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Abstract

We explore the impact of fake news on asset price dynamics within the asset-pricing
model of Brock and Hommes (1998). By polluting the information landscape, fake
news interferes with agents’ perception of the dividend process of the risky asset.
Our analysis reveals that fake news decreases the steady-state price of the risky
asset by making it even more risky. Moreover, fake news increases the market share
of agents who use the destabilizing technical trading rule by rendering fundamental
trading more difficult and costly. Instead of converging toward its steady state,
the risky asset’s price may thus be subject to wild fluctuations. As it turns out,
these fluctuations are concentrated below the risky asset’s steady-state price. We
also show that fake news campaigns may allow certain agents to realize fraudulent
profits.
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1 Introduction

We investigate the potential impact of the growing prevalence of fake news on the dy-
namics of financial markets, employing the influential asset-pricing model introduced by
Brock and Hommes (1998) as our analytical framework. Fake news, broadly defined as
false or misleading information presented as genuine, encompasses fabricated stories, dis-
torted facts, and exaggerated claims. This deceptive content proliferates through various
channels, including social media, websites, and traditional news outlets, with the over-
arching goal of manipulating public opinion. See Allcott and Gentzkow (2017), Lazer
et al. (2018), Vosoughi et al. (2018), and Scheufele and Krause (2019) for comprehensive
surveys on the subject of fake news. While Fama (1970) contends that asset prices reflect
their underlying fundamentals, Black (1986) posits that certain speculators engage in
trading based on noise, treating it as if it were information. This approach creates a dis-
connect between asset prices and their fundamental values. Shiller (2017) emphasizes the
power of narratives, specifically popular stories, to go viral and spread globally, exerting
a substantial influence on the economy. According to Shiller (2017), significant historical
events such as the Great Depression, the Dotcom Bubble, and the Great Recession can
be attributed to the prevailing narratives of their respective eras. The observations made
by Kogan et al. (2023), who studied an undercover Securities and Exchange Commis-
sion (SEC) investigation into the manipulation of financial news on social media, are also
noteworthy. They found that fake news has an impact on asset markets, driving prices,
volatility, and trading volume.

Within the asset-pricing model by Brock and Hommes (1998), agents can invest in a safe
asset and a risky asset. Although agents follow technical and fundamental expectation
rules to predict the future price of the risky asset, their trading behavior ensures that
the steady-state price of the risky asset is given by the discounted value of its future
risk-adjusted dividend payments. Moreover, the price of the risky asset approaches its
fundamental value, as long as the market share of agents who use the fundamental expec-
tation rule is sufficiently large. However, agents’ choice of expectation rules depends on the
rules’ past profitability. In addition, the fundamental expectation rule is more costly than
the technical expectation rule, due to the need to analyze and process the fundamentals.
As a result, the risky asset market may become unstable and display complex endogenous
price fluctuations when the costs of using the fundamental expectation rule become too
high. The asset-pricing model by Brock and Hommes (1998) has been extended in several
directions. See Gaunersdorfer (2000), Gaunersdorfer and Hommes (2007), Boswijk et al.
(2007), Gaunersdorfer et al. (2008), Brock et al. (2009), Anufriev and Hommes (2012),
Anufriev and Tuinstra (2013), Hommes et al. (2017), and Hennequin and Hommes (2024)
for examples and Hommes (2006), Hommes and Wagener (2009), Hommes (2013), and
Bao et al. (2021) for reviews. To the best of our knowledge, however, no attempt has
been made to adapt the framework to the presence of fake news.

In this paper, we explore how fake news may impact the dynamics of risky asset markets.
We assume that fake news interferes with agents’ perception of the risky asset’s dividend
process. In particular, fake news abnormally widens the perceived distribution of the
dividend payments of the risky asset and, hence, increases its risk. Moreover, fake news
also increases the costs associated with the fundamental expectation rule, as fundamentals
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themselves are blurred and more obscure in the presence of alternative news. Observe
that this holds even if the fake news is unbiased and does not systematically distort
prices in one direction. Using a mix of analytical and numerical tools, we establish the
following results. First, fake news may depress the steady-state price of the risky asset.
For agents to hold a constant supply of the risky asset in an environment in which fake
news increases the uncertainty surrounding the risky asset, its steady-state price has to
decrease. Second, fake news may inflate the steady-state market share of agents who rely
on the technical expectation rule. Clearly, fake news makes fundamental trading more
costly, which is why more agents may opt for technical trading. Third, an increase in the
steady-state market share of the technical expectation rule may compromise the stability
of the risky asset market. Once this happens, endogenous asset price dynamics set in.1

Fourth, the transition between stable and unstable dynamics may be sharp, i.e., a small
change in a model parameter may cause wild fluctuations of the risky asset’s price. Due to
the coexistence of calm and turbulent attractors, wild fluctuations may also be triggered
by small exogenous shocks. Fifth, the price of the risky asset tends to fluctuate below
the risky asset’s steady-state price. This is caused by the risky asset’s endogenous price
dynamics, which amplifies the asset’s riskiness. Recall that the steady-state price of the
risky asset is already lower than the price in the absence of fake news. Hence the actual
price of the risky asset truly suffers. Finally, fake news campaigns may allow certain
agents to realize fraudulent profits, an aspect that policymakers should rigorously try to
prevent.

Our paper is organised as follows. In Section 2, we develop our model setup, followed by a
presentation of our analytical results in Section 3. After discussing our numerical results
in Section 4, we conclude our paper in Section 5. Appendix A contains our main proofs.
Some robustness checks are conducted in Appendix B.

2 Model setup

In this section, we present our model setup, where we incorporate fake news in the seminal
asset-pricing framework of Brock and Hommes (1998). In Sections 2.1 to 2.4, we discuss
agents’ trading environment, their variance and price beliefs, and their learning behavior.

2.1 Trading environment and asset prices

Each agent i can either invest in a safe asset, paying a risk-free interest rate r, or in a
risky asset, generating an uncertain dividend Dt as a payoff. The true dividend process
of the risky asset is given by

Dt = D + dt, (1)

where D > 0 is a constant dividend component, and dt ∼ N (0, σ2
d) are random dividend

shocks. In this paper, we assume that the way in which agents perceive the dividend
process is additively distorted by a fake news process Ft, i.e.,

D̂t = Dt + Ft, (2)

1As we sill see, endogeneous asset price dynamics may include periodic, quasi-periodic, and chaotic
price patterns.
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where the fake news process follows

Ft = F + ft. (3)

Parameter F ⋚ 0 denotes a (potentially) systematic misperception of dividend payments,
while ft ∼ N (0, σ2

f ) reflects a random misperception of the dividend process. Assuming

that Dt and Ft are independent, we are particularly interested in how parameters F and
σ2
f of the fake news process influence the price dynamics of the risky asset.

Let us derive agents’ demand for the risky asset. The end-of-period wealth of agent i,
W i

t+1, can be expressed as

W i
t+1 = (1 + r)W i

t︸ ︷︷ ︸
safe asset

+Zi
t(Pt+1 +Dt+1 − (1 + r)Pt)︸ ︷︷ ︸

risky asset

, (4)

where Zi
t denotes agent i’s demand for the risky asset and Pt is the (ex-dividend) price

of the risky asset. Agents are myopic mean-variance optimizers. Thus, agent i’s demand
for the risky asset solves the maximization problem

max
Zi
t

Ei
t [W

i
t+1]−

λ

2
V i
t [W

i
t+1], (5)

where λ > 0 is a risk aversion parameter, assumed to be indentical for all agents.2 From
the first-order condition

Ei
t [Pt+1] + Ei

t [D̂t+1]− (1 + r)Pt − λ(V i
t [Pt+1] + V i

t [D̂t+1])Z
i
t = 0, (6)

we obtain agent i’s optimal demand for the risky asset

Zi
t =

Ei
t [Pt+1] + Ei

t [D̂t+1]− (1 + r)Pt

λ(V i
t [Pt+1] + V i

t [D̂t+1])
. (7)

In total, there are N agents. Agents’ expectations with respect to the risky asset’s
dividend payments are homogeneous and given by Ei

t [D̂t+1] = D + F . Moreover, we
assume that agents have identical variance beliefs, captured by V i

t [Pt+1] = σ2
P,t and

V i
t [D̂t+1] = σ2

d + σ2
f . For ease of exposition, let the variance in the denominator of Zi

t

be
σ2
t = σ2

P,t + σ2
d + σ2

f . (8)

By denoting agents’ average price expectation by 1
N

∑N
i=1 E

i
t [Pt+1] = Et[Pt+1], we can

express their aggregate demand for the risky asset as

Zt =
N∑
i=1

Zi
t = N

Et[Pt+1] +D + F − (1 + r)Pt

λσ2
t

. (9)

2As pointed out by an anonymous referee, it might be interesting to explore different trading behaviors
in the future. For instance, the work by Epstein and Schneider (2008) suggests that when ambiguity-
averse agents process news of uncertain quality, they act as if they are taking a worst-case assessment
of the quality. In such a setting, agents react more strongly to bad news than to good news and dislike
assets for which information quality is poor, causing ambiguity premia and excess volatility. See also Bao
et al. (2020) and Liang (2022).
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Note that agents’ aggregate demand for the risky asset increases in line with their price and
dividend expectations, and decreases in line with the risk-free interest rate, the current
price, risk aversion, and the perceived risk. While agents’ aggregate demand increases
(decreases) if parameter F increases (decreases), an increase in parameter σ2

f always
decreases their desire to hold the risky asset.

Market clearing requires that demand and supply for the risky asset are equal, i.e.

Zt = St. (10)

The number of (outside) shares of the risky asset is constant and given by

St = Ŝ = NS, (11)

where S is the average number of available (outside) shares of the risky asset per agent.3

Combining (9), (10) and (11) reveals that the price of the risky asset is

Pt =
Et[Pt+1] +D + F − λσ2

tS

1 + r
. (12)

This price, quite reasonably, increases in line with agents’ price and dividend expectations,
and decreases in line with the risk-free interest rate and the risk premium λσ2

tS. Note that
fake news influences the price of the risky asset via parameters F and σ2

f . In particular,
an increase in σ2

f depresses the price of the risky asset. The rationale behind this line
of thought is that an increase in parameter σ2

f reduces agents’ aggregate demand for the
risky asset. In order for agents to hold the constant number of (outside) shares of the
risky asset, its price has to decrease.

2.2 Homogeneous variance beliefs

As reported in (8), agents’ variance beliefs comprise three components: a dividend com-
ponent, a fake news component, and a price component. We follow Gaunersdorfer (2000)
and model agents’ beliefs about the variance of the risky asset’s price as an exponential
moving average. Agents update their perception of the price variance of the risky asset
in the form of a weighted average of past price variance perceptions and current squared
deviations between the observed price of the risky asset and its average price Ut. Hence,

σ2
P,t = υσ2

P,t−1 + (1− υ)(Pt−1 − Ut−1)
2, (13)

with 0 < υ < 1 as a memory parameter. The average price of the risky asset is also
modeled as an exponential moving average and, similarly

Ut = µUt−1 + (1− µ)Pt−1 (14)

is a weighted average of the past average price of the risky asset and the current observed
price of the risky asset, where 0 < µ < 1 is a memory parameter.

3Brock and Hommes (1998) assume a zero supply of (outside) shares of the risky asset. See Hommes
et al. (2005), Anufriev and Tuinstra (2013), and Mignot et al. (2021) for papers that also assume a
positive supply of (outside) shares of the risky asset.
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2.3 Heterogeneous price beliefs

Agents use simple forecasting rules to predict the price of the risky asset. To keep the
model analytically tractable, following Brock and Hommes (1998) we assume that agents
switch between a fundamental expectation rule, denoted by EF

t [Pt+1], and a technical ex-
pectation rule, denoted by EC

t [Pt+1]. Both expectation rules predict the price of the risky
asset for period t+ 1 at the begining of period t, relying on all the available information
in period t− 1. Agents’ average expectation about the risky asset’s price is defined as

Et[Pt+1] = NC
t E

C
t [Pt+1] +NF

t E
F
t [Pt+1], (15)

where NC
t and NF

t are the market shares of agents who follow the technical and the
fundamental expectation rule, respectively. Note that (15) implies that the number of
agents is large (technically speaking, there is a continuum of agents).

Agents who opt for the technical expectation rule, called chartists, predict that the risky
asset’s current price trend will continue. Their expectation rule is formalized by

EC
t [Pt+1] = Pt−1 + χ(Pt−1 − Pt−2), (16)

where χ > 0 is the strength of extrapolative behavior.

Agents who use the fundamental expectation rule, called fundamentalists, believe that
the price of the risky asset will revert to its fundamental value. Their expectation rule is
formalized by

EF
t [Pt+1] = Pt−1 + ϕ(P ⋆

t−1 − Pt−1), (17)

where 0 < ϕ < 1 is the expected mean reversion speed.

Market participants obtain the fundamental value of the risky asset by discounting (per-
ceived) risk-adjusted dividend payments

P ⋆
t =

D + F − λσ2
tS

r
. (18)

Note that this solution follows from (12) by assuming that Pt = Et[Pt+1] = P ⋆
t . In the

absence of endogenous price dynamics, agents’ fundamental value perception of the risky
asset is given by

P ⋆ =
D + F − λ(σ2

d + σ2
f )S

r
. (19)

In a world without fake news, the fundamental value of the risky asset equals

P ⋆ =
D − λσ2

dS

r
. (20)

In our setup, agents’ steady-state perception of the fundamental value of the risky asset
may obviously be biased due to parameters F and σ2

f .
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2.4 Market shares and learning behavior

The market shares of chartists and fundamentalists depend on the difference in the expec-
tation rule’s fitness, denoted by AC

t and AF
t , respectively. The market share of chartists

is defined as

NC
t =

exp[βAC
t ]

exp[βAC
t ] + exp[βAF

t ]
=

1

1 + exp[β(AF
t − AC

t )]
, (21)

while the market share of fundamentalists is defined as

NF
t = 1−NC

t . (22)

The intensity of choice parameter β > 0 indicates how quickly the mass of agents switches
to the forecasting rule with the highest fitness. If β = 0, then agents do not consider any
difference in the fitness of their expectation rules and, being NC

t = NF
t = 1

2
, agents

are equally divided between extrapolative and fundamental behavior. Clearly, this corre-
sponds to an extreme situation in which all agents randomly pick their expectation rule.
As β tends to infinity, then any difference in the fitness of their expectation rules is taken
into account, and all agents opt for the expectation rule with the highest fitness.

As proposed by Gaunersdorfer et al. (2008), we assume that fitness is measured by risk-
adjusted profits. If net profits seem to be a first natural fitness candidate, using risk-
adjusted profits is consistent with agents’ mean-variance optimization behavior. Thus,
the fitness of the technical expectation rule is equal to

AC
t = (Pt−1 +Dt−1 − (1 + r)Pt−2)Z

C
t−2︸ ︷︷ ︸

realized profit

− λ

2
σ2
t−2(Z

C
t−2)

2︸ ︷︷ ︸
risk adjustment

. (23)

For the fitness of the fundamental expectation rule, we naturally consider two additional
components. First, we take into account an economic indicator, increasing the fitness if
agents observe an increase in mispricing, which asserts that the fitness of the fundamental
expectation rule increases in line with the mispricing of the risky asset. Clearly, agents
believe more strongly in mean reversion when the price of the risky asset is at a distance
from its fundamental value.4 Second, we consider a time-varying cost term in order to
capture the expenditures associated with fundamental trading, which, as just seen, is
more sophisticated and demanding than the straightforward use of technical expectation
rules. Together, this yields

AF
t =(Pt−1 +Dt−1 − (1 + r)Pt−2)Z

F
t−2︸ ︷︷ ︸

realized profit

− λ

2
σ2
t−2(Z

F
t−2)

2︸ ︷︷ ︸
risk adjustment

+α(Pt−1 − P ⋆
t−1)

2︸ ︷︷ ︸
mispricing

−Ct−1︸︷︷︸
costs

,
(24)

where parameter α > 0 controls the strength of the mispricing effect. The demand of
chartists and fundamentalists at time t− 2 is given by

ZC
t−2 =

EC
t−2[Pt−1] +D + F − (1 + r)Pt−2

λσ2
t−2

(25)

4See also Gaunersdorfer (2000), Gaunersdorfer and Hommes (2007), and Franke andWesterhoff (2012).
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and

ZF
t−2 =

EF
t−2[Pt−1] +D + F − (1 + r)Pt−2

λσ2
t−2

, (26)

respectively.

We assume that it becomes increasingly costly for agents to act as fundamentalists when
the uncertainty surrounding the risky asset increases. Roughly speaking, these costs
should be proportional to σ2

t . However, to distinguish the effect of the model’s different
risk components on the dynamics of the risky asset’s market, we prefer the following
formalization

Ct = c1σ
2
d + c2σ

2
f + c3σ

2
P,t, (27)

where c1, c2, and c3 are positive parameters. The first term of (27) reflects costs that
originate from the randomness of the true dividend process. Essentially, this type of costs
is also reflected in the seminal asset-pricing model by Brock and Hommes (1998). The
second term of (27) represents additional costs that arise from the risk associated with
the fake news process. The higher the volatility of fake news, i.e., the higher parameter
σ2
f , the more costly it is to act as a fundamentalist. Note that while policymakers may at-

tenuate these costs by reducing parameter c2, for example, through a counter-information
campaign, it is clearly difficult to act against a flow of inaccurate, sensationalist, and
misleading information about the fair value and prospects of listed firms. For a good
introduction and data, see EUvsDisinfo (2023). The third term of (27) reflects the costs
associated with the endogenous behavior of the risky asset’s price. The more volatile the
price of the risky asset, the more difficult it is to follow the fundamental expectation rule.

3 Analytical results

In this section, we discuss our analytical results. In particular, we are interested in how
an increase in the intensity of fake news affects the steady-state price of the risky asset,
agents’ steady-state distribution across expectation rules, and the local stability of the
risky asset market.

The following proposition, proven in Appendix A, summarizes our insights.

Proposition 1 The deterministic skeleton of our model is driven by a 10-dimensional
nonlinear map. This map possesses a unique steady state at which

P = P ⋆ = U =
D + F − λ(σ2

d + σ2
f )S

r
, σ2

P = 0

and

NC =
1

1 + exp[−β(c1σ2
d + c2σ2

f )]
.

For χ < 1 + r, the model’s steady state is locally stable, while for χ > 2(1 + r), its steady
state is unstable. For 1+ r < χ < 2(1+ r), the model’s steady state is locally stable if and

only if β(c1σ
2
d + c2σ

2
f ) < log

[
1+r

χ−(1+r)

]
. A violation of this condition is associated with a

Neimark-Sacker bifurcation.
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Let us discuss the main economic implications of Proposition 1.

• Steady state: Fake news may affect the model’s steady state as follows. An increase
(decrease) in parameter F increases (decreases) the steady-state price of the risky
asset. For instance, if agents overestimate the risky asset’s dividend payments due to
F > 0, then the asset’s steady-state is overvalued. Remarkably, however, even if fake
news injects no systematic bias in the mean perception of the risky asset’s dividend
payments, i.e. F = 0, an increase in parameter σ2

f inflates the risk premium of the
risky asset and therefore decreases its steady-state price. Moreover, an increase in
parameter σ2

f raises the costs of acting as a fundamentalist, and thus boosts the
steady-state market share of chartists.

• Local stability: Fake news may destabilize the nature of the steady state of our
model. As shown in Appendix A, the steady state’s local stability condition requires
that NCχ < 1 + r from which we can derive the following conclusions. For β = 0,
we have NC = NF = 1

2
. Thus, if χ > 2(1 + r), then the steady state is unstable.

For β → ∞, we have NC → 1 and NF → 0. Thus, if χ < 1 + r, then the steady
state is locally stable. For 1 + r < χ < 2(1 + r), we can deduce from Proposition
1 that an increase in β(c1σ

2
d + c2σ

2
f ) might compromise the local stability of the

steady state via a Neimark-Sacker bifurcation. In fact, an increase in β(c1σ
2
d+ c2σ

2
f )

causes an increase in NC , and thus chartists’ destabilizing market impact becomes
too strong. To be more precise, an increase in parameter β makes it more likely at
the steady-state that agents will opt for the technical expectation rule, which has
a higher fitness due to lower costs. Parameters σ2

d and σ2
f increase the risky asset’s

uncertainty and the costs related to the fundamental rule. However, a decrease in
parameter c1 and/or c2 might re-establish the steady state’s local stability. Likewise,
we can deduce from Preposition 1 that an increase in 1+r

χ−(1+r)
makes it more unlikely

that the local stability of the steady state becomes compromised via a Neimark-
Sacker bifurcation. While a higher extrapolation strength χ is harmful for the local
stability of the steady state, a higher interest rate r is beneficial for the steady
state’s local stability.

As we will see in the next section, we may observe the emergence of endogenous asset price
dynamics when the Neimark-Sacker bifurcation occurs. However, the Neimark-Sacker bi-
furcation may be supercritical or subcritical. In the former case, we will see that the
risky asset market becomes unstable at the Neimark-Sacker bifurcation and that the am-
plitude of the risky asset’s price dynamics gradually increases in line with parameter σ2

f .
In the latter case, it seems that the Neimark-Sacker bifurcation may be accompanied by
a Chenciner bifurcation, i.e., our model may give rise to coexisting attractors before the
Neimark-Sacker bifurcation occurs.5 For initial values in the neighborhood of the steady
state, we may observe stable asset price dynamics, whereas for initial conditions at a
greater distance from the steady state, we may observe endogenous asset price fluctua-
tions. Such cycles may emerge with a significant amplitude. All the previous analytical
results support the economic intuition that fake news may not only depress the price of
the risky asset, even if no systematic bias is added, through the additional risk perceived
by mean-variance traders, but can also ignite episodes of wide endogenous fluctuations

5The dimension of our model precludes an analytival treatment of the Chenciner bifurcation.
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described by the bifurcations mentioned above.

4 Numerical results

In this section, we numerically illustrate the model’s analytical properties and study its
out-of-equilibrium behavior. In Section 4.1, we introduce our base parameter setting. In
Sections 4.2 to 4.5, we discuss different cases of fake news. Finally, we simulate the effects
of a number of different fake news campaigns in Section 4.6.

4.1 Base parameter setting

Table 1 presents our base parameter setting. We have selected these parameter values to
best visualize the effects of fake news. Accordingly, the steady-state price of the risky asset
is equal to P = 93. Since the market share of agents using the extrapolative expectation
rule is given by NC ≈ 0.97, it follows from Proposition 1 that the steady state of our
model is unstable.6

parameter economic meaning
r = 0.1 interest rate
D = 10 mean dividend payment
F = 0 mean misperception
λ = 0.1 risk aversion parameter
S = 1 average number of (outside) shares
σ2
d = 2 variance of the dividend process

σ2
f = 5 variance of the fake news process

υ = 0.9 memory parameter price volatility
µ = 0.9 memory parameter average price
χ = 1.2 strength of extrapolative behavior
ϕ = 0.8 expected mean reversion speed
β = 1 intensity of choice parameter
α = 1 misalignment parameter
c1 = 0.5 costs parameter dividend process
c2 = 0.5 costs parameter fake news process
c3 = 0.5 costs parameter price volatility

Table 1: Parameter setting.

To explain the functioning of our model, we consider four cases of fake news, summarized
in Table 2. In Case I, we only restrict our attention on a single channel of propagation
of fake news, namely the impact of parameter σ2

f on the risky asset’s variance σ2
t . To

put it differently, Case I rests on the assumption that c2 = c3 = σ2
P,t = 0. In Case II,

we additionally consider the parametrization where fake news increases the costs of being
a fundamentalist. This effect could be controlled via parameter c2. In Case III, we add

6For σ2
f = 0, we have that P = 98 and NC ≈ 0.73. In the abscence of fake news, the steady state of

our model is locally stable.
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to our analysis the parametrization where agents’ update their variance beliefs via the
price dynamics of the risky asset, permitting σ2

P,t to be positive. Case IV covers our
entire model, i.e., we there also consider the parametrization where the costs of being a
fundamentalist depend on the variance of the risky asset’s price. This link is established
via parameter c3. See Appendix B for some additional simulations.

Parameter Case I Case II Case III Case IV
σ2
f + + + +

c2 0 + + +
σ2
P,t 0 0 + +

c3 0 0 0 +

Table 2: Four cases of fake news.

4.2 Case I

In Case I, we consider the parametrization where fake news only affects agents’ variance
beliefs via parameter σ2

f , i.e., we set c2 = 0, c3 = 0, and σ2
P,t = 0. Figure 1 shows two

bifurcation diagrams in which we depict the risky asset’s price (left panel) and the market
share of chartists (right panel) versus parameter σ2

f . Since c2 = 0, parameter σ2
f has no

influence on the level of chartists’ market share, which remains constant at NC ≈ 0.73. As
it is already clear from Proposition 1, parameter σ2

f does not constrain the local stability
of the steady state. However, the price of the risky asset decreases in line with parameter
σ2
f , namely from 98 to 93. In fact, an increase in parameter σ2

f decreases agents’ demand
for the risky asset due to an increase in perceived risk. To then in return hold the constant
number of (outside) shares of the risky asset, its price has to decrease.

Figure 1: Case I. The left panel shows a bifurcation digram in which the risky asset’s
price is depicted versus parameter σ2

f . The right panel shows a bifurcation diagram in
which the market share of chartists is depicted versus parameter σ2

f .
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4.3 Case II

In Case II, we assume that agents’ variance beliefs and the costs of using the fundamental
expectation rule are independent of the risky asset’s price variance, i.e., we set σ2

P,t = 0
and c3 = 0. Figure 2 presents our results.

Figure 2: Case II. The top-left panel shows a bifurcation diagram in which the risky
asset’s price is depicted versus parameter σ2

f . The bottom-left panel shows a bifurcation
diagram in which the market share of chartists is depicted versus parameter σ2

f . The
top-right panel shows the evolution of the risky asset’s price in the time domain. The
bottom-right panel shows the risky asset’s price in period t versus its price in period t+1.

As it can be seen from the bifurcation diagram in the bottom-left panel, the market share
of chartists increases in line with parameter σ2

f and, consequently, constrains the local
stability of the steady state. The steady state loses its local stability for σ2

f ≈ 2.796, at

which NC ≈ 0.917. At this point, as it is visible from the bifurcation diagram depicted in
the top-left panel, endogenous asset price dynamics set in. As is typical for a supercritical
Neimark-Sacker bifurcation, the amplitude of the dynamics is initially small and then
increases in line with the bifurcation parameter. In the top-right panel, we depict the
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evolution of the risky asset’s price in the time domain. The price of the risky asset
oscillates around its steady-state value P = 93, represented by the dashed green line. The
bottom-right panel presents the dynamics of our model in the (Pt+1, Pt) state space. The
emergence of a closed orbit (purple ring) is typical for cyclical dynamics. The green dot
marks the position of the risky asset’s steady-state price.

4.4 Case III

In Case III, we assume that agents’ perception of price variance has no impact on the
costs of using the fundamental expectation rule, i.e., we set c3 = 0. Figure 3 presents our
results.

Figure 3: Case III. The top-left panel shows a bifurcation diagram in which the risky
asset’s price is depicted versus parameter σ2

f . The bottom-left panel shows a bifurcation
diagram in which the market share of chartists is depicted versus parameter σ2

f . The
top-right panel shows the evolution of the risky asset’s price in the time domain. The
bottom-right panel shows the risky asset’s price in period t versus its price in period t+1.

As it is clear from the bottom-left panel, the steady state loses its stability via a su-
percritical Neimark-Sacker bifurcation at the same value of parameter σ2

f as in Case II.
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Here, however, the risky asset’s average price fluctuates ceteris paribus at a lower level
(top-left panel). Note also that the market share of chartists definitely drops to lower
levels in some cases (bottom-left panel). The top-right panel shows the evolution of the
price of the risky asset in the time domain, with the dashed green line representing the
steady-state price, the orange dashed line indicating the average price, and the gray line
depicting the perceived fundamental value. Unlike in Case II, the perceived fundamental
value fluctuates around an average of 90.86, at a lower level than the steady-state price
P = 93, since agents’ perception of price variance of the risky asset increases its risk
premium.

4.5 Case IV

Case IV, portrayed in Figure 4, reflects the dynamics of our full model.

Figure 4: Case IV. The top-left panel shows a bifurcation diagram in which the risky
asset’s price is depicted versus parameter σ2

f . The bottom-left panel shows a bifurcation
diagram in which the market share of chartists is depicted versus parameter σ2

f . The
top-right panel shows the evolution of the risky asset’s price in the time domain. The
bottom-right panel shows the risky asset’s price in period t versus its price in period t+1.
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Again, the steady state loses its local stability at the same value of parameter σ2
f , as in

Cases II and III. Differently from Case III, the transition between stable dynamics and
endogeneous fluctuations occurs abruptly (left panels) and the model’s dynamics becomes
more irregular (right panels). Obviously, a tiny change in one of the model’s parameter
may have a drastic effect on the behavior of the risky asset’s market. Figure 4 suggests
that we now observe a subcritical Neimark-Sacker bifurcation accompanied by a Chenciner
bifurcation.7

Figure 5 and 6 explore this issue in more detail. Let us start with Figure 5. The left
panel shows a bifurcation diagram in which the price of the risky asset is plotted against
parameter σ2

f , and the right panel shows a bifurcation diagram in which the market share
of chartists is plotted against parameter σ2

f . In contrast to the bifurcation diagrams
reported in Figure 4, however, this time we have selected initial conditions that are at a
greater distance from our model’s steady state. As a result, endogenous fluctuations now
set in at σ2

f ≈ 1.959 instead of at σ2
f ≈ 2.796.

Figure 5: Bifurcation diagrams. The left (right) panel shows a bifurcation diagram in
which the risky asset’s price (the market share of chartists) is depicted versus parameter
σ2
f for an inital value of P0 = P + 2.

Let us now turn to Figure 6. The top-left panel shows the evolution of the price of the
risky asset in the time domain for σ2

f = 2.75. Clearly, the risky asset market may even
display endogenous dynamics before the Neimark-Sacker bifurcation occurs. The top-right
panel shows a basin of attraction plot for σ2

f = 2.75. Here we vary P0 and X0 as initial
values on the axis.8 All other state variables correspond to their steady-state values. The
light purple area visualizes initial value combinations that converge toward the model’s
steady state. Note that there exists a ”small” area around the steady state, yielding a
convergence toward the model’s steady state. However, there are also combinations that

7See also Agliari (2006), Gaunersdorfer et al. (2008), Neugart and Tuinstra (2003), and Lines and
Westerhoff (2010, 2012).

8Note that Pt = Xt−1.
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are more distant from the model’s steady state, which produce stable dynamics. The cyan
colored area visualizes initial value combinations that generate endogenous dynamics, as
portrayed in the top-left panel. The pink colored area represents initial value combinations
for which the model’s dynamics is divergent.

Figure 6: Basins of attraction. The top-left (bottom-left) panel shows the evolution
of the risky asset’s price in the time domain for an inital value of P0 = P + 2 and
σ2
f = 2.75 (σ2

f = 2.00). The top-right (bottom-right) panel shows the basin of attraction
for σ2

f = 2.75 (σ2
f = 2.00) for different combinations of initial value (X0, P0).

Obviously, the coexistence of attractors allows intriguing attractor switching dynamics in
the presence of (occasional) random disturbances. For instance, even a tiny exogenous
shock may force the system out of the basin of attraction that yields stable dynamics,
resulting in a volatility outburst. The bottom-left panel shows the evolution of the price
of the risky asset in the time domain for σ2

f = 2.00. It becomes clear that endogenous
dynamics might occur ”well” before the Neimark-Sacker bifurcation. The bottom-right
panel shows a basin of attraction plot for σ2

f = 2.00. Once more, the light purple area,
the cyan area, and the pink area correspond to convergent, endogenous, and divergent
dynamics, respectively. If the area of initial value combinations converging toward the
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model’s steady state has increased compared to σ2
f = 2.75, there are still initial value

combinations that generate endogenous dynamics.9

4.6 Fake news campaigns

In this section, we study the consequences of a number of different fake news campaigns,
depicted in Figure 7 and 8. According to the empirical evidence provided by Arcuri
et al. (2023), Kogan et al. (2023), and Karppi and Crawford (2016), fake news campaigns
may have an impact on risky asset markets, manipulating prices, volatility, and trading
volume.

Figure 7: The impact of fake news campaigns. The panels show the evolution of the risky
asset’s price for different fake news campaigns in the time domain. Left panel: Between
t = 251 and t = 500, parameter F gradually increases from 0 to 0.5. Between t = 501
and t = 750, parameter F gradually decreases from 0.5 to 0. Parameter σ2

f is equal to 3.
Right panel: Between t = 251 and t = 500, parameter σ2

f gradually increases from 3 to 7.
Between t = 501 and t = 750, parameter σ2

f gradually decreases from 7 to 3. Parameter

F is equal to 0.

In the left panel of Figure 7, we assume that a fake news campaign initially manages to
gradually increase parameter F from 0 to 0.5 between t = 251 and t = 500. Between
t = 501 and t = 750, however, the fake news campaign ebbs away and parameter F
gradually decreases from 0.5 to 0. Parameter σ2

f is equal to 3. Obviously, fake news
campaigns may create bubbles. Provided that the costs of fake news campaigns are not
too high, it is clear that they allow certain agents to realize fraudulent profits. In the right
panel of Figure 7, we assume that parameter σ2

f gradually increases from 3 to 7 between
t = 251 and t = 500, while parameter σ2

f gradually decreases from 7 to 3 between t = 501

and t = 750. Parameter F is equal to 0. As it can be seen, fake news campaigns that

9Once again: a word of caution is in order. The dynamics of our model is driven by the iteration of
a 10-dimensional nonlinear map. The projection of the basins of attraction visible here only cover two
dimensions.
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target parameter σ2
f may also create exploitable crashes. Of course, such bubbles and

crashes may have further repercussions. For instance, the banking sector of an economy
may suffer from a sharp crash, putting the whole economy at risk. Clearly, policymakers
need to be aware of the potential dangers associated with fake news campaigns.

Figure 8: Abrupt (flash) crashes and fake news campaigns. The panels show the evolution
of the risky asset’s price for different fake news campaigns in the time domain, assuming
that parameter σ2

f is equal to 2. Left panel: Between t = 241 and t = 250, parameter F

gradually decreases from 0 to -0.19. Between t = 251 and t = 260, parameter F gradually
increases from -0.19 to 0. Right panel: Between t = 241 and t = 250, parameter F
gradually decreases from 0 to -0.217. Between t = 251 and t = 260, parameter F gradually
increases from -0.217 to 0.

Figure 8 illustrates how fake news campaigns can trigger abrupt (flash) crashes.10 In
the left panel of Figure 8, we observe a scenario where a fake news campaign gradually
decrease parameter F from 0 to -0.19 between t = 241 and t = 250. Subsequently,
between t = 251 and t = 260, the influence of the fake news campaign diminishes, and
parameter F gradually returns to its base value. Given that parameter σ2

f equals 2,
multiple attractors coexist, as discussed in Figures 5 and 6. Initially, the initial value
combination causes the risky asset’s price to converge to its steady state. However, due
to the fake news campaign, the risky asset’s price plummets from 96 to 86.71 between
t = 240 and t = 271, before gradually recovering. Instead of returning to its steady state,
the risky asset’s price experiences endogenous fluctuations, remaining below its steady
state on average. Similarly, in the right panel of Figure 8, we examine another fake news

10As recounted by Karppi and Crawford (2016), on Tuesday, April 23, 2013, at 1:07 PM ET, a tweet
with the alarming message ”Breaking: Two Explosions in the White House and Barack Obama is injured”
surfaced on the official Associated Press Twitter account. Within mere moments, the S&P experienced a
staggering loss of approximately $136 billion. The swift dissemination of the tweet quickly revealed itself
to be the result of a malicious hack of the Associated Press Twitter account. Mirroring the rapid onset
of the crash, the S&P swiftly rebounded to its prior position. Remarkably, this entire sequence of events
unfolded in less than five minutes. See Jacob Leal et al. (2016) and Jacob Leal and Napoletano (2019)
for a deeper analysis and modeling of flash crashes.
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campaign that reduces parameter F from 0 to -0.217 between t = 241 and t = 250, only to
return it to its base value between t = 251 and t = 260. Again, parameter σ2

f is set to 2. In
contrast to the left panel of Figure 8, the initial value combination in this scenario leads to
endogenous asset price dynamics. As a consequence of the fake news campaign, the risky
asset’s price drops from 94.68 to 84.98 between t = 240 and t = 265. Subsequently, the
risky asset price recovers, eventually fluctuating around the same price level as before the
onset of the fake news campaign. Accordingly, financial markets burdened with a lot of
(unbiased) fake news could have potentially serious breakdowns if even slight systematic
shifts in the perception of the dividend process emerge.

5 Conclusions

The goal of our paper was to explore how fake news may influence the behavior of risky
asset markets. As a workhorse, we used the seminal asset-pricing model by Brock and
Hommes (1998). In particular, we assumed that fake news interferes with agents’ per-
ception of the risky asset’s dividend process and renders the use of the fundamental
expectation rule more costly. Our starting point was that fake news pollutes the informa-
tion landscape, blurring the prospects of firms and, consequently, inducing (large) shifts
of forecasted dividend payments. As a result, trading in equities becomes more risky, an
aspect that decreases the steady-state price of risky assets. Observe that, slightly para-
doxically, this may also be true even if fabricated or otherwise inaccurate and misleading
news has a positive tone because the additional uncertainty surrounding the stock always
has negative effects.

By increasing the effective costs of fundamental trading, more agents opt for the tech-
nical trading rule, an aspect that tends to destabilize the dynamics of the risky asset
market. Importantly, the transition from stable dynamics to unstable dynamics may oc-
cur abruptly because a tiny change in a model parameter may cause drastic asset price
fluctuations. Due to this endogenous risk component, the price fluctuations of the risky
asset are concentrated below the risky asset’s steady-state price.

Our model can be of use to the policymaker, showing that the most harmful effects of
fake news are mainly related to a perceived exaggerated volatility that impacts risk-averse
traders, makes fundamental analysis more difficult and costly, and ultimately depresses
prices. Moreover, more agents embrace the cheaper technical expectation rule, increasing
the potential to endogenously sustain large price swings. As the pernicious effects of
fake news is channeled mostly through volatility, it would perhaps be hard to offset the
damage through debunking campaigns or the provision of different, and more accurate,
news or interpretations, as this additional source is likely to further increase the volatility
of the information available to traders, if for no other reason because there is yet another
source to scan and digest. Perhaps this vicious circle can realistically only be broken if
fact-checking and truthful news is issued by extremely trustworthy institutions. In this
case, differential trust may allow agents to retain only some (accurate) news and discard
the other (fake) news. In the context of our model, this would mean that the overall role
of Ft is undermined. Otherwise, the impact of fake news, as documented in our paper,
may heaviliy impact the dynamics of financial markets and encourage fraudulent behavior
for monetary or polytical purposes.
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Appendix A

We now prove Proposition 1. LetMC
t = NC

t+1, B
C
t = AC

t+1 and BF
t = AF

t+1. The absence of
exogenous shocks, i.e. dt = 0 and ft = 0, implies that Dt = D and Ft = F . The dynamics
of our model is then driven by the 10-dimensional first-order non-linear deterministic map:

M :=



Pt =
Pt−1+MC

t−1χ(Pt−1−Xt−1)+(1−MC
t−1)ϕ

(
D+F−λσ̃2

t S

r
−Pt−1

)
+D+F−λσ2

t S

1+r

σ2
P,t = υσ2

P,t−1 + (1− υ)(Pt−1 − Ut−1)
2

Ut = µUt−1 + (1− µ)Pt−1

MC
t = 1

1+exp[β(BF
t −BC

t )]

Xt = Pt−1

Yt = Xt−1

Vt = Ut−1

Wt = Vt−1

σ̃2
P,t = σ2

P,t−1

˜̃σ
2
P,t = σ̃2

P,t−1

, (28)

where Xt, Yt, Vt Wt, σ̃
2
P,t, and ˜̃σ

2
P,t are auxiliary variables. Moreover,

σ2
t = σ2

d + σ2
f + υσ2

P,t−1 + (1− υ)(Pt−1 − Ut−1)
2,

σ̃2
t = σ2

d + σ2
f + υσ̃2

P,t−1 + (1− υ)(Xt−1 − Vt−1)
2,

˜̃σ
2
t = σ2

d + σ2
f + υ ˜̃σ

2
P,t−1 + (1− υ)(Yt−1 −Wt−1)

2,

BC
t = (Xt−1+χ(Xt−1−Yt−1)+D+F−(1+r)Pt−1)(D−F+2Pt−(1+r)Pt−1−Xt−1−χ(Xt−1−Yt−1))

2λσ̃2
t

,

BF
t =

(
Xt−1+ϕ

(
D+F−λ˜̃σ

2

t S

r
−Xt−1

)
+D+F−(1+r)Pt−1

)(
D−F+2Pt−(1+r)Pt−1−Xt−1−ϕ

(
D+F−λ˜̃σ

2

t S

r
−Xt−1

))
2λσ̃2

t
+

α
(
Pt − D+F−λσ2

t S
r

)2
− (c1σ

2
d + c2σ

2
f + c3(υσ

2
P,t−1 + (1− υ)(Pt − Ut−1)

2)).

Setting P = P ⋆
t = Pt = Pt−1 = Xt−1 = Yt−1, σ2

P = σ2
P,t = σ2

P,t−1 = σ̃2
P,t−1 = ˜̃σ

2
P,t−1,

U = Ut = Ut−1 = Vt−1 = Wt−1 and NC = MC = MC
t = MC

t−1, we find that map M possesses
the unique steady state

S = (P , σ2
P , U,MC , X, Y , V ,W, σ̃2

P , ˜̃σ
2
P )

=

(
D + F − λ(σ2

d + σ2
f )S

1 + r
, 0, P ,

1

1 + exp[−β(c1σ2
d + c2σ2

f )]
, P , P , P , P , 0, 0

)
.

(29)

Tedious computation reveals that the characteristic polynomial of the Jacobian matrix,
evaluated at the steady state S, can be expressed by

P (κ) = κ6(κ− υ)(κ− µ)(κ2 + a1κ+ a2) (30)
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where a1 =
(ϕ−1)(1−NC)−(1+χ)NC

1+r
and a2 =

NCχ
1+r

.

The characteristic polynomial gives rise to ten eigenvalues. Since six eigenvalues are equal
to zero, say κ1 = κ2 = κ3 = κ4 = κ5 = κ6 = 0, one eigenvalue is equal to υ, say κ7 = υ,
and one eigenvalue is equal to µ, say κ8 = µ, the local stability of the steady state S hinges
on the two remaining eigenvalues, say κ9 and κ10, determined by (κ2 + a1κ + a2) = 0.11

Necessary and sufficient conditions assuring that κ9 and κ10 are less than one in modulus
are given by (i) 1 + a1 + a2 > 0, (ii) 1− a1 + a2 > 0, and (iii) 1− a2 > 0. Conditions (i)
and (ii) are always fullfilled.12 Condition (iii) requires that

NCχ < 1 + r. (31)

Solving for β(c1σ
2
d + c2σ

2
f ), we obtain

β(c1σ
2
d + c2σ

2
f ) < log

[
1 + r

χ− (1 + r)

]
. (32)

A violation of this stability condition is associated with the emergence of a Neimark-
Sacker bifurcation. See Medio and Lines (2001) for a review. Numerically, we can observe
that a Neimark-Sacker bifurcation is either supercritical or subcritical. In the latter case,
our simulations are consistent with the presence of a Chenciner bifurcation.

Appendix B

In this appendix, we investigate how the behavioral parameters β and χ influence the dy-
namics of our model. We maintain the same parameter setting configuration as presented
in Table 1. For conciseness, our focus is on Case I and Case IV.

In Case I, the parameter σ2
f simply affects the perceived variance of the risky asset’s

dividend process, resulting in a decrease in its price without impacting its local stability.
The top-left (top-right) panel of Figure 9 displays a bifurcation diagram depicting the risky
asset’s price (the market share of chartists) against the intensity of choice parameter β.
While parameter β does not alter the steady-state price of the risky asset, which remains
at P = 93, an increase in parameter β leads to a rise in the steady-state market share
of chartists. This is due to the lower costs associated with the technical trading rule
compared to the fundamental trading rule. The steady state loses it local stability at β ≈
2.398, a value being considerably higher than β = 1 used in the benchmark setting. The
bottom-left (bottom-right) panel of Figure 9 illustrates a bifurcation diagram showing the
risky asset’s price (the market share of chartists) versus the trend-extrapolation parameter
χ. Parameter χ does not affect the steady-state price of the risky asset or the steady-
state market share of chartists. However, an increase in chartists’ extrapolation strength
adversely impacts the stability of the risky asset market. Notably, the steady state loses
it local stability at χ ≈ 1.505. Figure 9 suggests that we observe a supercritical Neimark-
Sacker bifurcation. The amplitude of the dynamics starts small and then increases in
accordance with the bifurcation parameters β and χ.

11Since 0 < υ < 1 and 0 < µ < 1, eigenvalues κ7 and κ8 do not comprise the local stability of the
steady state S.

12For completness, note that condition (i)ϕ(1−NC)+r
1+r > 0 and (ii) 2(1+NCχ)−ϕ(1−NC)+r

1+r > 0 always hold.
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Figure 9: : Robustness checks for Cases I. The top panels display bifurcation diagrams
depicting the risky asset’s price (left) and the market share of chartists (right) against
parameter β. The bottom panels illustrate the same for parameter χ.

Case IV encompasses our full model. The top-left (top-right) panel of Figure 10 displays
a bifurcation diagram depicting the risky asset’s price (the market share of chartists)
against the intensity of choice parameter β. In this scenario, the steady-state loses its
local stability at β ≈ 0.685, being smaller than β = 1 used in the benchmark setting. The
bottom-left (bottom-right) panel of Figure 10 presents a bifurcation diagram illustrating
the risky asset’s price (the market share of chartists) versus the extrapolation parameter
χ. As predicted by Proposition 1, the steady-state loses its local-stability at χ ≈ 1.133.
Figure 10 suggests that we now observe a subcritical Neimark-Sacker bifurcation. Unlike
Case I, the transition between stable and endogenous fluctuations occurs abruptly.
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Figure 10: : Robustness checks for Cases IV. The top panels display bifurcation diagrams
depicting the risky asset’s price (left) and the market share of chartists (right) against
parameter β. The bottom panels illustrate the same for parameter χ.
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