WS-BPEL prototype for performing
ebXML BPSS One-Action BusinessTransactions

Andreas Schonberger
Distributed and Mobile Systems Group
Otto-Friedrich-University of Bamberg
Bamberg, Germany
Email: andreas.schoenberger @uni-bamberg.de

1. Introduction

ebXML BPSS (ebBP) [1] is a dedicated B2Bi choreog-
raphy standard that allows for the specification of B2Bi
processes in a declarative and technology-agnostic way.
ebBP’s core concepts are so-called BusinessTransactions
(BC) and BusinessCollaborations (BC). BTs are used to
specify the exchange of up to two business documents.
Integration partners change the state of their integration
systems consistently by performing BTs. BCs then can
be created by choreographing BTs. Due to its declarative
nature, ebBP is well-suited as means for agreement between
integration partners. Note that this is not an easy task as
B2Bi projects necessitate the participation of personnel with
widely varying skills and vocabulary (different enterprises,
business analysts and software architects). ebBP does not
specify technical details for performing BCs/BTs in order
to allow for different implementation technologies, say Web
services, AS2 [2] or ebMS [3], [4].
The prototype presented is implemented using Web services
and WS-BPEL [5] technology. This is beneficial in terms
of overcoming platform heterogeneity and wrapping legacy
systems. Integration architecture plays an important role
in the design of an ebBP BT execution prototype. In [6],
a distributed integration architecture for performing ebBP
choreographies has been proposed. Its core characteristics
are modularization and separation of control flow logic from
business logic. For each ebBP BT/BC a separate set of so-
called control processes is applied for implementing control
flow and for dealing with distributed computing issues. In
order to handle legacy systems, business logic is assumed to
be encapsulated by backend systems. The backend systems
signal the need for new BT/BC executions to the control
processes which in turn call back the backends’ business
document creation and validation facilities. The interaction
between control processes and backends of an integration
partner is assumed to be safe in the sense that messages do
not get lost due to unreliable media or system crashes.
Figure 1 shows a modularized integration scenario of two
integration partners A and B. At the BC level, there is a
backend component as well as a control process for each

- Start 7 Initialization v Start
(= 0 ©
k> g — |ig 5
5 |Ready | O o &2
g [(=% =
Request | O s - o
<;:_~ BC.(S\/B i % Initialize Next BCA/BTA % -
5 8 8 | o £
CA/BTA
a B BCA/BTA &
started | <C o T r‘t/dé A
- = starte
5 &
& &
Process Result Update,
Request 3
BCA/BTA| Agree on Next BCA/BTA
2 /!
Initiglize Next BCA/BTA
—
BCA/BTA BCA/BTA
started started
N
e, ComputeResult D
—_—

Unsecure Communication :
Safe Environment

(dotted line)

Safe Environment
(dotted ling -~)

Partial Error
Heterogeneity
(broken arrows %)

Figure 1. Modularized B2Bi integration scenario

integration partner (long vertical boxes). Partner A starts
out with detecting the need for performing the agreed-upon
BC. Accordingly, A’s backend sends a Start message to A’s
control process which, in turn, initiates the BC together with
B’s control process. B’s control process notifies B’s backend
that a new BC instance has been started. Subsequently, A’s
backend gets notified that the collaboration initialization has
been finished and then requests the execution of a lower level
BT. The control processes then negotiate BT parameters like
an instance identifier or a time limit and pass on control to
the lower level BT control processes (presented within the
oval forms) which eventually produce a result value. This

result value is then used for routing the control flow. In
this fashion, BTs defined in the ebBP choreography will be
performed until an end state has been reached.

While this scenario leaves out several details about
BC level control process interaction, it provides the
context for the ebBP BT execution prototype. For
more research work on performing B2Bi choreographies
as WS-BPEL processes, see http://www.uni-bamberg.de/
pi/mitarbeiter/schoenberger/ or http://www.big.tuwien.ac.at/
staff/chuemer.html?area=publications

2. Abstract Execution Model

The prototype implements an ebBP One-Action Busi-
nessTransaction that is used for specifying the exchange of
a single business document (therefore the name One-Action)
between the so-called requesting role and responding role.
ebBP’s DataExchange business transaction type has been
selected for modeling. According to ebBP ([1], page 35), this
allows for free selection of ReceiptAcknowledgement (RA)
and AcceptanceAcknowledgement (AA) business signals.
The receiver of the business document can use RA and AA
to give the sender of the business document information
about the business document’s state of processing. RA is
used for signaling receipt or, if the islntelligibleCheck-
Required parameter is flagged, for signaling legibility of
the document. AA is used for signaling that the business
document “[...] has been accepted for business processing
and that processing is complete and successful by the receiv-
ing application, service or a receiving business application
proxy” ([1], section 3.4.9.3).

This BPEL prototype also contains the according ebBP
model which is a model of RosettaNet’s' PIP 3A20 that
can be used for exchanging a Purchase Order Confirmation.
The example ebBP model of PIP 3A20 is available as part
of this prototype’s artifacts.

The prototype’s BPEL processes implement the control pro-
cesses for performing a ebBP One-Action BT. The control
flow is abstractly defined by means of state machines as
visualized in figures 2 and 3. Message exchanges are
modeled as <communication role> {!,?}<message type>
where ! denotes an outgoing message while ? denotes an
incoming message. The following communication roles are
defined:

« REQ, the requestor’s control process.

« RES, the responder’s control process.

o« MA, the superordinate (master) collaboration process
triggering the execution of the BT. Note that each
control process is triggered by its own MA process.
Essentially there are two superordinate processes that
have to coordinate with respect to starting a new BT
execution.

1. http://www.rosettanet.org

= cpsrequester m} CRES-GE —

Start
MA?start, G
“ostarted | pricolBizDoc. | AwaitBizDoc

BE?bizDoc

“DeliverBizDoc

oTTP

RES!bizDocFail

[$errCount <= $maxRetries]
@ $err

RESIbizDocFail
[$errCount > $maxRetries]
RES!bizDoc

7| “CP-GE

BH
%!ge

“DelRAE o AwaitRA

toRA;toAA
RES?rae
BRirae RES?ra
Failure —delRA

BElra
BE!%E

Loaviy

RES!ge;RESIgeFai

“AwaitAA
< DelAAE

RES?aae o Failure

3

BE%:ancel

“BE-GE

RES?aa

|]
o

wdelan RES!ge;RES!geFail

i BElaa

“JPropagate

BE![iersiEt

Success

Figure 2. Requester Control Process Machine

« BE, the backend implementing business logic. Again,
there are actually two backend implementations, one
for each integration partner.

« RAC, the service for creating ReceiptAcknowledge-
ments after having performed storage and legibility
check procedures.

The following message types are defined:

« bizDoc, the business document to be exchanged.

« ra, the ReceiptAcknowledgement.

o aa, the AcceptanceAcknowledgement.

« rae, the ReceiptAcknowledgementException.

« aae, the AcceptanceAcknowledgementException.

« ge, ebBP’s GeneralException that for all exceptional
cases not covered by RAE and AAE.

« start, for triggering the BT execution.

« solBizDoc, for requesting the business document from
the backend.

« cancel, for canceling the BT execution.

« persist, for signaling that the BT execution has been
performed successfully from a protocol perspective.

Finally the following local event types are defined:

o toTTP, a timeout for ebBP’s timeToPerform parameter.

o toAA, a timeout for ebBP’s timeToAcknowledgeAccep-
tance parameter.

o toRA, a timeout for ebBP’s timeToAcknowledgeRe-
ceipt parameter.

e <X>Fail, denoting the event that the sending process
was not able to deliver a message of type X.

Ige

http://www.uni-bamberg.de/pi/mitarbeiter/schoenberger/
http://www.uni-bamberg.de/pi/mitarbeiter/schoenberger/
http://www.big.tuwien.ac.at/staff/chuemer.html?area=publications
http://www.big.tuwien.ac.at/staff/chuemer.html?area=publications
http://www.rosettanet.org

] cpsRespondsr

REQ?ge
toTTR:

““BE-GE

E—
Start o AwaitBizDoc “REQ-GE
MA?start REQ?bizDoc.
= o
GotBizDoc BElge
< Awaitvalidation RACIbizDoc
RAC?ra S I CP-GE
GotRA “oCP-GE2
RAC?ValResult
REQ!raFail ma REQ!raFail B!
i ol $errCount <= $maxRetries BEIhzDec [$errCount > $maxRetries]
@ $errCount = SerrCount + 1
REQIrae;REQIraeFail = URliverk A
RERIge
Failure ‘
laae;REQ!, i
REQ.aae,%EQ.aaeFall REQIra BEPaa
O GotAAE Failure
o BE?aae REQIraFail]
ErrCount etri
CDeliverRA-an L 7 frs]
REQ!raFail
$errCount <= $maxRetr|es
BE?dae @ $errCount = $errCount|+ 1 REQ?ge;REQ!aaFail
[$errCount > $maxRatries]
BE?aa
REQ!ra
“’ AwaitAcceptance
B
REQlge;REQlgeFail
T REQ!aaFail —
$errCount <= %maxRetries 2L
Start @ $errCount = $errCount + 1 BERcancel
<—‘

Propagate
REQlaa

BE![;‘Versis(

Success

Figure 3. Responder Control Process Machine

The state-machines are performed pairwise which means,
for example, that REQ communicates with RES, but it does
not communicate with the responding party’s BE. Message
exchanges are performed synchronously which implies state
machine transitions in lock-step.

3. Artifacts

This prototype contains the following artifacts:

o ¢bBP model:
Contained in artifacts/ebBP/ebbp-OneActionBT-
basedOnPIP3A20.xml
Folder artifacts/schema/ contains several relevant
XML Schema and XML DTD definitions.

o BPEL processes:

— artifacts/BPEL/requestor contains the requestor’s
BPEL definition together with all necessary WSDL
and XSD definitions.

— artifacts/BPEL/responder contains the responder’s
BPEL definition together with all necessary WSDL
and XSD definitions.

4. Execution

This prototype’s BPEL process definitions are ready
for execution. The processes have been developed us-
ing OpenESB on top of GlassFish. If you intend to

execute the prototype, you may want to use the Net-
Beans6.7.1/GlassFishv.2.2+openESB bundle that has been
used for developing the prototype (available free of charge at
https://open-esb.dev.java.net/Downloads.html). The follow-
ing description assumes that you are using a NetBeans/-
GlassFish2.X bundle:

1) Create BPEL module projects for the requestor
and responder control processes and copy the re-
spective BPEL definitions into the created projects’
ProcessFolders.

Create Composite applications for requestor
and responder and add the BPEL modules.

For each Composite application, create test cases for
each message consumed by BPEL processes except
for the messages exchanged between requestor and
responder. The relevant WSDL files for the requestor
composite application are:

o PIP3A20RequestorBackendClient.wsdl

o PIP3A20RequestorMasterClient.wsdl
The relevant WSDL files for the responder composite
application are:

o PIP3A20ResponderBackendClient.wsdl

o PIP3A20ResponderMasterClient.wsdl

o PIP3A20ResponderRACResult.wsdl
Create Web Service implementations for all outgoing
messages of the BPEL processes (again except for the
messages exchanged between requestor and respon-
der). One way to do this is creating EJB modules
and then using the prototype’s WSDLs to create EJB
implementation stubs. The relevant WSDL files for the
requestor composite application are:

o PIP3A20RequestorBackendCallback.wsdl

o PIP3A20RequestorMasterCallback.wsdl
The relevant WSDL files for the responder composite
application are:

o PIP3A20ResponderBackendCallback.wsdl

o PIP3A20ResponderMasterCallback.wsdl

o PIP3A20ResponderRAC.wsdl
Depending on your deployment setting (one host vs.
different hosts; port setting), you may have to adjust
the Web services’ ports (due to BPEL, we’re still
sticking to WSDL 1.1).

Make sure that the test data used for correlation
is assigned properly (can be taken from the WSDL
definitions).

Deploy the composite applications and Web service
implementations.

Perform the Web Service message exchanges accord-
ing to the state machines.

As BPEL is a standard language you should be able to
execute the process definitions on different BPEL engines
as well. If you intend to do this, you will have to remove
some GlassFish+OpenESB extensions used.

2)

3)

4)

5)

6)

7

8)

https://open-esb.dev.java.net/Downloads.html

o GlassFish+OpenESB’s {http://www.sun.com/wsbpel/2.
0/process/executable/SUNExtension/Trace }:trace tags
have been used for creating logging statements. You can
safely remove logging statements without modifying
functionality.

o GlassFish+OpenESB’s facility for creating user-defined
exceptions has been used for creating exception specific
faultHandlers. If such functionality is not available
on your BPEL engine, then you have to remove the
exception types scoped with the procFaults prefix
and use a standard exception type. You then could use
global exception type variables to distinguish different
exception situations by assigning the variables immedi-
ately before throwing an exception and switching across
the variables’ values in a general faultHandler.

o GlassFish+OpenESB’s {http://www.sun.com/
wsbpel/2.0/process/executable/SUNExtension/
XPathFunctions }:current-dateTime() function has been
used for creating timestamps. If such functionality is
not available on your BPEL engine, then you may want
to use a dedicated Web service for this functionality.

References

(1]

(2]

(3]

(4]

(3]

(6]

OASIS, ebXML Business Process Specification Schema Tech-
nical Specification, 2nd ed., OASIS, December 2006.

D. Moberg and R. Drummond, MIME-Based Secure Peer-to-
Peer Business Data Interchange Using HTTP, Applicability
Statement 2 (AS2), The Internet Engineering Task Force
(IETF), July 2005. [Online]. Available: http://www.ietf.org/
rfc/rfc4130.txt

OASIS, ebXML Message Service Specification, 2nd ed., OA-
SIS, April 2002. [Online]. Available: http://www.o0asis-open.
org/committees/ebxml-msg/documents/ebMS_v2_0.pdf

——, ebXML Messaging Services Version 3.0: Part
1, Core Features, OASIS, October 2007. [Online].
Available: http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/
core/os/ebms_core-3.0-spec-os.pdf

——, Web Services Business Process Execution Language,
2nd ed., April 2007.

A. Schonberger and G. Wirtz, “Using variable communication
technologies for realizing business collaborations,” in Proceed-
ings of the 5th 2009 World Congress on Services (SERVICES
2009 PART II), International Workshop on Services Computing
for B2B (SC4B2B), Bangalore, India. 1EEE.

http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/Trace
http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/Trace
http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/XPathFunctions
http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/XPathFunctions
http://www.sun.com/wsbpel/2.0/process/executable/SUNExtension/XPathFunctions
http://www.ietf.org/rfc/rfc4130.txt
http://www.ietf.org/rfc/rfc4130.txt
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://www.oasis-open.org/committees/ebxml-msg/documents/ebMS_v2_0.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf
http://docs.oasis-open.org/ebxml-msg/ebms/v3.0/core/os/ebms_core-3.0-spec-os.pdf

	1 Introduction
	2 Abstract Execution Model
	3 Artifacts
	4 Execution
	References

