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Abstract

We develop a simple nonlinear stock market model in which speculators switch
between technical and fundamental trading rules depending on market conditions.
Additionally, we assume that agents are unaware of the true current fundamental
value and, thus, use a weighted average of the current price and the known long-run
fundamental value as an estimate of the fundamental price. Using analytical and
numerical methods, we demonstrate that an increase in the reaction parameter of
technical traders may cause boom-bust dynamics. Moreover, we show that a height-
ened belief among agents that the fundamental value is more sensitive to deviations
of the current price from its long-run fundamental value can cause the price to be-
come trapped above or below this long-run value, oscillate within a higher price
range, and prolong the duration of a bubble. In two model extensions, we assume
that agents compute the current fundamental value based on the deviation between
the average price and the known long-run fundamental value, using a moving av-
erage of the past k prices and an exponential moving average, respectively. These
robustness checks show that, in these cases, price and perceived fundamental value
fluctuate less statically around the long-run fundamental value.

Keywords
Bifurcation analysis; chartists and fundamentalists; boom-bust dynamics;

JEL classification
C62; D84; G10; G41

1 Introduction

Shiller (1981) argues that stock prices often exhibit excessive volatility, driven by factors
far beyond what could be explained by changes in dividends. Shiller (2015) suggests that
boom and bust dynamics in financial markets are driven by psychological factors such as
anchors, overconfidence, and narratives.

The aim of our paper is threefold. The first aim is to assume a non-constant perceived
fundamental value. To model agents’ perception of the current fundamental value, we
employ the anchoring and adjustment heuristic introduced by Tversky and Kahneman
(1974) and expanded by Shiller (2015), which posits that agents use quantitative anchors
as reference points for stock price levels. In fact, Tversky and Kahneman argue that agents
form expectations based on an anchor and then make some adjustment from that anchor
to obtain their estimate. In our paper, we assume that agents form their expectation

*Presented at the MDEF in Urbino in September 2024. I would like to thank Laura Gardini for her
many useful explanations and suggestions. I also thank two anonymous referees for their careful lecture
of the manuscript and their constructive feedback, which has greatly contributed to improving the quality
of this paper.
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about the current fundamental value by using the known long-run fundamental value
as an anchor and, from that point, adjust their expectation with the current perceived
distortion from the long-rung fundamental value. The second aim is to explore how this
perceived fundamental value and the stock price coevolve. Finally, we examine how this
perceived fundamental value influences the distortion in the stock market.

Our setup is based on the seminal works of Day and Huang (1990), Huang and Day
(1993), and Chiarella (1992), incorporating three market participants, namely chartists,
fundamentalists and a market maker. The price is driven by the demand of the chartists
and fundamentalists, and the market maker who sets the price with respect to their excess
demand. Chartists following the technical trading rule believe in the persistence of bull
and bear markets. Fundamentalists, on the other hand, following the fundamental trading
rule believe that the price will return to its fundamental value. Moreover, depending on
the market conditions following De Grauwe et al. (1993) and He and Westerhoff (2005),
we allow agents to switch between technical and fundamental trading rules. In particular,
the market share of fundamentalists increases with the perceived mispricing. Finally,
we assume that market participants do not know the true current fundamental value
and therefore use a weighted average between the current price and the known long-run
fundamental value as an indicator of the current fundamental price.

It turns out that our model is driven by a one-dimensional nonlinear map which
possesses one fundamental steady-state and two non-fundamental steady-states. Our
model shows that: (i) An increase in the reaction parameter of chartists can lead to
a sequence of bifurcations which can cause the price to switch between bull and bear
markets. (ii) If agents believe that the current fundamental value reacts more strongly to
the deviation of the current price from its long-run fundamental value, then price dynamics
may be trapped above or below the long-run fundamental value, price dynamics fluctuate
in a higher price range and the duration of a bubble is longer.

In our second and third setup, we assume that agents compute the current fundamental
value from the deviation between the average price and the known long-run fundamental
value, using as a measure of the average price a moving average of the k past prices
and an exponential moving average, respectively. These two cases can be regarded as a
robustness check of our model. Moreover, the simulations reveal that price and perceived
fundamental dynamics fluctuate less statically around the long-run fundamental value.

We proceed as follows. In Section 2, we provide a brief overview of different approaches
to modelling non-constant fundamental value perception. In Section 3, we present the core
of our model and provide analytical and numerical results. In Section 4, we consider the
moving average case. In Section 5, we consider the exponential moving average case. In
Section 6, we conclude our paper. Appendix A provides further analytical proofs related
to the secondary bifurcations of our core model.

2 Literature review

In this section, we will briefly discuss some modelling of non-constant fundamental value
perception.

One approach links fundamental value perception directly to the real economy. Studies
by Westerhoff (2012), Lengnick and Wohltmann (2013), and Huang and Zhang (2017)
propose that the fundamental value perceived by agents is proportional to the level of
national income.

Another approach emphasizes the role of information in shaping perceptions. Diks
and Dindo (2008) define the fundamental value as the ratio of expected future dividends
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to the difference between the interest rate and an estimated growth rate. In this model,
informed agents have accurate knowledge of future dividends, while uninformed agents
base their perceptions on current market prices and their own dividend estimates.

Psychological biases provide another perspective. De Grauwe and Kaltwasser (2012),
Kaltwasser (2010), and Naimzada and Pireddu (2015) suggest optimistic and pessimistic
fundamentalists who overestimate and underestimate the true fundamental value, respec-
tively. In the same line, Gardini et al. (2022, 2024) propose a piecewise model in which
the perceived fundamental value is influenced by current price trends. In this model,
fundamentalists perceive a high fundamental value during positive trends and a low fun-
damental value during negative trends, while their perception remains unbiased during
neutral trends.

Anchoring, where agents use psychological thresholds to estimate fundamental value,
is another significant psychological bias. Huang et al. (2010) and Huang and Zheng (2012)
assume that chartists’ short-term estimate of the fundamental value is determined by di-
viding the price domain into n regimes defined by psychological thresholds, and setting
the estimated fundamental value at the midpoint of the regime into which the current
price falls. Similarly, Westerhoff (2003a) suggests that traders anchor their perceptions to
the nearest round number, with the price domain divided into K round anchors. The mid-
point of two consecutive round anchors defines the threshold, determining which anchor
is relevant. Depending on the current exchange rate, the perceived fundamental value is
then anchored to the nearest round number.

Finally, Westerhoff (2003b) explores three versions of perceived fundamental value.
The first version assumes a normal distribution around the true fundamental value, sim-
ilar to the methods used by De Grauwe and Grimaldi (2006) and Mignot and Westerhoff
(2024). The second assumes that the perceived fundamental value is a weighted average of
the past perceived fundamental value and the current perceived exchange rate, and a nor-
mally distributed shock. The third version incorporates a feedback learning mechanism,
allowing agents to adjust their perceptions based on past errors.

All of these models illustrate the multifaceted nature of fundamental value perception,
integrating real economic variables, information availability, psychological biases and an-
choring within a framework of bounded rationality.

3 The general model

3.1 Model setup

In this section, we present our model setup, which adopts the market maker models of
Day and Huang (1990), Huang and Day (1993), and Chiarella (1992). The starting point
is that a market maker adjusts the price with respect to the excess demand of agents. We
assume that the agents either opt for a technical trading rule or a fundamental trading
rule, depending on the current market conditions.

The price formation is determined by a price adjustment function. Hence, the price
P at time t+ 1 is given by

Pt+1 = Pt + aEDt, (1)

where parameter a is a positive price adjustment parameter and EDt is the excess demand.
The price increases (decreases) when there is an excess demand (excess selling).

We assume that N agents place orders by either opting for a technical trading rule,
denoted by DC

t , or for a fundamental trading rule, denoted by DF
t . The excess demand
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is thus defined by
EDt = N(NC

t D
C
t +NF

t D
F
t ), (2)

whereNC
t andNF

t are the market shares of agents following the technical and fundamental
trading rules, respectively. We normalise the mass of agents N = 1.

Agents following the technical trading rule, also called chartists, believe in bull and
bear markets. When the price is below (above) the perceived fundamental value, they
consider the market to be bearish (bullish) and submit selling (buying) orders. Orders
placed by a single chartist are formalised by

DC
t = b(Pt − Ft), (3)

where b is a positive reaction parameter.
Agents following the fundamental trading rule, also called fundamentalists, assume

that the price will return to its fundamental value. When the price is below (above) the
perceived fundamental value, they submit buying (selling) orders. Orders placed by a
single fundamentalist are formalised by

DF
t = c(Ft − Pt), (4)

where c is a positive reaction parameter.
The market share of chartists and fundamentalists is defined as

NC
t =

1

1 + e+ g(Ft − Pt)2
(5)

and
NF

t = 1−NC
t , (6)

respectively. When the price is close to the perceived fundamental value, a high proportion
of agents perceive this as the start of a bubble, and the share of chartists is close to 1

1+e
.

However, agents believe that bubbles will not persist but will burst at some time if the
price is too far from its fundamental value. Therefore, when they perceive an increase
in the mispricing, an increasing number of them switch to the fundamental trading rule.
Parameter e ≥ 0 determines the maximum share of chartists. If, for example, e = 0.25
and Ft = Pt, then NC

t = 1
1+e

= 0.8. Parameter g > 0 is the switching parameter. The
higher the value of parameter g, the faster the agents switch to the fundamental trading
rule when they perceive an increase in the mispricing. The bell-shaped market share
function is derived from De Grauwe et al. (1993), who applied it to a foreign exchange
market. See He and Westerhoff (2005) and Dieci and Westerhoff (2010) for some other
economic applications.

We assume that agents do not know the true current fundamental value due to a lack
of perfect information. We further assume that they believe that the current fundamental
value fluctuates around the long-run fundamental value F . This long-run fundamental
value is known and serves as an anchor, i.e., as a starting point for their current perception
of the fundamental value. Depending on the market conditions, they then adjust their
current expectation of the current fundamental value upward or downward. If the current
price is below (above) F , they believe that the current fundamental value is lower (higher)
than F . We thus model the current perceived fundamental value as

Ft = F + d(Pt − F ) = (1− d)F + dPt, (7)

where 0 < d < 1 indicates how strongly agents believe that the current fundamental value
reacts to the deviation of the current price from F .
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3.2 Analytical results

Combining (1) to (7) reveals that our model is driven by a one-dimensional nonlinear
deterministic map, given by

Pt+1 = Pt + a(1− d)(F − Pt)
cg(F − Pt)

2(1− d)2 + (ce− b)

1 + e+ g(1− d)2(F − Pt)2
. (8)

Setting Pt+1 = Pt = P , we obtain three steady-states: A fundamental steady-state given
by

P⋆ = F (9)

with NC
⋆ = 1

1+e
, and two non-fundamental steady states

P± = F ± 1

1− d

√
b− ce

cg
(10)

with NC
± = c

b+c
. The fundamental steady state always exist whereas the two non-

fundamental steady states only exist for b ≥ ce.
The partial first-order derivative of map (8), evaluated at P⋆, reads

dPt+1

dPt

(
P⋆

)
= 1 + a(1− d)

b− ce

1 + e
. (11)

The model’s fundamental steady state is locally stable if |dPt+1

dPt

(
P⋆

)
| < 1, resulting in:

ce− 2(1 + e)

a(1− d)
< b < ce. (12)

The partial first-order derivative of map (8), evaluated at P±, reads

dPt+1

dPt

(
P±
)
= 1− 2ac(1− d)

b− ce

b+ c
. (13)

The model’s non-fundamental steady states are locally stable if |dPt+1

dPt

(
P±
)
| < 1, resulting

in:

ce < b < ce+
c(1 + e)

−1 + ac(1− d)
for ac(1− d) > 1, ce < b for ac(1− d) ≤ 1. (14)

We have thus proven the following proposition.

Proposition 1 (primary bifurcations) Map (8) may possess up to three steady states:
One fundamental steady state P⋆ = F and two non-fundamental steady states P± = F ±
1

1−d

√
b−ce
cg

. The fundamental steady state always exists. For bPD1 < b < bP , P⋆ is locally

stable. A period-doubling bifurcation occurs at bPD1 = ce− 2(1+e)
a(1−d)

. At bP = ce, a pitchfork
bifurcation occurs and two non-fundamental steady states emerge and lie symmetrically
around P⋆. P± are locally stable if either bP < b < bPD2 or bP < b and ac(1− d) ≤ 1. A

period-doubling bifurcation occurs at bPD2 = ce+ c(1+e)
−1+ac(1−d)

if ac(1− d) > 1.

Let us discuss the main economic implications of Proposition 1
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� Fundamental steady state. The model’s fundamental steady state implies that
NC

⋆ = 1
1+e

, i.e., NC
⋆ decreases in line with parameter e. The fundamental steady state

stability condition can also be written as NC
⋆ b−NF

⋆ c > − 2
a(1−d)

and NF
⋆ c−NC

⋆ b >
0. Violation of the first inequality results in a period-doubling bifurcation, which
occurs when fundamental traders become too aggressive. However, this scenario
requires extreme values for c. Violation of the second inequality results in a pitchfork
bifurcation, which occurs when technical traders become too aggressive.

� Non-fundamental steady states. The non-fundamental steady states increas-
ingly (decreasingly) deviate from F as parameter b and/or d (c, e and/or g) increase.

The model’s non-fundamental steady states imply that NC
± = c

b+c
. Parameter c (b)

increases (decreases) the share of chartists. The non-fundamental steady states’

stability condition can also be written as NC
± (b− ce) < 1

a(1−d)
. The local stability of

the non-fundamental steady states depends on all parameters except g. An increase
in parameters a and b may compromise their local stability, while an increase in
parameters e and d may be beneficial to their local stability.

The following proposition, proven in Appendix A, summarizes our results of map (8)’s
secondary bifurcations.

Proposition 2 (secondary bifurcations) Define δ = 1 − d. For bP < b < bH , the
dynamics are either trapped between the local maximum value and its image or between
the local minimum value and its image. For bPD2 < b < bPD4, two symmetric period-

two cycles are locally stable. At bPD4 = ce + (1+e)
−1+acδ

(
5+

√
5
√

5+4acδ(acδ−2)

2aδ
− c

)
the second

period-doubling bifurcation occurs. A homoclinic bifurcation of the fundamental steady

state occurs at bH = ce+ (1+e)
−1+acδ

(
16+13acδ(−2+acδ)+2(4+3acδ(−2+acδ))

3
2

aδ(5+4acδ(−2+acδ))
− c

)
. For bH < b < bF ,

the dynamics are bounded between the local maximum value and the local minimum value.
A final bifurcation occurs at bF = ce + 2c(1+e)

−2+acδ
if acδ > 2. For b > bF the dynamics are

divergent.1

Let us discuss the implication of Proposition 2. For bP < b < bH , for an initial
value lying in the basin of attraction B+, dynamics are attracted above F , while for an
initial value lying in the basin of attraction B−, dynamics are attracted below F . These
basins of attraction are the union of infinitely many intervals, having as limits F and

the points of the unstable period-two cycle α± = F ± 1
1−d

√
2(1+e)+a(1−d)(b−ce)

g(−2+ac(1−d))
(this period

two exists if b > bPD1 and if ac(1 − d) > 2).2 The dynamics are either trapped in
the bull market between the local maximum value and its image or in the bull market
between the local minimum value and its image. At bH , the two attractors and their
basins of attraction merge. For bH < b < bF , we then observe dynamics in the bull and
bear market, bounded between the local minimum value and the local maximum value.
An increase in parameters e and d may cause the dynamics to be trapped in either the
bull or the bear market, while an increase in parameters a and b might cause bull and
bear market dynamics. The final bifurcation occurs at bF , i.e., when the local maximum
value equals α+ and the local minimum value equals α−. We have divergent dynamics for

1The final bifurcation is the last change in a system’s dynamical behavior as a parameter is varied.
After this point, the generic trajectory is divergent.

2B+ := B+
0 ∪B+

−1 ∪B+
−2.... B

+
0 = ]F,O−1[, with O−1 = F + 1

1−d

√
1+e+a(1−d)(b−ce)
g(−1+ac(1−d)) , called the positive

rank-1 preimage, which occurs when the first iterate is equal to F .
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b > bF . Increasing parameters e and d might prevent divergent dynamics, while increasing
parameters a and b might cause divergent dynamics.

Figure 1 summarizes our analytical results. The left (right) panel presents a two-
dimensional bifurcation diagram in the parameter plane (c, b) for d = 0 (d = 0.25). The
cyan area visualises parameter combinations for which the model’s dynamics converge
to its fundamental steady state. The purple area visualises parameter combinations for
which the model’s dynamics converge to a non-fundamental steady state. The pink area
visualises parameter combinations that generate endogenous dynamics in either the bull
or the bear market. The burgundy area visualises parameter combinations that generate
endogenous dynamics, switching between bull and bear markets. The dark-burgundy area
visualises parameter combinations for which the model’s dynamics are divergent. The
brown, orange and green-colored areas visualise parameter combinations that generate a
period-two, -four, and -eight cycle, respectively.

Figure 1: The left (right) panel presents a two-dimensional bifurcation diagram in the
parameter plane (c, b) for d = 0 (d = 0.25).

3.3 Numerical results

Table 1 presents our parameter setting. The parameter values have been selected in order
to best visualize the results.

Parameter Economic significance
a = 1 Price adjustment parameter
b = 6 Reaction parameter of chartists
c = 2 Reaction parameter of fundamentalists
e = 0.1 Parameter determining the maximum market share of chartists
g = 1 Switching parameter
F = 100 Long-run fundamental value

Table 1: Parameter setting.
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The left (right) panel of Figure 2 shows the bifurcation of the price versus parameter
b for d = 0 (d = 0.25). The price converges to its fundamental steady state P⋆ = F =
100, represented in cyan, as long as the stability conditions for the fundamental steady
state hold. At the pitchfork bifurcation bP = 0.2, the fundamental steady state becomes
unstable and two locally stable non-fundamental steady states emerge, shown in purple.

For d = 0, P± = F ±
√

b−0.2
2

and for d = 0.25, P± = F ± 4
3

√
b−0.2

2
. A period-doubling

bifurcation occurs at bPD2 = 2.4 for d = 0 and at bPD2 = 4.6 for d = 0.25. The two non-
fundamental steady states then become unstable, giving rise to a locally stable period-two
cycle, represented in brown. This period-two cycle becomes unstable at bPD4 = 3.5 for
d = 0 and bPD4 ≈ 7.77 for d = 0.25, giving rise to a locally stable period-four cycle,
shown in orange. By further increasing the value of b, a sequence of period doubling
occurs, leading to chaotic dynamics, represented in pink. A homoclinic bifurcation of the
fundamental steady state occurs at bH = 5.04 for d = 0 and bH ≈ 11.76 for d = 0.25.
For bP < b < bH , two symmetric attractors coexist. Depending on the initial value, the
system is either attracted to the attractor above the fundamental value, i.e., in the bull
market, depicted in a darker shade, or to the attractor below the fundamental value, i.e.,
in the bear market, depicted in a lighter shade. The dark areas visualise initial values
leading to convergence to the attractor in the bull market, while the light areas visualise
initial values leading to convergence to the attractor in the bear market. At bH , the
distinct bear and bull markets merge, and for b > bH we have dynamics in the bull and
bear markets, shown in burgundy.3 Since acδ ≥ 2, we have no divergent dynamics here.4

Figure 2: The left (right) panel shows the bifurcation diagram in which the price is
depicted versus parameter b for d = 0 (d = 0.25).

The left (right) panel of Figure 3 shows the time evolution of the price and the per-
ceived fundamental value (in gray) for d = 0 (d = 0.25). The top, middle, and bottom
panels are based on our parameter setting, except that b = 6, b = 10, and b = 15, respec-
tively. We can see from the left panel of Figure 2 that for the case d = 0, a homoclinic
bifurcation of the fundamental steady state occurs at b = 5.04, generating endogenous
dynamics switching between bull and bear markets. These dynamics are depicted in the

3Note that coexisting period n-cycles are still possible after this point.
4Note that if d = 0 (for this parameter setting), the unstable period two cycle exists at infinity.
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left panels of Figure 3. For the case d = 0.25, however, as shown in the right panel of
Figure 2 at b = 6, we have a period-two cycle either in the bull or in the bear market,
visible in the top right panel of Figure 3. For b = 10, the right panel of Figure 2 shows
that for the case d = 0.25, we have endogenous dynamics either in the bull or in the bear
market, depicted in the middle right panel of Figure 3. For b = 15, the right panel of
Figure 2 shows that we have endogenous dynamics switching between the bear and the
bull market, since for d = 0.25, a homoclinic bifurcation of the fundamental steady state
has occurred at b ≈ 11.76, presented in the bottom right panel of Figure 3. For b = 15,
the average time span to the price cross F is equal to 2 time steps for d = 0, while for
d = 0.25 it is equal to 7 time steps.

Figure 3: The left panels show the evolution of the price (pink) and the perceived funda-
mental (gray) for d = 0. The right panels show the evolution of the price (purple) and
the perceived fundamental (gray) for d = 0.25. The top, middle, and bottom panels are
based on our parameter setting, except that b = 6, b = 10, and b = 15, respectively.

Let us further illustrate the implication of the homoclinic bifurcation of the funda-
mental steady state. Figure 4 shows the evolution of the price in the phase diagram for
d = 0.25 and different values of b = 4, 6, 10, 15. The green dots indicate the steady states.
For b = 4, the price dynamics converge to the non-fundamental steady state. For b = 6,
the price dynamics converge to a stable period-two cycle denoted by the two orange dots.
For b = 10, we observe endogenous price dynamics, albeit trapped in the bull market.
In fact, before the homoclinic bifurcation of the fundamental steady state, depending on
the initial value, the price dynamics fluctuate either between the local maximum value
MAX and its image f(MAX) or between the local minimum value MIN and its im-
age f(MIN). This means that the price dynamics are either trapped in a bull market
JMAX = [f(MAX),MAX] or in a bear market JMIN = [MIN, f(MIN)]. At the ho-
moclinic bifurcation of the fundamental steady state, MIN and MAX are mapped into
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the unstable fundamental steady state F , i.e., when the third iteration is equal to F ,
f(MIN) = F = f(MAX). After the homoclinic bifurcation of the fundamental steady
state, the price dynamics fluctuate between [MIN,MAX], i.e., the price dynamics switch
between bull and bear markets, visible for the case b = 15.

Figure 4: The panels present the evolution of the price in the phase diagram for d = 0.25
and different values of b = 4, 6, 10, 15. The green dots indicate the steady states. The
orange dots indicate the periodic point of the period-two cycle.

4 Moving averages

4.1 The model with moving averages

We now assume that agents take into account price information over the period [t− k, t]
to form their expectation of the current fundamental value. More precisely, they believe
that the current fundamental value reacts to the deviation between the moving average
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of length k + 1, defined as 1
k+1

∑k
i=0 Pt−i, from F .5 Accordingly,

Ft = F + d

(
1

k + 1

k∑
i=0

Pt−i − F

)
= (1− d)F + d

1

k + 1

k∑
i=0

Pt−i (15)

4.2 Analytical results

Combining (1) to (6), and (15) reveals that our model is now driven by a (k+1)-th order
nonlinear deterministic difference equation.

Pt+1 = Pt + a(Ft − Pt)
cg(Ft − Pt)

2 + (ce− b)

1 + e+ g(Ft − Pt)2
, (16)

with Ft = (1 − d)F + d 1
k+1

∑k
i=0 Pt−i.

6 Setting Pt+1 = Pt = Pt−1 = ... = Pt−k = P , we
find that map (16) possesses three steady states: A fundamental steady state given by

FSS⋆ = (P0,⋆, P1,⋆, ..., P−k,⋆) = (F, F, ..., F ) (17)

and two non-fundamental steady states given by

NFSS± = (P0,±, P−1,±, ..., P−k,±) =

(
F ± 1

1− d

√
b− ce

cg
, P0,±, ..., P0,±

)
. (18)

The fundamental steady state always exist whereas the two non-fundamental steady
states only exist for b ≥ ce.

Let us next study the local stability properties of the steady states. The Jacobian
matrix of map (16), evaluated at FSS⋆, yields

J(FSS⋆) =


1 + a

(
1− d

k+1

)
b−ce
1+e

− ad(b−ce)
(k+1)(1+e)

. . . − ad(b−ce)
(k+1)(1+e)

− ad(b−ce)
(k+1)(1+e)

1 0 . . . 0 0

0 1
. . . 0 0

...
...

. . .
...

...
0 0 . . . 1 0

 (19)

from which we get the characteristic polynomial

P (λ) = λk+1 −
(
1 + a

(
1− d

k + 1

)
b− ce

1 + e

)
λk +

ad(b− ce)

(k + 1)(1 + e)
(λk−1 + ...+ 1). (20)

Two necessary local stability conditions require that:

P (1) =
a(1− d)(ce− b)

1 + e
> 0 (21)

(−1)k+1P (−1) =

{
2 +

(
1− d

k+1

)
a (b−ce)

1+e
> 0 if k is even

2 + a b−ce
1+e

> 0 if k is odd
. (22)

5See Chiarella and He (2002) and Chiarella et al. (2006a,b)for economic applications of the moving
average.

6To transform the (k + 1)-th order nonlinear deterministic difference equation, which depends on
the past k + 1 prices Pt, Pt−1, ...., Pt−k, into a map, we introduce k auxiliary variables corresponding to
Pt−1, Pt−2, ..., Pt−k. For clarity, we use these past prices directly as the auxiliary variables.
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The Jacobian matrix of map (29), evaluated at NFSS±, yields

J(NFSS±) =


1− 2ac

(
1− d

k+1

)
b−ce
b+c

2acd(b−ce)
(k+1)(b+c)

. . . 2acd(b−ce)
(k+1)(b+c)

2acd(b−ce)
(k+1)(b+c)

1 0 . . . 0 0

0 1
. . . 0 0

...
...

. . .
...

...
0 0 . . . 1 0

 (23)

from which we get the characteristic polynomial

P (λ) = λk+1 −
(
1− 2ac

(
1− d

k + 1

)
b− ce

b+ c

)
λk − 2acd(b− ce)

(k + 1)(b+ c)
(λk−2 + ...+ 1). (24)

Two necessary local stability conditions require that:

P (1) =
2ac(1− d)(b− ce)

b+ c
> 0 (25)

(−1)k+1P (−1) =

{
2 + 2(1− d

k+1
)ac(ce−b)

b+c
> 0 if k is even

2 + 2ac(ce−b)
b+c

> 0 if k is odd
. (26)

Proposition 3 Map (16) may possess up to three steady states, namely FSS⋆ = (P0,⋆, P−1,⋆..., P−k,⋆) =

(F, F, ..., F ) and NFSS± = (P0,±, P−1,±, ..., P−k,±) =
(
F ± 1

1−d

√
b−ce
cg

, P0,±, ..., P0,±

)
.

FSS⋆ always exists. A necessary condition for FSS⋆ to be locally asymptotically stable is
that ce− 2(1+e)

a(1− d
k+1

)
< b < ce for even k and ce− 2(1+e)

a
< b < ce for odd k. NFSS± exist if

b > ce and lie symmetrically around FSS⋆. A necessary condition for NFSS± to be lo-
cally asymptotically stable is that ce < b < ce+ c(1+e)

−1+ac(1− d
k+1

)
or ce < b and ac(1− d

k+1
) ≤ 1

for even k and ce < b < ce+ c(1+e)
−1+ac

or ce < b and ac ≤ 1 for odd k.

Let us discuss the main economic implications of Proposition 3. Given the difficulty
of analysing a k-dimensional characteristic polynomial, Proposition 3 can at least provide
necessary conditions for the steady state to be locally stable.

� Fundamental steady state. A necessary stability condition requires that b < ce.
Since the non-fundamental steady states emerge at b = ce, this may suggest that a
pitchfork bifurcation may occur at that point.

� Non-fundamental steady state. Non-fundamental steady state prices are the
same as those encountered in the previous section, and in particularly are inde-
pendent of k. Depending on whether k is even or odd, this necessary stability
condition hinges on d. For even k, this necessary condition hinges on d, requiring
that b < ce + c(1+e)

−1+ac(1− d
k+1

)
, decreasing with k. For odd k, this necessary condition

does not hinge on d and is equivalent to the case d = 0, requiring that b < ce+ c(1+e)
−1+ac

.

4.3 Numerical results

We use the same parameter setting as before, presented in Table 1. Figure 5 shows the
bifurcation diagram plotting price versus parameter b for d = 0 (magenta) and d = 0.6
(purple) for different values of k = 0, 1, 2, 3, 10, 15.
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Figure 5: The panels show the bifurcation diagrams in which the price is depicted
versus parameter b for d = 0 (magenta) and d = 0.6 (purple) for different values of
k = 0, 1, 2, 3, 10, 15.
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The bifurcation diagrams were generated using a combination of initial values (P0, P1, . . . , Pk) =
(P⋆, P⋆, . . . , P⋆+0.01), resulting in dynamics that occur only in the bull market before the
homoclinic bifurcation of the fundamental steady state. For the alternative initial val-
ues (P0, P1, . . . , Pk) = (P⋆, P⋆, . . . , P⋆ − 0.01), a mirror version of the bifurcation diagram
would be obtained, i.e., resulting in dynamics that occur only in the bear market before
the homoclinic bifurcation of the fundamental steady state. All bifurcation diagrams have
in common that the price dynamics converge to its fundamental steady state if b < b̃ = 0.2.
At the bifurcation point b = 0.2, the fundamental steady state becomes unstable and two
locally stable non-fundamental steady states emerge. For d = 0.6 and k = 0, the two
non-fundamental steady states are locally stable if they exist since ac(1 − d) = 0.8 < 1.
For d = 0.6 and odd ks, k = 2, k = 10 a period-doubling bifurcation occurs at b = 2.4,
b ≈ 3.87 and b ≈ 2.67, respectively. The two non-fundamental steady states then become
unstable, giving rise to a locally stable period-two cycle. Increasing the value of b leads to
a sequence of period-doubling bifurcations, causing endogenous price dynamics initially
in the bull market, and later in both the bull and bear markets. For d = 0.6 at lower
values of ks, the homoclinic bifurcation of the fundamental steady state occurs for higher
values of parameter b. Note that for d = 0.6, the price dynamics fluctuate in a higher
price range compared to d = 0.

Figure 6 shows the evolution of the price (purple) and the perceived fundamental value
(gray) for d = 0.6 and different values of k = 0, 1, 2, 3, 10, 15.

Figure 6: The panels show the evolution of the price (purple) and the perceived funda-
mental value (gray) for d = 0.6 and different values of k = 0, 1, 2, 3, 10, 15.

For k = 0, the dynamics remain at the non-fundamental steady state. For k = 1, we

14



have endogenous dynamics in the bull market. For k = 2, we observe a period-two cycle
in the bull market. For k = 3, we have endogenous dynamics, switching between the bear
and the bull market. The time span before the price returns to its long-run fundamental
value is 16 time steps on average. In the middle right panel, we observe that the price
fluctuates for a while in the bull market before abruptly switching to the bear market.
It quickly recovers and fluctuates again in the bull market before falling rapidly again.
After a brief peak, the price fluctuates in the bear market. This indicates us that prices
show periods of fluctuation in the bull and bear markets, but that abrupt and rapid shifts
are possible. For k = 10 and k = 15, the perceived fundamental value flattens out and
deviates less strongly from its long-run fundamental value. The average time for the price
to return to its long-run fundamental value is 6 and 5 time steps, respectively.

5 Exponential moving average

5.1 The model with exponential moving average

We now assume that agents believe that the current fundamental value reacts to the
deviation of the average price from F .

Ft = F + d(Xt − F ). (27)

The average price is now modelled as an exponential moving average.7 Accordingly,

Xt = memPt + (1−mem)Xt−1 (28)

is a weighted average of the past average price and the current price, where 0 < mem < 1
is a memory parameter. The lower mem, the higher the weight given to the past average
price. For mem → 1, we have Xt → Pt and for mem → 0, we have Xt → Xt−1.

8 Note
that the case mem → 0 refers to the case where d = 0 and mem → 1 refers to the case
d > 0 in our first core setup.

5.2 Analytical results

Combining (1) to (6), (27), and (28) reveals that our model is now driven by a two-
dimensional nonlinear deterministic map

M :=

{
Pt+1 = Pt + a(Ft − Pt)

cg(Ft−Pt)2+(ce−b)
1+e+g(Ft−Pt)2

Xt+1 = memPt+1 + (1−mem)Xt

, (29)

with Ft = F + d(Xt − F ).
Setting Pt+1 = Pt = P and Xt+1 = Xt = X, we find out that map (29) possesses three

steady states: A fundamental steady state given by

FSS⋆ = (P⋆, X⋆) = (F, F ) (30)

and two non-fundamental steady states

NFSS± = (P±, X±) =

(
F ± 1

1− d

√
b− ce

cg
, F ± 1

1− d

√
b− ce

cg

)
. (31)

7Note: This updating rule of the average price is obtained by the limit case of the geometry decay
process where the memory decay rate tends to infinity.

8See Hommes et al. (2012) for economic applications of the exponential moving average.
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The fundamental steady state always exist whereas the two non-fundamental steady states
only exist for b ≥ ce.

Let us now study the local stability properties of the steady states.
The Jacobian matrix of map (29) evaluated at FSS⋆ yields

J(FSS⋆) =

[
1 + a b−ce

1+e
−ad(b−ce)

1+e

mem
(
1 + a b−ce

1+e

)
1−mem−memad(b−ce)

1+e
)

]
(32)

from which we get the characteristic polynomial

P (λ) = λ2 + a1λ+ a2, (33)

where a1 = −
(
1 + (1−mem) + a(1− dmem) b−ce

1+e

)
and a2 = (1 − mem)

(
1 + a(b−ce)

1+e

)
.

Necessary and sufficient conditions ensuring that the two eigenvalues of (33) are less than
one in modulus are given by (i)1 + a1 + a2 > 0, (ii)1 − a1 + a2 > 0 and (iii)1 − a2 > 0.
Condition (i) requires that

a(1− d)mem(ce− b)

1 + e
> 0. (34)

Condition (ii) requires that

2(1 + (1−mem)) +
a(b− ce)(1 + (1−mem)− dmem)

1 + e
> 0. (35)

Solving for b results in

ce− 2(1 + e)

a(1− mem
1+(1−mem)

d)
< b < ce. (36)

Condition (iii)mem+ a(ce−b)(1−mem)
1+e

> 0 always holds if b < ce.
The Jacobian matrix of map (29) evaluated at NFSS± yields

J(NFSS±) =

[
1− 2ac b−ce

b+c
2acd(b−ce)

b+c

mem
(
1− 2ac b−ce

b+c

)
1−mem+mem

(
2acd(b−ce)

b+c

)] (37)

from which we get the characteristic polynomial

P (λ) = λ2 + a1λ+ a2, (38)

where a1 = −
(
1 + (1−mem)− 2ac(1− dmem) b−ce

b+c

)
and a2 = (1−mem)

(
1− 2ac(b−ce)

b+c

)
.

Condition (i) requires that

2ac(1− d)mem(b− ce)

b+ c
> 0. (39)

Condition (ii) requires that

2 + 2(1−mem) + 2
ac(ce− b)(1 + (1−mem)− dmem)

b+ c
> 0. (40)

Solving for b results in

ce < b < ce+
c(1 + e)

−1 + ac(1− mem
1+(1−mem)

d)
for ac(1− mem

1 + (1−mem)
d) > 1, ce < b otherwise (41)

Condition (iii)mem+ 2ac(b−ce)(1−mem)
b+c

> 0 always holds if b > ce.
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Proposition 4 Map (8) may possess up to three steady states: A fundamental steady
state FSS⋆ = (P⋆, X⋆) = (F, F ) and two non-fundamental steady states NFSS± =

(P±, X±) =
(
F ± 1

1−d

√
b−ce
cg

, P±

)
. The fundamental steady state always exists. For

bPD1 < b < bP , FSS⋆ is locally stable. A period-doubling bifurcation occurs at bPD1 =
ce− 2(1+e)

a(1− mem
1+(1−mem)

d)
. At bP = ce, a pitchfork bifurcation occurs and two non-fundamental

steady states emerge and lie symmetrically around P⋆. NFSS± are locally stable if either
bP < b < bPD2 or bP < b and ac(1− mem

1+(1−mem)
d) ≤ 1. A period-doubling bifurcation occurs

at bPD2 = ce+ c(1+e)
−1+ac(1− mem

1+(1−mem)
d)

if ac(1− mem
1+(1−mem)

d) > 1.

Let us discuss the main economic implications of Proposition 4.

� Fundamental steady state. As in Section 3, the fundamental steady state can
lose its local stability via a period-doubling bifurcation or via a pitchfork bifurcation.
The occurrence of a period-doubling bifurcation requires extreme values of c. At
b = ce a pitchfork bifurcation occurs.

� Non-fundamental steady state. Non-fundamental steady state prices are equal
to those encountered in the previous section, and in particular are independent of
mem. Increasing parameter mem can be beneficial for their local stability. Note
that ce+ c(1+e)

−1+ac
< bPD2 < ce+ c(1+e)

−1+ac(1−d)
, i.e., lying between the two extreme cases

mem → 0 and mem → 1.

5.3 Numerical results

We use the same parameter setting as before, presented in Table 1. The left (right)
panel of Figure 7 shows the bifurcation of price versus parameter b for d = 0, depicted
in magenta, and d = 0.6, depicted in purple, for mem = 0.15 (mem = 0.05). The
bifurcation diagrams were generated using the initial values (P0, X0) = (P⋆ + 0.01, X⋆).
For the alternative initial conditions (P0, X0) = (P⋆ − 0.01, X⋆), a mirrored version of the
bifurcation diagram would be obtained. The price dynamics converge to the fundamental
steady state if b < bP = 0.2. At the bifurcation point b = 0.2, the fundamental steady
state becomes unstable and two locally stable non-fundamental steady states emerge.
For mem = 0.15, mem = 0.05 a period-doubling bifurcation occurs at bPD2 ≈ 2.64,
bPD2 ≈ 2.47 , respectively. By increasing b, a sequence of period doubling bifurcations
occurs, leading to endogenous price dynamics initially only in the bull market and later
in both the bear and bull markets. It is noteworthy that for lower mem, the maximum
value of the price after the homoclinic bifurcation of the fundamental steady state is
lower than endogenous dynamics in the bull market. The reason is that if prices fluctuate
permanently above F , the perceived fundamental value fluctuates at a high level, driving
prices to higher values. After the homoclinic bifurcation of the fundamental steady state,
if mem is sufficiently low, due to a high memory of the average price, the perceived
fundamental value is really close to F , preventing prices from reaching high values.9

9Note that if we increased k further in the model with moving averages we would observe the same
phenomenon.
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Figure 7: The left panel shows the bifurcation diagram plotting price versus parameter
b for d = 0 (magenta) and d = 0.6 (purple) for mem = 0.15. The right panel shows the
bifurcation diagram plotting price versus parameter b for d = 0 (magenta) and d = 0.6
(purple) for mem = 0.05.

The left (right) panel of Figure 8 shows the evolution of the price (purple) and the
perceived fundamental value (gray) for d = 0.6 and mem = 0.15 (mem = 0.05). For
mem = 0.15, the average time span to the price cross F is 13 time steps. In the left
panel, we observe that the price fluctuates for a while in the bull market before gradually
shifting to the bear market, where the price then fluctuates for a while before gradually
rising again. This suggests that the changes between bull and bear markets are not
abrupt. For mem = 0.05, the perceived fundamental value flattens out and deviates less
strongly from its long-run fundamental value. The average time span to the price cross
F is 6 time steps.

Figure 8: The left panel shows the evolution of the price (purple) and the perceived
fundamental value (gray) for d = 0.6 and mem = 0.15. The left panel shows the evolution
of the price (purple) and the perceived fundamental value (gray) for d = 0.6 and mem =
0.05.

6 Conclusion

The starting point of our paper was that agents do not know the true current funda-
mental value. As a workhorse, we used a simple nonlinear model in which speculators
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either opt for a technical or a fundamental trading rule, depending on market conditions.
Following the anchoring and adjustment heuristic of Tversky and Kahneman (1974), we
assumed that agents believe that the current fundamental value fluctuates around the
known long-run fundamental value, serving as an anchor. To adjust their perception,
they use a weighted average of the current price and the long-run fundamental value. It
turns out that a one-dimensional nonlinear map, possessing one fundamental steady state
and two non-fundamental steady states, governs the dynamics of our model. We proved
analytically that an increase in the reaction strength of technical traders can lead to a
sequence of bifurcations, which can cause the price to fluctuate in bull and bear markets
or even diverge. However, if agents have a heightened belief that the current fundamental
value deviates more strongly from its long-run fundamental value, this could cause the
price dynamics to be trapped above or below the fundamental steady states. Numerically,
we showed that when the perception of the fundamental value is not constant, the price
fluctuates in a higher price range and the time span of a bubble is longer.

Then, in a second and third setup, we proposed that the fundamental value perception
is a weighted average between the known long-run fundamental value and an average price
of the k past prices and the exponential moving average. It turned out that price and
perceived fundamental value fluctuate less statically around the long-run fundamental
value.

Conflict-of-interest statement: The author has no relevant financial or non-financial
interests to disclose.
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Appendix A: Proof of Proposition 2

In this appendix, we prove the secondary bifurcations of our core model. Specifically, we
compute the points of the model’s period-two cycle, their local stability condition, the
bifurcation point of the homoclinic bifurcation of the fundamental steady state, and the
bifurcation point of the final bifurcation.

Second iterate

By defining yt := Pt − F , δ = 1 − d and rearranging the terms, we can reformulate map
(8) as follows

yt+1 = yt
Ay2t +B

1 + e+ gδ2y2t
, (42)

with A = (1− acδ)gδ2 and B = 1 + e+ a(b− ce)δ.
The second iterate of this map is then given by

yt+2 = yt
Ay2t +B

1 + e+ gδ2y2t

B + A
y2t (B+Ay2t )

2

(1+e+gδ2y2t )
2

1 + e+ gδ2
y2t (B+Ay2t )

2

(1+e+gδ2y2t )
2

. (43)

Period-two cycles

Setting yt+2 = yt = y, we obtain

y((A− gδ2)y2 +B −D)((A+ gδ2)y2 +B +D)(A2y4 + Cy2 +D2) = 0, (44)

with C = AB + (1 + e)gδ2 and D = 1 + e.
By solving the first two terms with respect to y, we obtain the steady states y⋆ and

y±. By solving the third term with respect to y, we obtain the periodic points of the
period-two cycle, unstable if b > bPD1 10

α± = ±

√
− B +D

A+ gδ2
. (45)

10Note that this period-two cycle only exists if acδ > 2 (if b > bPD1)
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By solving the fourth term with respect to y, we obtain the periodic points of the period-
two cycles, existing if b > bPD2 and are locally stable if b < PD4, i.e., 11

β±,h/l = ± 1√
2

√
−C ±

√
C2 − 4A2D2

A2
. (46)

The partial first-order derivative of map (43), evaluated at β±,h/l, reads

dyt+2

dyt

(
β±,h/l

)
= 1 + 2

(E + c(1 + e− aδE))(−4 + e(−4 + 3acδ) + aδ(c(3 + aδE)− E))

(1 + e)(c(1 + e) + E)(−1 + acδ)
, (47)

with E = b− ce.
This period-two cycle is locally stable if |dyt+2

dyt

(
β±,h/l

)
| < 1, resulting in

ce+
c(1 + e)

−1 + acδ
< b < ce+

(1 + e)

−1 + acδ

(
5 +

√
5
√
5 + 4acδ(acδ − 2)

2aδ
− c

)
. (48)

Homoclinic and final bifurcation

To compute the local maximum yMAX
0 and minimum yMIN

0 , we solve∂yt+1

∂yt
= 0, resulting

in

yMAX,MIN
0 = ± 1√

2

√
−3AD −Bgδ2 +G

Agδ2
, (49)

with G =
√
(AD −Bgδ2)(9AD −Bgδ2).

The corresponding local maximum and minimum values yMAX
1 and yMIN

1 are then

yMAX,MIN
1 = −± 1√

2

A(3AD +G− 3Bgδ2) +
√

−3AD+G−Bgδ2

Agδ2

gδ2(−AD −G+Bgδ2)
. (50)

To obtain the bifurcation point for the homoclinic bifurcation of the fundamental
steady state, the iterate of the local maximum and minimum values should be equal to
the unstable fundamental steady state y⋆ = 0, resulting in

bH = ce+
(1 + e)

−1 + acδ

(
16 + 13acδ(acδ − 2) + 2(4 + 3acδ(−2 + acδ))

3
2

aδ(5 + 4acδ(−2 + acδ))
− c

)
. (51)

To obtain the value for the final bifurcation, we solve yMAX,MIN
1 = α±, resulting in:

bF = ce+
2c(1 + e)

−2 + acδ
. (52)

11Note that this period-two cycle only exists if b > ce+c 1+e
−1+acδ , being the condition that C2 > 4A2D2.

Note C < 0 and A < 0.
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