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The paper presents a dynamic model of the financial/real interaction. In particular, it shows that 
(i) liquidity, when facilitated through credit, can operate procyclically, (ii) credit may add to the 
asymmetry of business cycles and (iii) endogenous propagation mechanisms in monetary 
economies are shock dependent. Using a variant of Foley’s growth cycle model, we demonstrate 
that the portrayal of financial/read forces exhibits corridor-stability. In this case, small shocks 
have no lasting effects, but large enough shocks can lead to persistent cycles or unstable non- 
periodic fluctuations. The Hopf-birfurcation theorem is rendered inapplicable due to the fact 
that the trajectories are stable in the vicinity of equilibrium. A global characterization of the 
dynamics is required instead. 

‘As credit by growing makes itself grow, so when distrust has taken the place of confidence, 
failure and panic breed panic and failure’ (Marshall 1879:99) 

1. Introduction’ 

As the above citation indicates there is a long tradition taking the view 
that liquidity when facilitated through credit, may magnify cyclical expan- 
sions and contractions. Liquidity, of course, played a central role in Keynes’ 
General Theory and in IS/LM variants of it. Recent advances in this vein 
have shown how various types of dynamic behavior arise from intrinsic 
monetary/real interactions. Various lines of work have embellished this basic 
theme and have emphasized several important implications of the financial 
role. First is that indeed liquidity can operate procyclically, amplifying 
business expansions or contractions. Second, the financial/real interaction is 
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asymmetric: the effect of financial variables are stronger in contractions than 
expansions. Third, endogenous propagation mechanisms in monetary econo- 
mies may depend on the size of the shock. 

The present contribution presents an analysis of these issues using a 
variant of Foley’s (1986, 1987) growth cycle model. We obtain an explicit 
characterization of the different types of dynamics possible. In particular, we 
show that the model’s portrayal of financial/real forces exhibits ‘corridor- 
stability’ in the sense of Leijonhuvud (1973). Small shocks to a system in a 
steady state have no lasting effects but large enough ones can lead to 
persistent cycles or unstable nonperiodic fluctuations. 

After briefly discussing related literature in section 2, we lay out the main 
model in section 3. Like Foley we primarily focus on the behavior of the 
firm. Liquidity and productive assets of firms will be the two state variables 
of the system. A preliminary analysis of the dynamics is given in section 4; 
this is supported by simulation studies. Section 5 provides the mathematical 
analysis of the economic model by using perturbation analysis for nonlinear 
dynamics. Some concluding remarks are added in section 6. 

2. Related literature 

In the tradition of Keynesian theory, the monetary/real interaction has 
become central in IS/LM versions. ’ Usually, the asset market is represented 
by the money market.3 There are interesting early nonlinear versions of an 
IS/LM macrodynamic [cf. Rose (1969), Torre (1977), Shinasi (1981)] which 
connect to recent work. 

A novel contribution along this line is represented in the papers by Day 
and Shafer (1985) and Day and Lin (1989). As in the IS/LM version liquidity 
is provided from outside through exogenous money s~pply.~ Money 
demand arises from transaction and liquidity motives. An infinitely fast 
adjustment process, through the adjustment of the interest rate, brings about 
a temporary equilibrium in the money market allowing the elimination of the 
interest rate as a variable. A boom then with a strain on liquidity chokes off 
the boom and the ease of liquidity in recessions allows for recoveries. An 
unstable accelerator effect destabilizes the system in the vicinity of the 
equilibrium. The monetary/real interaction generates intriguing periodic or 
nonperiodic fluctuations. 

*There is already a tradition before Keynes that highlights the role of liquidity generated 
through credit for the business cycle; see for example, the theories of credit in Mill, Bagehot, and 
Marshall in the 19th century, von Hayek and Hawtrey since the 192Os, and Fisher in the 1930s. 
For an excellent survey on the earlier theorists, cf. Boyd and Blatt (1988). 

31n the literature after Keynes the transaction and speculative demand for liquidity has 
become particularly central, cf. Modigliani (1944), Tobin (1958), Minsky (1975). 

4A different variant is presented in Day (1989) where the money supply is not fixed but rather 
becomes a policy variable. 
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In Foley’s various growth models (1986, 1987) - to be detailed below - 

money is presumed to grow at a fixed rate. In addition, commercial credit is 
introduced where firms are free to borrow and to lend. Banks provide loans 
and offer deposits so that the overall source of liquidity is commercial credit 
and deposits. Foley’s model shows that an unstable accelerator, coupled with 
strong borrowing incentives by firms, produces instability in the vicinity of 
the equilibrium and that liquidity contains instability in the enterprise sector. 
The financial/real interaction - though in principle a three dimensional 
dynamic - results in periodic solutions studied through the Hopf-bifurcation 
theorem. 

In models based on imperfect capital markets it is finance that plays a 
destabilizing role in macroeconomic activity, possibly amplifying business 
fluctuations. The reasons for this are first, an imperfect capital market - 
asymmetric information between lenders and borrowers and costly state 
verifications - drives a wedge between the internal and external cost of funds 
[Townsend (1979), Gale and Hellwig (1985), Bernanke and Gertler (1989)]. 
Second, default risk measured for example by balance sheet variables of firms 
gives rise to an increase in the cost of external finance which moves 
countercyclically accentuating the inverse relation between capital cost and 
investment [Bernanke and Gertler (1989, 1991), Greenwald and Stiglitz 
(1988), and Fazzari et al. (1988)]. 

In addition, the view that financial variables set in motion a stronger 
propagation mechanism of business activities is often paralleled by the 
hypothesis that the financial/real interaction also creates an asymmetry in the 
business cycle.’ In particular, it is maintained that contractions are more 
strongly affected by financial variables than expansions.6 

On the other hand, it is maintained that liquidity can serve as a buffer 
stock for flows smoothing production or consumption if the disturbances are 
not too large. Leijonhuvud (1973), for example, has argued that, in monetary 
economies, one should observe corridor-stability regarding macroaggregates. 
He shows that in an economy with buffer stocks small shocks to flows do 
not give rise to deviation amplifying fluctuations but large shocks may lead 
to a different regime of propagation mechanisms. 

Finally, it is worth noting that there is strong empirical evidence suppor- 
ting the view that liquidity covaries cyclically with investment and output.’ 
A number of studies find procyclical credit flows, see, for example, Friedman 

‘Already in earlier nonlinear models it is demonstrated, for example, in Goodwin (1951) that 
contractions are asymmetric compared to expansions. There, an asvmmetrv arises due to a 
flexible accelerator; iinancial variables, however, are neglected in model&g q&s. 

“This, for example, follows from the work of Bernanke (1981. 1983). and Mishkin (1978). who 
provide evidence fbr it for the Great Depression. 

. ,. 

‘The direction of causation remains controversial. It is still unresolved of whether money and 
credit lead output or output leads money and credit. For a recent evaluation of this matter, cf. 
Bernanke (1990). 



192 W Semmler and M. Sieveking, Liquidity-growth dynamics with corridor-stability 

(1983), and Blinder (1989). Blinder (1989), by decomposing credit market 
debt, shows that private credit market debt, in particular trade credit, moves 
strongly procyclically. The proposition that default risk and the (marginal) 
cost of external funds - as well as credit constraints - move countercyclically 
and are negatively correlated with investment and output is empirically 
demonstrated in Bernanke (1983) Gertler et al. (1991), and Franke and 
Semmler ( 1991).8 

Given the theoretically and empirically well established role of financial 
variables in the business cycle we subsequently propose a growth cycle model 
which analytically studies the above issues. 

3. The model 

We commence with Folye’s (1986, 1987) growth cycle version. The real 
side of the model is construed as follows. Firms through their capital outlay 
simultaneously determine their sales. Capital outlay, C, comprises the outlay 
for intermediate goods, wages (which are spent instantaneously) and an 
increase of capital stock, R, which denotes an increase in the value of plant 
and equipment. Thus, investment is defined as part of the capital outlay. 
Prices are fixed. Wage income is instantly spent for consumption goods. 
Profit is solely saved by firms. 

The financial side of the model can best be characterized by referring to 
the balance sheets of the economy [cf. Foley (1986)]. 

Balance Sheets 

Assets Liabilities 
Central Bank 

F, R 

Banks 
R M 

FB 
Firms 

M D 

F 

K NW 

where NW is the net worth of the sectors, F, the central bank’s holdings of 
loans, which is equal to the central banks reserve, R, and F, is the banking 
sector’s holding of loans to firms. Loans are also made among firms through 
commercial credit, which represent assets, F, for the lending firms. In order 

sin those studies the cost of external funds is measured as spread between the 6 months 
commercial paper rate and the interest rate on treasury bonds. 
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to avoid problems of aggregate excess demand it is posited that money is 
directly transferred to firms. Thus we have F, + F, + F = D or M + F = D. 

The financial/real interaction can be portrayed by the ensuing three 
dimensional differential equation system [cf. Foley (1987)]. With profit 
II = qS, q, the markup, S, Sales, the three ratios m= M/K, f = F/K, r = II/K 
entail the following growth rates from which a nonlinear differential equation 
system in m, f, r is derived: 

&g-R, (1) 

3=(d(m)-gM)/F-K, (2) 

i=a(r,m+f)--I?, (3) 

where g is the growth rate of money supply, l? the growth rate of capital 
stock, d(m) is derived from 8’=d-gM, and a(r,m+f)= C/C=fi/ll the 
growth rate of capital outlay (equal to the growth rate of profit flows). By 
assuming that liquidity and interest rate are inversely related the interest rate 
is eliminated as a variable in the model. 

We propose the following modifications of the Foley model (1)43) which 
admit an explicit characterization of the possible dynamics. First, in the 
above eq. (1) we also allow for endogenously generated liquidity. We replace 
the constant g by the following function 

where now g, is a constant and ;1= LfC. Accordingly in the above balance 
sheets of banks L is to be substituted for M. We emphasize the credit view of 
bank activities [cf. Bernanke (1990)]. Banks are free to issue debt (create 
deposits) in order to admit credit expansion in the enterprise sector.’ The 
specification of the function gl( .) is undertaken below. 

Second, m from which rit in eq. (1) is derived is the inverse of the velocity 
of money with respect to capital stock. We will, however, normalize through 
C - instead through K - since liquidity is typically not only used for 
investment in fixed Kapital, K, but also for working capital. Thus, I 
expresses the inverse of the velocity of liquidity now not with respect to 
capital stock but with respect to capital outlay.” 

Third, the behavioral function determining capital outlay C/C = a(r, m + f) 
is replaced by C/C= a(r, 2). It does not appear reasonable that f is an 

91n addition the argument can be made, that beside bank loans and commercial papers, trade 
credit [Blinder (1989, ch. 5)] and unused credit lines [Huberman (1984)] are also important 
sources of liquidity for firms. 

“In a later version, Foley has also adopted the above definition of the velocity [cf. Foley 
(1991)]. 
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additional argument in the capital outlay function since for the enterprise 
sector as a whole the asset F is generated through the creation of debt D. 
We, therefore, include solely liquidity II as an argument in the capital outlay 
function [for a similar view, cf. also Foley (1986)]. Correspondingly, for the 
growth rate of capital stock, Z?, we also presume e = b(r, A). 

With those modifications the eq. (2) will not play a role any longer in the 
dynamics. We thus obtain a dynamic system in two variables only which 
reads as 

~=gdg,, r, 4 - Qr, 4, (5) 

i = C(r, A) - k(r, A). (6) 

This is the general form of our proposed dynamics.” With respect of 
g,(g,, r,A) of system (5), (6) two versions are explored. The first version we 
call Dynamic I. Here we define 

g, = g(g,, r, A) with g,, g, > 0 everywhere. 

In this version we thus presume that the banks’ willingness to hold the 
enterprise sector’s debt depend positively on the rate of return and liquidity 
of firms. This expresses the fact that finance operates procyclically possibly 
magnifying expansions and contractions (as proposed by the above theories). 

Subsequently, a second version is explored which we call Dynamic II. Here 
we define 

gt =dg,, r, 4 - h (r, 4, 

where g(g,,r, A) remains the same function as in Dynamic I but a function 
h(r,A) is added. This function is defined below. The term, h(r,A) represents a 
switch function activated only if r and A fall below certain threshold values. 
This reflects the idea that finance adds an asymmetry to the financial/real 
interaction. We thus will add the term h(r,;I) in a downswing. This expresses 
the view that liquidity will dissipate with the decline of cash flows and the 
deterioration of balance sheets of firms. Frequently, there are two arguments 
put forward that lead to dissipating liquidity. First, declining rates of return 
and deteriorating balance sheets give rise to an increase in the perceived 
riskiness of loans (default risk of borrowers) entailing a diminished willing- 
ness by lenders to buy the debt of firms. Second, with cash flows and 
liquidity dissipating agents will attempt to intertemporally transfer liquidity 

“Note that in (6) we can also allow for constant proportion consumed out of profit flows. Let 
cnqS be the consumed proportion of profits and lZ/K = qS/K. We can substitute S = C + c,qS 
and write S( 1 -cd) = C, which gives, since c n and q are constants, S= C and also fi = @) = S 
therefore d=S= C. Observe also that eq. (6) represents a dynamic for the utilization of capacity 
for a growing economic system. 
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(preserving financial assets when bad times are expected which threaten the 
agents with possible insolvency and bankruptcy risk).” 

4. The dynamics of the model 

The following briefly discusses the above two types of dynamics. First 
Dynamic I will be elaborated were liquidity is provided in response to r and 
1,. The more complicated Dynamic II, resulting from the above function h( .), 
is studied thereafter. 

4.1. Dynamic I 

We specify our above defined function g, =g(g,, I, A) for the growth rates of 
liquidity as well as the functions a(r,A), k(r,;1) as linear functions. Also in the 
functions a( .) and &( .) a constant will be included. The linear specification 
of our functions will give rise to nonlinear differential equations though of 
the simplest type.’ 3 We specify (5), (6) as 

f=g*+B,r+8,/1-(P,+~~r+6,~), (7) 

(8) 

In eq. (7) the first term on the right-hand side denotes our first version of 
gl( a) and the term in brackets represents a( .) with /I2 the growth rate of the 
autonomous part of capital outlay and ,u,r, 6,1 the response of a( .) to the 
rate of return and the liquidity-capital outlay ratio respectively. 

Eq. (7) can be simplified by using tl=g,,-fi2, ,!?=fI, -pi and s1 =8,-6,. It 
seems to be empirically realistic to assume that b2, 8, and 19, are small 
compared to g,, 6, and pi, so that one expects negative signs for fi and s1 
and a positive sign for CL Then (7) can be rewritten as: 

Z=a-fir--Elk (7’) 

On the other hand, as shown, the growth rate of profit flows is determined 
by the growth rate of sales which is equivalent to the growth rate of capital 
outlays. Using the arguments for a( .) and b( .), we can write (8) as 

(8’) 

Again dropping unnecessary terms we denote y = /I2 -/Ii, .s2 =pi - yi and 

‘*For details of those two arguments supporting the use of such a function h(r,A) in a 
macrodynamic model, cf. Bernanke (1981), and Bernanke and Gertler (1991). Empirical support 
of this view for the Great Depression is provided by Mishkin (1978) and Bernanke (1983). 

13More general response functions could be employed but we want to explore the simplest 
case. 
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Fig. 1. Convergence of dynamic I. 

6 =6, --E. Here, realism seems to suggest that b2 <pi, pu, <yl and 6, >E. By 
simplifying eqs. (7’) and (8’) as indicated above we can write our system of 
differential equations, called system (I), as 

;2=a-pr-&,A, 

i= -y+61--.z,r. 
(9) 

Equation system (9) is a nonlinear system of differential equations of 
Lotka-Volterra type - with s1 and s2 as perturbation terms. In system (9) no 
further perturbations appear yet. As will be demonstrated in section 5 the 
system (9) has three equilibria (A* =O, r* =O), (A* = CC/&~, r* =0) and 
(A* > 0, r* > 0). The first two are saddle points and the last one is a globally 
attracting point. With the exception of those which start on one of the axes 
all of the trajectories converge to the unique attracting point il* >O, y* >O. 
The dynamic of system (9) is simulated by chasing economically realistic 
parameters. 

For the simulation study the following parameters were used: IX =O.l, 
y = 0.07, .zr = 0.045, fl=O.6, 6 = 0.7, s2 =0.078. The economically relevant 
equilibrium is A*=O.12, r*=0.15. 

Fig. 1 depicts the trajectories of system (9) where it shows that the 
trajectories, though they are oscillating, asymptotically approach the equili- 
brium J.* > 0. r* > 0. 

4.2. Dynamic II 

The second type of dynamic where the function h( .) is included is to be 
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--_-- ---_L_--i- I 1 ~--_--L__--l-.- -.- __ _.A 
I 

Fig. 2. Convergence case. for dynamic II (V = 0.2). 

elaborated. As aforementioned the function h( .) represents the idea that in 
business contractions lenders willingness to provide credit may depend 
strongly on the state of firms. In addition, agents faced with bankruptcy risk 
may tend to be reluctant to use liquidity for current spending (but tend to 
preserve financial assets for bad times). The dissipation of liquidity,i4 
however, will entail a decline in capital outlay and investment of firms setting 
in motion a complicated dynamic. 

Concerning the function h( .) we presume that if the rate of return falls 
below a certain rate of return 4 (r <c#I), with 4 <r*) or/and simultaneously 
liquidity drops below a certain ratio p (1 <,u) with p < A* liquidity is 
dissipating, correspondingly affecting capital outlay and investment of firms. 
We then replace (9) through the following system of differential equations 

I=cr-fir- l;l-h(l,r), 

r^= -y+6E,-E,r. 
(10) 

Formally, the term h in (lo), is a control term in our dynamic system, 
representing the response of banks and firms to a decrease of the liquidity 
ratio below p and the rate of return below 4. We shall assume that h in (10) 
is a smooth function satisfying 

(i) Osh(lZ,r) (AzO,rzO), 

(ii) 0 = h(i,, r) (r >= 0, 2 2 y/6), 

“‘One may also argue that a symmetric effect might occur in expansions. Since booms usually 
are resource constrained we want to neglect this slight complication. 



198 W Semmler and M. Sieveking, Liquidity-growth dynamics with corridor-stability 

(iii) c1- h(& 0) > 0 (A 2 0), 
(iv) h # 0. 

For the purpose of our computer simulation study we choose h(&r) = 
v[max(4-r,O) max (p-&O)] . I” The nonlinear differential eqs. (10) we call 
system (II). 

The proposition that the system (I), represented by (9), is stable in the 
neighborhood of the equilibrium still holds for system (II), since the Jacobian 
for (II) is the same as for (I) at I*, I *. Whereas the term h, pushes the 
trajectories toward the axes as soon as 1 and I decline below p and I$, the 
terms si, and e2 generate attracting forces, keeping the trajectories in a 
compact set. The exact analytical study of the impact of the perturbation 
terms on the Lotka-Volterra dynamics is given in section 5.2 and 5.3. Here, it 
may suffice to illustrate the possible scenarios by again referring to a 
simulation study. 

We can distinguish three scenarios. For a small reaction coefficient u the 
trajectories still converge toward the equilibrium values of il, and r for any 
initial condition - similar to the trajectories of system (I). This case is 
analytically studied in section 5, remark 3. The simulation results are 
depicted in fig. 2. 

For a greater reaction coefficient u the system (II) still converges toward 
the equilibrium for small shocks. For stronger shocks, i.e., for farther 
departure from the equilibrium values of 1, and r, however, system (II) 
becomes unstable until it finally approaches a limit cycle. On the other hand, 
for initial conditions, farthest away from the equilibrium, the limit cycle is 
approached from the outside. The existence of a limit cycle outside an 
asymptotically stable region is studied in the Theorem in section V and the 
simulation results are shown in fig. 3. 

As also shown in fig. 3 for trajectories starting close to the equilibrium the 
system is stable. Only a stronger shock, i.e. initial conditions far enough from 
the equilibrium will generate limit cycles. Thus, the system exhibits 
corridor-stability. 

In the last case depicted here, fig. 4, we have allowed the reaction 
parameter u to become even larger. The immediate effect is that the 
trajectory approaches zero. This problem is studied in remark 1 in section 5. 

More generally, it can be shown that the system (II) has at least two limit 
cycles which can be revealed when time is reversed (cf. section 5). 

5. Analytical treatment of systems (I) and (II) 

The analysis of the equilibria and dynamics of our proposed systems (I) 
and (II) is undertaken as follows. Starting with the original Lotka-Volterra 
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Fig. 3. Limit cycle of dynamic II (u=O.6). 

system the perturbations representing the attracting and the repelling forces 
will successively be introduced and the resulting dynamics studied. 

5.1. The Lotka-Volterra system 

The original Lotka-Volterra system is given by 

X=A(a-/?r) 

(11) 

i=r(-y+61) for AZO, rz0. 
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Fig. 5. Closed orbits of (11). 

This system is most simply analyzed with the aid of the function 
H(& z) =cdogr+ylogi-fir-61 (A>O, r >0) which is easily shown to be 
constant along trajectories of (11) with positive coordinates. These trajector- 
ies therefore coincide with the sets 

As a consequence all of the orbits of (11) are closed orbits around (y/6, a/p) 
with the exception of the following three: (0,O) (O}x[O, co) and [0, co)x(O}. 

5.2. A first perturbation 

Here we add a vector field to the system (11) which forces the trajectories 
to spiral outward. The analysis is greatly facilitated by the fact that the 
perturbation is confined to the region 15 y/6. 

The perturbed system is given by 

X=n(a-fir-h(&r)), 

i=r(--++A), 
(12) 

where h is a smooth function satisfying the conditions (i)<iv) above. Let 
a = (y/d, a2) be a point on the line 2 = y/6 having a2 > a/P and let (n(t), r(t)) = 
x(t) be the solution of (12) starting at x(O)=a. 

Claim I. There is a first time t>O when x(t) meets the segment {y/6) 
x[a/p, cc) again and this happens at some b =(y/& b,) with b,(aJ 2 a2. 
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Fig. 6. Orbits of (12) spiraling outward. 

Proof: It is easily seen that trajectories of the system (12) cannot enter the 
closed orbits of (11) or put equivalently that the function H increases along 
the trajectories of (12). Since both systems coincide for A > y/S it suffices to 
show that A(t) = y/6 for at least one t>O. 

If this was not the case then A(t) <y/6 for all t>O and r(t) was strictly 
decreasing. Now consider the limit set 

L,(a) = y IIt, E [0, co) lim t, = + co, lim x(t,) =y . 
n 

If y = (yi, yz) E L,(a) then y, = inf tzor(t) and therefore y, 5 y/S implies y, =O. 
Now L,(a) is positively invariant and the only positively invariant subset of 
[0, y/6] x (0) is (0,O). Therefore L,(a) = {(O,O)}, that is limx(t) =(O, 0) which is 
impossible, since by (iii) A is increasing near (0,O). 

Claim 2. b,(u,)>u,, if u2 is properly chosen. 

Proof By property (iv) of the function h there is a point c=(ci,cJ such 
that O-CC, <y/6 and h(c) >O. There is a solution x to (11) such that 
x(O)=(y/&u,) for some uz>cr//3 and c=x(t) for some t>O. The correspond- 
ing solution y to (12) with y(O)=x(O) may go the same way as x for a while 
but will part form x not later than at time t. Therefore when it reaches 
(y/6, b2) for some b, > a/j3 according to claim 1 we have 6, > a,. 

5.3. A second perturbation 

It is fairly obvious by now that all of the orbits of the system (12) except 
those which stay at the coordinate axis may be spiraling outward without 



202 W Semmler and M. Sieveking, Liquidity-growth dynamics with corridor-stability 

Fig. 7. Isoclines and equilibria of (13). 

converging to a limit cycle. We therefore introduce a second perturbation 
which contracts the orbits in such a way that all the trajectories stay 
bounded but some of the spirals are retained - at least if the parameters sr, 
s2 > 0 are chosen suffkiently small. The system reads 

(13) 

Claim 3. All of the trajectories of (13) are bounded no matter how small 
e1 > 0 and .s2 > 0 are chosen. 

Proof. Obviously fr(,I, r) < - for 1>11, =(cI+ l)/sl, rz0. Therefore any 
trajectory eventually enters the region I <A, and stays there forever. But if 
0 5 2s 2, and r > r,, = (a&, + 1)/e2 then fi(2, r) i - r,,. Therefore every trajec- 
tory eventually enters the box [0, &]x[O, ro] and stays there forever. 

Obviously (0,O) is an equilibrium of (13). The remaining ones are easily 
determined by (cL/E~,~) and e=e,, the intersection of the two lines --y +6;1- 
&g-=0 resp. a-j?r--E,E,=O. The Jacobian of (13) in (0,O) reads 

[ 

a-h(O,O) 0 

0 1 --Y . 

Therefore (0,O) is a saddle point, the r-axis (L-axis respectively) being the 
stable respective unstable manifold. The Jacobian at (cI/E~,O) is 

[ 

--cI (-4-1)P 
0 1 --y+&x/&, . 
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Assuming y/6<or/s, (like in the figure above) (~(/si,O) is a saddle point, with 
the A-axis being the stable manifold. The unstable manifold is formed by a 
trajectory (separatrix) which emanates from (a/&i, 0) into the ;1 >O, r >O 

region. Finally the Jacobian of e is 

-he1 -Be1 
de2 - E2e2 1 

and both of its eigenvalues are seen to have negative real parts. Therefore e 
is a sink that is asymptotically stable. 

5.4. Limit sets of the complete dynamical system 

First recall the definition of the o-limit set L,(c) of a solution x(t) of (13) 
starting from x(0) = c: 

L,(c)=(y=(y,,y,)~R’Ithere is a sequence (t,)c[O,oo) 

such that lim x(t,) = y and lim t, = + co} 

Claim 4. If c1 >O, c2 >O then neither (0,O) nor (~(/ei,O) is contained in L,(c). 

Proof: Suppose (c(/E~,O)E L,(c) and c1 >O, c,>O. Then if x(t) is the solution 
of (13) starting from c =(ci, c2) there is x(t) arbitrarily close to (cI/E~, 0). Now 
in region II and III (see figure above) r is increasing. Therefore if we follow 
x(s) backwards for s < t then r(s) decreases, showing that if (U/E, 0) L,(c), then 
6/y, 0) E L,(c). Since o limit sets are positively and negatively invariant this 
implies that also (0,O) E L,(c). It will therefore suffice to derive a contradic- 
tion from (0,O) E L,(c). 

Now if x(t) is sufficiently close to (0,O) it stays in region I where 1 is 
increasing and r is decreasing. Therefore if (0,O) L,(c) then necessarily 
(0, y2) E L,(c) for some y, >O. Again since L,(c) is negatively invariant the 
whole segment {O}x[O, + co) must belong to L,(c). But x([O, + co)) is 
bounded and therefore L,(c) too. We thus arrive at a contradiction which 
proves our claim. 

Theorem. If Ed >O and .s2 ~0 are sufficiently small then the system (13) 
possesses at least two limit cycles. One of the limit cycles is obtained as the w- 
limit set of the separatrix emanating from the equilibrium (a/el,O). This limit 
cycle however contains a second one (which is unstable from the inside). 

Proof. Choose a=(y/o, a2) according to claim 2 and consider the set r 
which is bounded by the curve x([O, t]) and {G/y}x[a,, b2]. Here x(s) is the 
solution of (12) which starts at a and meets {G/r}x[a/fi, co) for the second 
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time at t in b=(b,, b,). Since the vector field of (12) points strictly to the left 
on {y/S}x[~//?, co] the set r may not be entered by any of the trajectories of 
(12). Now since solutions of (13) depend continuously on s=(sl,sZ) the same 
is true for (13) if E is sufficiently small: there is a set r, bounded by xEIO, te] 

and {Y/~)~CG b,,J h w ere x, is the solution of (13) which starts at a and 

meets (~l~)xC~iB, 1 cc a second time t, at b,= (b,, ,b,, 2). If E > 0 is sufficiently 
small none of the trajectories of (13) ever enters r, from outside and in 
addition r, contains the equilibrium e=eB (cf. sect. V.3) in its interior. 

Now consider the limit set L of the separatrix emanating from (cz/s,O). 
Since the separatrix cannot enter r,, L does not contain the equilibrium e=e,. 
According to claim 4 L contains neither (0,O) nor (cI/E~,~). Since L is compact 
by claim 3 and does not contain an equilibrium it is a limit cycle by 
Poincare-Bendixson’s theorem. Now consider a trajectory for the reversed 
system of (13) 

x= -ycl-fir-h(/l,r)-&,A), 

3= -r(--++A-E,r). 
(13*) 

If the trajectory starts within r E it may not leave it and therefore has a 
compact nonvoid limit set L-. Since L- is contained in r, it does not contain 
any of the equilibria (0,O) or (a/&,0) but neither eE since - by section V.3 - eE 
is a repellor for (13*). Therefore - again by Poincare-Bendixson’s theorem - 
we conclude that L- is a limit cycle, contained in the interior of the first 
one. Q.E.D. 

Remark 1. Suppose h is increased in such a way that condition (iii) is 
violated and we have in fact 

a-h(O,O)<O. 

Then (0,O) is asymptotically stable and for a nonvoid open subset of starting 
points the system collapses to (0,O). Let us assume that the set rz-/?r -.zli- 
h(,l, r) = 0 is a curve which cuts the ;1 axis exactly once between ;1=0 and 
n=y/6. The intersection point e”=(d,,Z,) is an equilibrium which in fact will 
be a saddle point. Consequently there is a separatrix si emanating from Z 
and we may distinguish two cases with respect to the position of s1 relative 
to the separatrix s2 emanating from (CL/&~. 0). 

Case I. s2 lies above s1 (see fig. 8). In this case the limit set of s1 for the time 
reversed system is a limit cycle because for the reversed system e is a repellor 
(source). 

Case 2. s2 lies below s1 (see fig. 9). In any case a trajectory will tend to 
(0,O) if it cuts the line --y +6A-E2r =0 above sl. If however s2 tends to e ~ 
which is at least conceivable - then in case 2 there are only two possibilities: 
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Fig. 8. s2 lying above sl. 

Fig. 9. s2 below sl. 

either a trajectory converges to (0,O) or to e, exception made by si, and 
those trajectories which lie on the 1 axis to the right of Z 

Remark 2. If u./E~ <y/S then every solution x(t) of (13) converges to the 
A-axis as t tends to infinity. This is because for A> y/6 ,? is negative and for 
A< y/6 i is negative (see fig. 10). 

Remark 3. We shall show that e=e, is a global attractor for (13) if 
E=(E~,E~) is kept fixed and h is made so small that 

h(A,A)<&,(e,-A) for 2<e,. 

To do so we first consider the system 

l=A(a-/?r-clA), 
(14) 
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Fig. 10. Vanishing of r for a/s1 <y/6. 

Using the fact that e=e,=(e,,e,) is an equilibrium for (14) this may be 
rewritten as 

d~-‘~(el-~)=~6(e2-r)(el-Eb)+6~l(el-1)2 

/F’i(e2-r)= -@(e2-r)(e, -A) +pc2(e2-r)2. 
(15) 

Taking the sum we find 

~~-‘l(e,-1)+/?r-‘i(e2-r)=6~,(e,-~)2+j?~2(e2-r)2 
or 

where H(1, I) = s(A - e, log A) + /?(r - e2 log r). 

Therefore H is a global Liapunov function for (14). Let us investigate if H 
is also a Liapunov function for (13). 

Let y(t) be a solution of (13). Then 

dd,H(~(t))=~I’l+~L,=~a-B1’2-&1~1) 
1 2 1 

+~Y2(-7++Y1-s2Y2)_- +gYlh(YlvY2) 
2 1 

= -~&l(el-~l)~-_&~(e~-~2)~--6(~1-el)h(yl,y2), 

and this is negative for y#e in case h(y,,y,)<s,(e,-y,) for Osy,<el. In 
that case H is a Liapunov function for the system (13) too and hence e is a 
global attractor. 
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6. Some conclusions 

As suggested in the paper, our proposed dynamics with the control term h 
satisfying properties (i)-(iv) above can be considered an enriched formaliza- 
tion of the role of liquidity in macrodynamics. A drain on financial liquidity 
of firms initiated by falling rates of return and dissipating cash balances, can 
give rise to scenarios that many economists have linked to the role of money 
and credit in macrodynamics. In fact, in our model different scenarios can 
arise according to different types of shocks and different values of the 
parameters of the system. If all other quantities are held fixed and s1 >O, 
s2 > 0 are made small enough limit cycles will occur outside a stable vicinity 
of the equilibrium with positive coordinates. Technically, and contrary to 
other models, the equilibrium does not have to be unstable in order to 
generate a macroeconomic limit cycle. Such a model with corridor-stability, 
however, results in some technical difficulties to analyze the dynamics since 
the well-known Hopf-bifurcation theorem cannot be applied. An extension of 
the Poincare-Bendixson theorem, developed in Sieveking (1988), was utilized 
instead. 

By way of concluding we want to remark that the following problems may 
warrant a further study. First, one can turn the differential eqs. (10) into a 
problem of optimal control where h is the control variable and a suitable 
defined value of the firm is to be maximized by chasing h in the best possible 
way. In this context the question will then naturally arise whether the 
optimally controlled system exhibits a cyclic behavior again.” Second, it still 
remains a task to estimate the periods of the occurring limit cycles. In 
particular it may be interesting to compare the frequency of the undisturbed 
Lotka-Volterra system with the one of the disturbed system. Both problems 
are left open for future research. 

“Limit cycles are also admitted in optimally controlled systems, cf. Semmler and Sieveking 
(1991). 
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