse effects from high sovereign debt, with
(e — p*) the excess of debt to capital stock ratio above a threshold. The variables
y, ¢ and ¢« = gk are output, consumption, and investment, respectively. The policy
decision variables are ¢ and g. Hereby then, sovereign debt is allowed to increase
through borrowing from abroad.

The “good” debt equilibrium operates with low and stable interest rate r on
the sovereign debt dynamics of equation (21). The “bad” debt equilibrium exhibits
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Figure 6: Debt dynamics convergence to sustainable debt or good equilibrium with a low-risk
premium. The two initial conditions k(0) = 0.9,5(0) = 0.9 (large), the left trajectory with A = 0.1,
the right with A = 0.2, and one other initial condition k(0) = 0.2,5(0) = 0.08 (small); all trajectories
converging to steady state pux = 0.3, with » = 0.04. See Mittnik and Semmler (2018)

a state-dependent risk premium defined in equation (22), depending on a logistic
function with a threshold given by the “bad” state of the dynamics and the value
threshold value ¢*. The left-hand sides of equations (19) - (21) are time deriva-
tives. Solving the debt dynamic model, indicating a regime-switching between two
equilibria, a good one being stable and the bad one unstable, can emerge.

Figure 6 shows the dynamic paths of assets and leveraging for low and constant
interest rate, for three initial conditions Using equations (18) - (21), where the in-
terest rate r is assumed to be small and fixed, Figure 6 represents several solution
paths with different initial conditions, for a good equilibrium.

As can be observed, there is global stability — global resilience of debt dynam-
ics. All shocks, represented by initial conditions in Figure 6, approach due to the
dynamics, the Point of convergence.

Next, we explore the vicinity of the bad equilibrium. The behaviour of the trajec-
tories, capital stock, and the debt-to-capital ratio in the neighbourhood of the bad
equilibrium is observable in Figure 7.
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For the bad debt equilibrium case, we observe only a local convergence and local
resilience (see the Convergence box). Only trajectories starting near that equilibrium
are locally resilient. In fact, when the bad debt equilibrium in the years 2011-12 was
experienced in Greece, Italy, Portugal, and Ireland the monetary policy, the ECB
changed its monetary policy and massively purchased treasury bonds in order to
bring the sovereign debt spread down and to rescue the Euro."

Development and climate disaster traps

Next, we explore nonlinear models of development and growth that have been
studied for long, and where it has been shown that there may be, in the long run,
some lock-ins and difficulties in moving out from low growth traps; in earlier times,
studied by Scitovsky (1959) and Gunnar et al. (2017). This situation could also
lead to long-term poverty traps Banerjee and Duflo (2007), Barrett et al. (2018).
On the other hand, the experience of natural and climate disasters and weather
extremes (such as flooding, heat waves and droughts, forest fires, storms, typhoons,
and hurricanes) can leave the region in a state of long-term disaster effects without
recovery.?’ These are stable trapping regions, and it is often hard to get out of them.
There are certain mechanisms for why it is difficult to move out of those traps.

In recent times, growth models with multiple steady states have been developed
to address those issues, see Azariadis and Stachurski (2005), Semmler and Ofori
(2007), Kovacevic and Semmler (2021), the latter is a model with stochastic shocks
trapping probabilities. In such models, large disasters may change the steady state
and persistently produce a lock-in with lower growth rates. Usually, in those models,
there are three equilibria observable, whereby the middle one is unstable, which is
called a Skiba point.?!

Below we describe the possible self-enforcing trapping regions

1. Real side: increasing/decreasing returns

y(k(t) = ak(t)*"

YECB president Draghi made the famous statement that referenced this bad equilibrium by
saying in a news conference (September 6th, 2012): “The assessment of the Governing Council
is that we are in a situation now where you have large parts of the Euro Area in what we call a
bad equilibrium, namely an equilibrium where you have self-fulfilling expectations. You may have
self-fulfilling expectations that feed upon themselves and generate adverse, very adverse scenarios.
So there is a case for intervening to, in a sense, break these expectations [...]”

20For a stochastic model on the expected value and the volatility of natural disasters occurrences
see Orlando and Bufalo (2022a;b).

21Skiba (1978) was the first theorist who discovered such tipping points in optimally controlled
dynamic systems.

26



Case 1
decr. returns
Case 2
incr./decr.
= returns
= ; ; P+
~ /
= \\ / \\
\ / \
N N
v
VAR \\
7 AN
/ \\ A
/ N
/ N
/ N
7/ ~
7 ~
k(t)

Figure 8: Development and climate disaster traps seen on increasing and decreasing returns with
default risk and a finance premium; Case 1 is obtained if ay(¢) > 1, holds forever, the marginal
product of capital, y(k) would approach the line given by the discount rate p plus capital depreci-
ation, J, from above if depreciation is allowed; Case 2 illustrates the marginal product of capital
y(k) first approaching p 4+ ¢ from below, then move above this line, p 4+ §, and eventually decrease
again. See Semmler and Ofori (2007)

ay, if k(t) > k(t)
ag(t) =
ay  otherwise

2. Financial side: risk premia depending on net worth, with net worth low
the risk premia are high, leading to a failure to obtain financial resources and
generating poverty lock-ins

3. Human side: human capital loss and migration after climate disasters

The above three mechanisms are usually operating here to create poverty traps
which are sketched on the left-hand side of Figure 8. Countries can move into trap-
ping regions, which are self-enforcing, due to the form of a production function, its
shape depending on the level of capital input k(¢). In the Case 1, the production
function is S-shaped, given by y(k(t)) = ak(t)**®  with a a coefficient, and the ex-
ponent oy (t) switching sign when the capital stock rises; first it is ax(t) > 1 and
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after the threshold it becomes ay(t) < 1. So the production function is first convex,
then concave, a widely used assumption in the early development literature.

Large climate-related disasters can also lead to a higher trapping probability
(for small and middle-income countries or certain regions). The derivative of the
production function with respect to k is in Figure 8 denoted by y’ which is also
called the marginal product of capital (returns to capital). In standard economic
growth models when the marginal product of capital, k, is greater than the discount
rate and capital depreciation p+ ¢, capital grows, and it declines if ¥ is smaller than
p+ 0. With our convex-concave production function, however, capital returns are
shrinking if below p + § and rising when above. So there are three equilibria, and
the middle one is unstable, also called Skiba point.

In Case 2, is illustrated that other mechanisms than originating in the production
function are also possible. With lower per capita income, there are often restrictions
in the financial market, such as credit constraints and/or high-risk premia, explored
in many studies on the role of the financial markets in developing economies. In Case
3, we show that there can be a third effect when low growth and poverty traps emerge,
for example resulting from climate extreme events. In this case, but also in other
examples, there will usually be an exit of human capital, skills, and entrepreneurs,
from that region, also generating long-term lock-ins and growth traps.

We finally want to note empirical estimates of poverty traps are made for 90
countries in Semmler and Ofori (2007), using Markov matrices, where one can show
that the middle range of the Markov matrices gets empty over time.

Climate change, tipping surfaces, and climate disasters

As recently shown, complex systems of higher dimensions, such as studying the
climate-economy interaction models, can exhibit tipping surfaces instead of tipping
points. They are commonly presented in the context of DICE-type models (Nordhaus
2013) (and related numerous variants and extensions). If the Hansen et al. (2008)
prediction holds the earth’s temperature will face a tipping point —with possible
subsequent tipping points in extreme weather events and long-run indirect effects,
such as lower growth and less food production in agriculture Nordhaus (2019). The
Hansen et al. (2008) prediction concerns the energy balance on the earth, known as
the albedo effect: with rising C'Oy emissions and rising temperature, the fraction of
energy coming from the sun and absorbed by the earth will increase and there will be
less energy reflected back to space. So, with the rising temperature, the temperature
will rise faster since more energy is absorbed by the earth. Thus, the higher the
temperature, the more energy the earth absorbs, and the warmer it gets, generating
more climate disasters.
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Figure 9: Tipping surface shown on a Skiba plane in the (T'— K — M) space. A Skiba plane in the
(T — K — M) space where on the lower axes (T') is the average global surface temperature measured
in Kelvin, and the vertical axis is (M) the COs concentration in the atmosphere or greenhouse
gases (GHG's) measured in parts per million (ppm). Source Greiner et al. (2010)

The non-linearities of these models, such as in Greiner et al. (2010), and the
versatility of these models help shed light on the economy and society’s climate
vulnerability to loss of resiliency and the importance of stabilizing policies.?? Those
effects in a higher dimensional multiple equilibria model suggest the outcome as
illustrated in Figure 9. As shown, there is one equilibrium with lower temperatures
(i.e. the blue lines coming from below), but as the CO, concentration rises above the
green surface, there is likely to be another equilibrium, one with a higher temperature,
see the red lines coming from above. Thus, Figure 9 displays Skiba surfaces instead
Skiba points: Above the green surface, there are possibly irreversible dynamics to
a higher temperature with subsequent greater severity and frequency and disasters,
and possibly less increase in global output in the long run. So, the model shows local
resilience but global non-resilience.?

22See also Brock et al. (2008).

23 A similar conclusion was reached by Caleiro et al. (2019) who used an evolutionary game
theory approach, where the size of the risk-reward penalty might lead to either getting out of a
Skiba surface or reaching a global stability point.
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6. Conclusions

Given the nowadays popular concept of resilience, we tried to evaluate this new
idea in terms of what has been achieved by studies of economic and financial com-
plex system dynamics. We considered the relation of resilience to complex system
dynamics for a short-run time scale, the well-known market dynamics studied since
classical economics, a medium-run time scale usually represented by business cycle
dynamics, and by a long-run time scale frequently used in growth theory, develop-
ment economics and in studies of the climate-economy linkages.

Economic, social and/or climate-related shocks occurring on these three time
scales may show different features of the subsequent dynamics. Whereas on the time
scale of market dynamics, driven by supply and/or demand shocks, there is often
local endogenous resilience to be found, in the literature called corridor stability
where small shocks are mean reverting but large shocks less so — but they may be
globally bounded. For business cycle models there is also resilience stated in the
sense of mean reverting to some endogenous corridor stability path, but there are
also often destabilization and amplifying mechanisms at work that may generate
large fluctuations or even produce loss of resilience, persistent (limit) cycles, and
complex dynamics, see also Orlando et al. (2021a). On longer time scales there are
frequently experienced a loss of local resilience, long cycles, multiple attractors, and
disruptive contractions, lasting for a longer period Orlando et al. (2022), Stoop et al.
(2022).

These challenges of nonlinear and complex dynamics on different time scales
have created challenges for statistical and econometric efforts which have generated
considerable work on nonlinear econometrics. Such empirical work has shown that
state-dependent reactions and regime changes in cross-effects between the variables
at different time scales can occur. Whereas theoretical models often use contin-
uous time models, sometimes introducing differential delay systems, econometric
studies usually face time-discrete data and often work with time discrete models.
For this purpose nonlinear continuous time models need to be discretized. This
is done through some direct, continuous time methods (Euler scheme and Ozaki’s
local linearization method), as well as a discrete-time version for example through
some discrete-time regime change models. Although the first is easier to apply, it
may generate instability and cannot always be mapped into a coherent discrete-time
method. These are further research challenges in particular for a higher dimensional
state space, where the number of observations to be used is limited, and the compu-
tation is very time-consuming. Although the direct method revealed some expected
dynamic behaviour, such as regime change behaviour, when estimated, lag and delay
effects do play here an important role. For the latter, see Orlando (2018) and Chen
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et al. (2022).

As shown, a linear model often fits the data and exhibits a convergent behaviour,
indicating a stable steady state. In other words, if one were to assume that the data
had a linear representation, the system would be regarded as being stable around the
steady state, and the cause of fluctuations would have to be attributed to exogenous
shocks. As standard models often exhibit, one would always observe a mean reversion
behaviour of the variables. However, a regime change model, which we claim is often
a better representation of the data, reveals that the actual dynamics of the system
are characterized by a locally unstable steady state contained by stable outer regions.
Regime change models are capable of asking and answering more exciting questions,
which have been prevalent in the theoretical literature but are searching for a way to
be examined by empirical analysis. Threshold principle time series models seem to
be particularly useful in this endeavour. We could show that one can study multiple
steady states and global resilience even empirically, though local resilience might or
might not exist.?*

On the other hand, we have pointed out in the theoretical Sections 3 and 4 that the
opposite can also hold, generating local resilience, called corridor stability, and global
resilience, but in between some destabilizing forces might be working and complex
behaviour might emerge. Higher dimensional models can also be studied where
such thresholds exist, not as threshold points but as threshold surfaces, see Section
5. Transitions of a system from order to chaos may be induced by additive and
parametric random noise even in a two-dimensional system as per the Kaldor model
(Bashkirtseva et al. 2018). The alternative behaviour in which the economic system
is randomly periodic or converges towards normality can be made dependent on some

2For instance, SIR (Susceptible, Infectious, or Recovered) models such the one developed by
Aliano et al. (2023) may explain how financial crises may spread out and if there exists a link
between financial systems and ecosystems. Time delay and incubation period are critical in the
sense that a long incubation makes risk-free equilibrium can be globally stable whilst ”a sufficiently
short incubation, together with a short immunity period lets the endemic steady state be locally
stable so that risk remains in the economy in the long run”. In contrast to deterministic models,
stochastic models such as dynamic stochastic general equilibrium models (DSGE) are employed for
policy analysis and interpretation of policy effects and market shocks. Chen and Semmler (2021),
by identifying in rates cuts a regime identifier monetary response, show ”that the financial stress
shocks have a large and persistent negative impact on the real side of the economy, and their impact
is stronger in the non-rate-cut regime than in the rate-cut regime”. In terms of energy, a DSGE
model proposed by Aminu (2019) found that shocks in prices are important drivers of economic
activity, they are temporary because of stationarity. This implies that monetary authorities may
intervene to offset falls in output by lowering the interest rate and quantitative easing by asset
purchase.
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threshold value (Li et al. 2017). Random transitions between stable attractors in the
context of the Goodwin-type economy have been shown as a feature of weak noise
levels regime switching and low saving rates. On the contrary ”increased uncertainty
can induce an essentially unpredictable income process out of an apparently stable
high-income level situation” (Jungeilges and Ryazanova 2017).

On the same line, existing work shows that the complex dynamics can generate
steady states as a trapping region, as bad attractors, where the dynamics nearby can
be trapped in a low-level equilibrium with features of a persistent trap, see Mittnik
et al. (2020), Kovacevic and Semmler (2021), Orlando (2022). They provide exam-
ples of this type arising for instances from severe climate disasters with disruptive
contractions. The latter models can also help study mechanisms that explain how
counter-policy could be used to avoid such disruptions and traps.
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Appendix A. Solution Method NMPC

As a solution method to solve complex dynamic systems, without and with control
decisions, we use the method of Nonlinear Model Predictive Control (NMPC) which
solves one trajectory at a time, see Griine et al. (2015). This solution method is used
to obtain the dynamic solution paths of the models in Section 5, where the complex
dynamics are described and then solved via the FEuler or Runge-Kutta procedure
for solving differential equations with one or more policy control variables. If the
control variable or control variables are non-zero, the following solution algorithm
from NMPC can be used.

N

maximize Z B (25, Ups) (A.1)

k=0
N € N with Tht1i = (,D(h, I]m'uk,i)

Figure A.10 shows the predictions (open loop) illustrated by the black paths
and the NMPC results (closed loop) illustrated by the red path, which gives us
the solution paths of the dynamic system with controls for finite decision and time
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Figure A.10: Predictions and decisions using NMPC; black lines representing a 4-period decision
horizon, and the red line, as envelop of the black lines, depict the optimal path of the variables x
for the time horizon of 6 periods, for details Griine et al. (2015)

horizons. Hereby the index i indicates the number of iterations and 3* is the discount
factor.

If there are no control variables, the complex system can be solved directly
through NMPC.

Appendix B. The Lotka-Volterra system and perturbations

For a detailed explanation see Semmler and Sieveking (1993). The simple Lotka-
Volterra system, described in system (6), is most simply analyzed with the aid of the
Lyapunov function

V(A p)=alogp+ylogh—5Gp—3dA (A>0,p>0).

In fact, along a generic trajectory (A(t), p(t)) of system (6), V(A(t), p(t)) does not
change its value. To show that, we can simply compute

VD, p0) AV dAE)  dVAp) dp(t) (1 N. [ 1 .
a A dt T dp :<7X_5)A+<O‘E_B>p

= (= Bp) = 6A(a = Bp) + (=7 + 6A) — Bp(—7 + 6A) = 0.

Thus, trajectories in the positive quadrant, coincide with the level curves of
V (A, p), i.e. the set

O ={(\p) €(0,00) x (0,00): H(A p)=c, VeceR}

Being V' (A, p) a convex function, the orbits of (6) are closed orbits around 7/, o/ 3).
Note that system (6) is defined also for A = 0 and p = 0: to obtain the entire set of
orbits we have to complete O with {(0,0), {0} x (0,00), (0,00) x {0}}.
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A first perturbation

We now consider system (7), to prove Propositions 1 and 2. Let’s start with
Proposition 2. The fact that trajectories cannot become negative has already been
highlighted as a general property of model (1), since variables fluctuations are pro-
portional to their value. We need to show that variables cannot indefinitely grow.
This can be easily shown by noting that the growth rate A(\, p) as defined in (2)
is negative if A > A\ = a/e;. Therefore, any trajectory eventually enters the region
A < X and stays there forever. In this set, also the growth rate p(\, p) is negative if
p<p=(0A+7)/eo = (6a+~e1)/e162. Therefore, every trajectory eventually enters
the box [0, A] x [0, p] and stays there forever.

To show 1 we start noting that system (7) has the same phase portrait in the
positive quadrant of the system

) 1 Q A
)\ = )\—)\(a—ﬁp—él)\) = ——5—81—

1/) P P (B.1)
p = )\—p(—’7+5)\—€2/?) = —%+5—€2§

since being A > 0 and p > 0, dividing for the positive quantity 1/(\p) does not change
the vector field orientation but changes only the velocity at which the trajectories
are travelled. The divergence or system (B.1) is

or op 1 1

a"‘a—p——&“l;—égx
is negative in all the first quadrants, and therefore, due to the Dulac-Bendixon theo-
rem (Burton 2005), system (7) cannot admit limit cycles. Being the box [0, ] x [0, g]
forward invariant, all the trajectories must converge in the unique forward attractor
present in the box, that is the equilibrium (A\*, p*), thus proving Proposition 1. Note
that, even if all the positive quadrants converge to (A*, p*), the trajectories that de-
part on the vertical axis, i.e. starting from a point (0, p(0)), remain on the vertical
axis (since A = 0) and converge to (0,0) since p < 0. Similarly, the trajectories
that depart on the horizontal axis, i.e. starting from a point (A(0),0), cannot leave
the horizontal axis (since p = 0) and converge to the point («/eq,0). These two
trajectories, which are the stable manifolds of the saddles (0,0) and (a/ey,0), do
not affect the global stability of (\*, p*), since they represent a null set in the phase
plane.

A second perturbation
We now consider system (8), to prove Propositions 3 and 4. The proofs of these
Propositions are possible by looking at how the dynamics change with respect to the
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one of the Lotka-Volterra model (6).

In fact, under the assumptions of Proposition 3 the growth rate 5\(/\, p) defined
in (4) can be bounded as

~

A=a—egX—Bp+g\p)<a—Bp YA> A

The obtained growth rate is the one of model (6): this means that starting on a point
of the trajectories depicted in Figure 1 with A > X\, model (8) has a growth rate of
the first variable that is smaller, i.e. the evolution of A(¢) is bounded by outside the
trajectory of model (6), as shown in the left panel of Figure B.11.

Similarly, under the assumptions of Proposition 4 (g1 = e5 = 0), the growth rate
A\, p) defined in (4) is

~

A=a—Bp+ g p).
Remembering the assumptions we made on g;(A, p) and the bounds for uy, ua, ¢1,

and o, it is easy to show that

a—Bp+ag(Np) < a—=Bp if a—BFp>0 and —vy+dA<0,
= a-Bp+a\p > a-Fp if a-pFp<0 and —y+0A>0.

S >

This means that A(X, p) of model (8) may be smaller than the one of model (6) when
it is positive, giving to the other variable more time to decrease (since there p is
negative). On the other hand, it may be bigger than the one of model (6) when
it is negative, giving to the other variable more time to increase (since there p is
positive). This means that starting on a point of the trajectories depicted in Figure
1, model (8) has trajectories that grow up, thus causing the divergence of the system.
This can be easily seen looking at the vector field, depicted in Fig. B.11, right panel,
where, for example, is shown that the vector field at the point A = uy, p = ¢ is bent
rightward to the one of model (6), causing the trajectory moving toward outside.

Note that Propositions 3 and 4 allow us to conclude that the system, for a suitable
choice of the function g;(A,p) and sufficiently small (£1,e5), must have a stable
limit cycle, since trajectories must diverge to a level curve of model (6) and cannot
indefinitely growth, thus being confined in a closed bounded region in which no
equilibria are present, due to the Poincaré-Bendixon theorem (Burton 2005).
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Figure B.11: The panel shows how the state portrait of model (6) is modified by the introduction
of the perturbation described in this subsection. In the left panel, it is shown that the fact that
g1(\, p) < &1 for A > X makes the system not diverge (the blue trajectory comes back at the same
point in an inner position). In the right panel, it is shown that the perturbation, when e; = g5 = 0,
makes instead the system to diverge.
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