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Abstract

The ever increasing amount of data and the growing diversity in data
types requires effective and efficient retrieval techniques. With the diver-
sity in data types also a variety of techniques for measuring the (dis)si-
milarity between the data objects arises. Metric access methods (MAMs)
make no assumption about the data representation. MAMs only require
the dissimilarity function to be a metric and thus support a flexible index-
ing paradigm. However, distance metrics can be expensive to compute.
Thus, a main goal of MAMs is to reduce the number of distance compu-
tations.

We replace the random initial pivot selection step of the approximating
and eliminating search algorithm (AESA), a MAM capable to dramati-
cally reduce the number of required distance computations. Our approach
relies on the concept of the intrinsic dimension and comes with no addi-
tional cost during search. Besides showing that the performance of AESA
can be improved, we also present a conceptually simple technique to mea-
sure the influence of intrinsic dimension definitions on search efficiency.
This opens doors for the analysis of alternative intrinsic dimension defi-
nitions in future work.

1 Introduction

It is hard to design efficient indexing techniques for general distance/dissimilarity
spaces (cf. [1]). However, many similarity search problems can be modeled in
metric space. Here, the underlying dissimilarity space is a metric space where
the distance function dist satisfies the metric properties. Metric access methods
(MAMs) target the indexing of arbitrary metric spaces.

The variety of application areas for MAMSs ranges from content-based media
retrieval (e.g. search for unstructured and structured text, image, and video)



to search for protein sequences, business process traces and models, 3D ob-
ject models, or function-call graphs for detecting malware programs, to name
only a few. The distance metrics applied in these application domains are of-
ten more complex in their computation than the standard Minkowski distance
metrics. Thus, the primary goal of MAMs is to reduce the number of distance
computations—disk I/O and other cost factors are often of secondary impor-
tance [2].

The family of MAMs can be broadly classified by applying the concepts
of pivoting and aggregation [3]. MAMs using pivoting store distances between
database objects and reference objects (also called pivots) and prune database
objects during search through pivot filtering based on the pre-computed object-
to-pivot distances. Approaches using aggregation—occasionally in addition to
pivoting—structure the feature space into multiple (possibly overlapping) re-
gions in order to prune irrelevant regions during search.

Among these approaches, the approximating and eliminating search algo-
rithm (AESA) [4] is known to be able to index datasets with the minimum
number of distance computations during search at the cost of a quadratic space
and construction time complexity. Thus, AESA is only applicable in application
settings with a relatively small database size when the time complexity of the
distance measure is extraordinary high. Such an application scenario could for
example be the high precision search for media objects on cell phones.

The goal of this paper is twofold. First, it tries to improve the efficiency
of AESA in terms of reducing the number of required distance computations.
Second, by applying a prominent quantitative definition of the intrinsic dimen-
sion for replacing the random initial pivot selection step of AESA, the approach
presented in this paper provides an adequate test bed for the application of
intrinsic dimension definitions within MAMs. The “elusive concept” [5], p.273]
of the intrinsic dimension thus becomes more tangible.

Our proposal is to explicitly apply the concept of the intrinsic dimension for
replacing the uninformed initial pivot selection step in the AESA. The paper
is structured as follows. Section 2] presents the AESA, some of its variants and
improvements relevant to our work, and a frequently used intrinsic dimension
definition exemplary applied here. Section 3] discusses our AESA variant and
shows preliminary results. Section M gives an outlook on future work.

2 Related Work

The following section 2.1 outlines pivot filtering and how it is used by the
AESA for efficient search. Improvements to AESA are briefly discussed in
section Afterwards, in section a frequently applied definition of the
intrinsic dimension—often referred to as a concept for describing the difficulty
of an indexing task—is introduced.



2.1 Pivot filtering and AESA

MAMs applying pivoting usually store dist(p;,0;) values for multiple database
objects 0; € O and pivots p; € P. Hence, when searching for all objects with a
distance of at most 7 to a query object ¢ the potentially expensive computation
of dist(g, 0;) can be skipped if the condition in formula [l based on the triangle
inequality is fulfilled.

max |dist(p;, q) — dist(p;,05)] > r pivot filtering (1)
Pi

9(0;,9)

Fig. Ml visualizes this constraint. On the one hand, dist(p1, ¢)—dist(pi,0;) >
r holds for database objects inside the inner white ball around center p; which
has radius dist(p1, ¢) —r. On the other hand, dist(p1,0;)—dist(p1,q) > r holds
for database objects outside the outer ball around p; with radius dist(p1,q)+7.
Thus, |dist(p1,q) —dist(p1,0;)] < 7 holds for database objects which lie inside
the shell containing the query ball. These objects cannot be pruned from search
based on p;. When applying further pivots, the region of possible database
objects within the search radius can be restricted by intersections of multiple
shells [3].

/ /

Figure 1: Pivot filtering (adapted from [3]).

The AESA [4] is known as the MAM with the minimum number of required
distance computations. According to [6, p.1516], it “has been for 20 years the
baseline method in terms of saved distance computations”. AESA relies on
pivot filtering where every database object o; € O (1 < j < n) can potentially
become a pivot. To do so, a distance matrix D = R™*" with n(n—1)/2 pairwise
distances is maintained. Thus, space and construction time complexities of
AESA are O(n?).

Algorithm/[ (notation based on [6]) outlines a search for the nearest neighbor
(1I-NN search). It starts with an infinite search radius r which is reduced in
several rounds in order to find the 1-NN. g(o;,¢) which captures the left hand
side of inequation[Ilis initially set to 0 for all 0; € O (lines 3-4). As shown in line
6, the search algorithm iterates over the database objects as long as not all of



them have been considered. A new pivot object is selected in each round (line 7).
Usually, as can be seen in the getNextPivot procedure, the database object with
the smallest bound g(o;, ¢) is considered next, i.e. arg min,; o g(0j,q). However,
initially in the first round, an arbitrary decision is made, since g(oj,q) = 0
for all o; € O in this case. The selected pivot is then removed from the set
of database objects to consider (line 8). For the selected pivot, the distance
between the pivot and the query object is computed (line 9). If this distance
deurrent 18 smaller than the current search radius, a new intermediate 1-NN has
been found, i.e. the pivot selected in this round. Thus nn and r are updated
(lines 11-12). From line 14 onward, g(o;,¢q) is updated and pivot filtering is
applied to prune as many database objects as possible in each round.

Algorithm 1: The AESA 1-NN algorithm.
Input: dist: the distance metric
O: the database
q: the query
D = RIOIXIOl. the matrix of pairwise distances
Output: nn € O: the nearest neighbor to ¢
1 Algorithm searchiNN()

2 r =00
3 foreach o; € O do
4 | 9(0j,9) =0
5 round =1
6 while O # 0 do
7 p = getNextPivot (round)
8 0=0-{p}
9 deurrent = dZSt(%p)
10 if deurrent < then
11 nn=mp
12 T = deurrent
13 foreach o; € O do
14 9(05,q) = max(g(0;,q), |D(0j,p) = deurrent|)
15 if g(0j,q) > r then
16 | O=0- {Oj}
17 round = round + 1
18 return nn
19 Procedure getNextPivot (round)
20 if round == 1 then
21 | p = getRandomObject ()
22 else
23 | p = arg miny; co g(0j, q)
24 return p




2.2 Improvements to the AESA

The Linear AESA (LAESA) [7] is proposed to overcome the quadratic space
and construction time complexities of the AESA. In contrast to the AESA, the
LAESA applies a set of m < |O] pivots. Only object-to-pivot distances are
stored and used for pruning database objects from search by applying pivot
filtering. It is thus important to choose good pivots. There is plenty of work
on pivot selection in the field of MAMs addressing the question which pivots to
use (for a brief overview see e.g. [8]). Another important aspect is to determine
the order in which the pivots are applied. Both, LAESA and AESA start with
a random selection of the first pivot. It is important to note that this is the
problem we address in this paper—the initial selection of the first pivot. Our
technique is thus also applicable to LAESA and its multiple improvements. An
analysis in this regard is part of future work. The task of selecting further pivots
in future rounds of the algorithm (e.g. pivots close to the query [4, [7]; or both,
close to or far from the query in an alternate fashion [9]) is beyond the scope of
our present work. Furthermore, we do not address coarsening approaches, i.e.
storing distance values with less precision, storing only some and not necessarily
all of the object-to-pivot distances per database object, etc. (for references w.r.t.
coarsening see [g]).

Two improvements to the original AESA which also operate on the complete
distance matrix of all pairwise distances are proposed. iAESA [I0] uses permu-
tations of pivot IDs maintained per database object and chooses the object
whose permutation list is most similar to the permutation list of the query as
the next pivot. However, the random selection step in the first round remains.
Experiments on real world datasets in [0] indicate that iAESA is less efficient
than standard AESA in two out of three cases.

PiAESA [6] can be perceived as a procedure which precedes AESA. A set of
R pivots is used upfront for estimating the query radius. Afterwards, PIAESA
switches to standard AESA. The parameter R < |O| needs to be adequately
specified and experiments in [6] show that this is crucial. Otherwise, the perfor-
mance of PIAESA degrades and can become worse than standard AESA. Several
existing approaches for selecting the R pivots are tested in [6]. Interestingly,
for the real world datasets, a random selection performs reasonably well. Here,
our technique can also be applied. A comparison of our approach, standalone
as well as integrated into iAESA and PiAESA, is future work.

2.3 The Intrinsic Dimension(ality)

The intrinsic dimension(ality) p, in opposition to the representational dimension
0 of a d-dimensional vector space, is an “elusive concept” [5, p.273]. It is
frequently used to quantify the difficulty of a metric space indexing task. It is
also applied for determining the number of pivots to use within a MAM [11],
for selectivity and performance estimation of MAMs [I2], feature selection in
vector datasets [13], and for estimating the query radius of k-NN queries [14].
To our knowledge, it has so far not been used for selecting the initial pivot
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Figure 2: Two exemplary distance distributions (adapted from [5] p.302]).

in approximating and eliminating search algorithms. Doing so allows for an
empirical testing of different intrinsic dimension definitions (cf. sect. B).

In this short paper, as a first step, we apply the widely used definition
p = % presented in [5, p.303]. The computation of p relies on statistics
obtained from a distance distribution; p increases if the mean p of the distance
distribution increases and/or the variance o2 shrinks. Figure [ visualizes the
rationale behind this definition. According to p, the histogram on the right
reflects a higher intrinsic dimensionality than the histogram on the left. When
performing a range query for ¢ with a search radius r and applying pivot filtering,
database objects o; € O with dist(p,0;) € [dist(p, q)—r,dist(p, ¢)+r] cannot be
discarded. The amount of database objects which must be exhaustively searched
is proportional to the gray shaded area in figure [2] which is in fact bigger in case
of po than p;. Thus, if these histograms capture the distance distributions of
two pivots p; and po, selecting p; might be the better choice. More objects can
be discarded (being proportional to the white area under the curve) because of
a larger variance with the histogram being less concentrated around its mean.

In addition, there are search scenarios where an increase of the mean distance
1 requires a larger search radius r, for example when retrieving a fixed number
of database objects. With other things being equal, an increase of r leads to
fewer potential for object pruning since the gray shaded area under a curve
increases. This supports the rationale why p is contained in the numerator of
the p formula [15] p. 370].

Alternative intrinsic dimension definitions such as the so called distance ex-
ponent [12] and the method based on principal component analysis proposed
in [16] will be applied in future work. As an interesting finding opening doors
for alternative intrinsic dimension definitions, Mao et al. [16] show that meth-
ods defined for R™ can be applied to AESA-like settings. Thus, techniques
for determining the intrinsic dimension of vector spaces become applicable for
MAMSs.

3 Applying the Intrinsic Dimension to AESA

AESA stores all O(n?) distances between database objects. Thus, we can com-
pute p; scores for every database object 0; € O based on all dist(o;,0;) with



1 <Il<mnandj#I Asexplained earlier in section [Z3] we choose the first
pivot o; as the one with argmin; p;. This is a slight modification of line 21
of the getNextPivot procedure in algorithm [l Tt is important to note that
search cost is not affected, since arg min; p; is computed during indexing. The
construction cost of the index remains in O(n?).

In our experiments, we test four distance metrics on four test collections
resulting however in only 14 tested combinations, since two combinations are
not applicable because the Hellinger distance cannot be applied on negative
feature vector components. The distance metrics we tested are outlined in the
first column of figure Bl As feature vectors, we applied subsets of four publicly
available corpora:

NUS: Here we use parts of the image collection described in [17]. We apply
the Test_Normalized_CH.dat file with 107,859 64-dimensional feature vectors.

MIRFLICKR: The  Mirflickr  collection can be found on
http://press.liacs.nl/mirflickr/. We use the first 25,000 objects from
http://mirflickr.liacs.nl/ht_descriptors.zip. The representational di-
mension of the dataset is 43.

COLORS: This dataset is made up of 112,682 feature vectors with 112 di-
mensions per vector. The dataset can be obtained from http://www.sisap.org/.

NASA: This corpus consists of 40,150 database objects represented as 20-
dimensional feature vectors. The dataset can also be obtained from
http://www.sisap.org/.

In our experiments, we tried to mimic the setting in [6]. We use a database
with |O] = 15,000 feature objects randomly sampled from the resp. collection.
1,000 queries are performed in each run. We search for the nearest neighbor
to the query (1-NN search). Queries are randomly chosen from the remaining
objects of the resp. collection. We perform 10 runs with 1,000 queries each and
measure the average number of performed distance computations.

Experimental results are displayed in figure Bl The gray shaded results are
the ones of standard AESA with the random initialization step. In addition, on
white background, we display results for initially selecting the database object
o0j with argmin; p; (top number of each white cell), a selection based on median
values (middle number of each white cell), and argmax; p; (bottom number
of each white cell). The rationale is that the top figures should improve the
standard AESA baseline, numbers in the middle should roughly indicate baseline
performance, and numbers on the bottom of each white box should indicate
clearly worse performance than randomly selecting the first pivot. The approach
which initially selects argmin; p; outperforms standard AESA in all 14 cased].
In 12 out of 14 cases this improvement is significant when performing a Student’s
t-test on a significance level of 0.5%. These cases are underlined in figure [3

The best approach per cell is highlighted in bold face. An interesting ap-
proach in this regard is the Manhattan-MIRFLICKR combination which seems

1'We visualized the differences in the distance distributions between arg min; p; and
arg max; p; for one of the 14 scenarios. In fact, for a random run, arg min; p; leads to
the left distribution in figure 2] and arg max; p; to the right distribution.


http://press.liacs.nl/mirflickr/
http://mirflickr.liacs.nl/ht_descriptors.zip
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NUS MIRFLICKR COLORS NASA
AESA | II1L1 148.0 3365.4 1130.1
Cond minp, | 1109.7 147.5 3361.3 1129.2
GO median py| 11112 147.9 3365.9 1130.2
maxp, | 1112.0 150.5 3366.5 1130.6
AESA 1347 401.7
Helli min p; 134.4 398.0
CTEET median p; ) 134.8 401.9 )
max p; 135.5 402.8
AESA | 2096 137.0 124.3 456
i minp | 207.1 136.8 123.6 44.9
WA median p, | 209.6 137.0 124.0 45.7
maxp | 2121 137.7 126.6 46.2
AESA 157.7 151.2 149.9 465
Mooy Dy | 1559 151.1 149.0 46.2
A edian p;|  157.5 151.3 1489 46.5
maxp; | 160.5 149.2 151.0 46.8

Figure 3: Evaluation on four image collections with four distance metrics.

to invert retrieval results. It is part of future work to analyze this issue and fig-
ure out why the definition of p does not work in this case. We believe that this
offers a promising test bed for the comparison of different intrinsic dimension
definitions.

4 Conclusions

We presented an improvement to the random initialization step of approximat-
ing and eliminating search algorithms. Instead of randomly choosing the first
pivot, we propose an informed selection based on the distribution of object-
to-pivot distances and to apply intrinsic dimension definitions on this distribu-
tion. Our improvements are small, however they are significant and come at
no additional search cost. In future work, we plan to analyze different intrinsic
dimension definitions and their influence on search performance.

[16] show that methods defined for R™ can be applied to AESA-like settings.
Thus, techniques for determining the intrinsic dimension of vector spaces become
applicable to general metric spaces and for example principal component (PCA)
analysis is used in [16] for pivot selection and the determination of the intrinsic
dimension of a dataset. Inspired by [16], we plan to base the initial selection
step of AESA on PCA. Another alternative intrinsic dimension definition, the
so called distance exponent proposed in [12], will also be applied in future work.

Furthermore, we will apply our approach to other MAMs than AESA, such
as for example LAESA and its improvements.
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