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ABSTRACT
Eye movement plays an important role in face-to-face commu-
nication. In this work, we present a deep learning approach for
synthesizing the eye movements of avatars for two-party conver-
sations and evaluate viewer perception of different types of eye
motions. We aim to synthesize believable gaze behavior based on
head motions and audio features as they would typically be avail-
able in virtual reality applications. To this end, we captured the
head motion, eye motion, and audio of several two-party conversa-
tions and trained an RNN-based model to predict where an avatar
looks in a two-person conversational scenario. We evaluated our
approach with a user study on the perceived quality of the eye
animation and compared our method with other eye animation
methods. While our model was not rated highest, our model and
our user study lead to a series of insights on model features, viewer
perception, and study design that we present.
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1 INTRODUCTION
Virtual reality (VR) devices and social VR applications are increas-
ingly becoming mainstream. It will soon become commonplace to
use self avatars to interact with others in immersive virtual environ-
ments. In this work, we consider the generation of eye movements
for avatars in a two-party conversation context. We focused on
synthesizing conversational eye animation because our eyes are
essential for expressing non-verbal conversational cues during face-
to-face communication. They help mediate conversational turn
taking, facilitate emotional expression, and signal engagement [Lee
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et al. 2002; Ruhland et al. 2014]. Since our eye movement is so im-
portant for communicating, it follows that enabling synthesized
eye motion for real-time scenarios is a crucial milestone toward
effective avatar-mediated communication. In fact, research has
repeatedly shown that our overall impression of virtual humans
improves when their eyes behave realistically [Lee et al. 2002; Roth
et al. 2018]. Unfortunately, current methods for synthesizing eye
motion for conversational virtual humans in real-time remain lim-
ited, and most VR devices in use still do not capture eye motions
since eye tracking remains largely a premium feature.

We present a novel data-driven method for synthesizing the eye
motion of virtual humans for use in VR and other real-time appli-
cations. Our method predicts the rotation of the eyes of a virtual
human based on a user’s speech features and the head movement of
both the speaker and listener. Our algorithm is designed for avatar-
mediated, two-party conversational scenarios, but would also be
applicable to conversational agents where the head movements and
audio are generated before the eye movements.

2 RELATEDWORK
2.1 Eye Motions and Virtual Humans
Psychological research indicates that common patterns in our gaze
behavior emerge during interpersonal interactions [Abele 1986; Ho
et al. 2015]. For example, people attend to the speaker when they
are listening. But the speaker tends to look away from the listener,
because they are thinking, for example. Gaze also provides non-
verbal cues during conversation, for example, when the speaker
is finished, they may look at the listener to signal that they are
ready for a response. In addition, gaze behavior also communicates
personality traits.

Normoyle et al. [2013] demonstrated that small changes to the
frequency of eye contact affects the trustworthiness of the virtual
character. Jörg and colleagues [2018] found that even very small
changes to eye motion on virtual characters can affect the perceived
naturalness of the motion . Personality traits such as openness, con-
scientiousness, extraversion, agreeableness, and neuroticism can
be discerned based on the eye motion of virtual humans [Ruhland
et al. 2015]. Human sensitivity to an avatar’s eye movements has
motivated work in simulation of realistic eye motion for virtual
characters and avatars in social situations.

Gaze behavior models designed to mimic natural eye motion
during conversation have been shown to positively impact avatar-
mediated communication. Simulating social gaze has been shown
to improve the realism of face-to-face interactions during two party
conversations in VR [Garau et al. 2003]. Lee et al. [2002] compared a
procedural model to static and random gaze generators, and found
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that responses for friendliness, engagement, and liveliness were
higher when the procedural model was used. Oyekoya et al. [2009]
found that a saliency-based gaze behavior model in a virtual conver-
sational scenario was comparable to tracked gaze and significantly
better than static and random gaze models in terms of naturalness
and realism. Seele et al. [2017] compared three gaze-behavior mod-
els in a dyadic social VR setting: an off-the-shelf parameterized,
scene agnostic eye motion generator, a scene-base gaze synthesis al-
gorithm, and gaze from an eye tracker. They reported no significant
impact of model type on quality of social interaction but trends to
suggest that tracked gaze can improve presence and avatar realism.

2.2 Gaze Synthesis
Numerous techniques have been developed for synthesizing the
eye motions of virtual humans [Ruhland et al. 2014]. Early conver-
sational gaze models used statistics to infer gaze timings, such as
eye contact and the frequencies of fixations and saccades [Lee et al.
2002; Vinayagamoorthy et al. 2004].

Gu and Badler [2006] incorporated attention in their gaze model
for embodied conversational agents in multi-party conversational
scenarios, allowing agents to look toward distracting objects during
conversation. Iwao et al. [2012; 2013] synthesized the more subtle
eyemovements that occur during fixations using probability models
derived from captured gaze data from two party conversations.

Subsequent to the early work on procedural models, data-driven
models were investigated. They trained on captured motions to
animate the eyes without explicit rules or assumptions. Ma et al.
[2009] generated eye movement based on the head movement while
Le et al. [2012] created a model that generated both head and eye
motion based only on speech input for two party conversations.
Jin et al. [2019] utilized a deep learning approach, training two
recurrent neural networks (RNNs), one for the speaker and the other
for listeners, to synthesize head and eye motions of virtual avatars
based on the audio from participants in a three-party conversation.

In addition to communication specific gaze behavior models,
there are several methods that synthesize or retarget gaze based
on the location of gaze targets or the visual saliency of the virtual
scene. Peters et al. [2010] developed a gaze shift model that animates
the head, eyes, and blinks of a character based on the gaze target
location and a parameter specifying the tendency the character
moves their head. Taking into account physiological constraints,
Andrist et al. [2012] designed a parametric gaze model that animates
both the avatar’s eyes and head towards a target in the scene. Pejsa
et al. [2016] developed a tool for animators to modify the torso,
head, and eye animation of a character to look towards a new target.

More recently, deep learning has been used for driving a charac-
ter’s gaze. For example, Klein et al. [2019] used an RNN to animate
a character’s upper-body as it follows a moving gaze target in
real-time, and Goudé et al. [2023] trained a model to predict areas
of interest in real-time based on the visual saliency of the scene.
Although there has been success in synthesizing gaze for virtual
characters, research into data-driven conversational gaze behavior
models for use in immersive virtual environments is limited.

In our work, we focus on developing and evaluating a data-driven
approach for animating the eyes of a virtual avatar based on the
head motion and audio during a dyadic face-to-face conversation.

Figure 1: A sample from our data showing the horizontal gaze
angle 𝜃 before processing (top) and after (bottom). Errors
from tracking loss are highlighted in the original graph.

3 METHOD
To model gaze direction based on motion and speech inputs, we
trained a recurrent neural network (RNN), which can capture tem-
poral relations, on a dataset consisting of two-party conversations.

3.1 Data Collection and Preprocessing
3.1.1 Hardware. We recorded detailed gaze and pupil information
from the left eye of one of the conversational partners (called the
primary performer) at 120Hz using a Pupil Labs Core wearable
eye tracker. A motion capture system consisting of 15 Optitrack
motion capture cameras recorded the head movements (position
and orientation) of both performers at 120fps. Finally, an Audio-
Technica AT2020 microphone recorded audio in mono, sampled at
44.1kHz. We opted for an external eye tracker in combination with a
motion capture system, as opposed to a head mounted display with
an integrated eye tracker, so that the conversational partners could
see each other leading to a more natural eye motions. Furthermore,
based on our experience, this procedure leads to higher quality
motion data.

3.1.2 Capture Protocol. In each capture session, two performers
stood facing each other about one meter apart. Both performers
wore a hat with reflective motion capture markers. The primary
performer wore the eye tracker and the microphone was directed
towards them. The eye tracker was calibrated to an accuracy within
3 degrees within the field of view. After the motion capture system
and eye tracker are adjusted and calibrated, a clapperboard with
motion capture markers was used to synchronize sound and head
motions and to signal the start of the conversation. Performers
were asked to converse naturally while standing in one spot. They
could select a conversational topic from a list of topics designed for
casual conversations in English classes [Teflpedia [n. d.]] or choose
their own topic, for example, holiday plans, food preferences, and
favorite media. Performers were instructed to avoid any identify-
ing or personal information. Conversation were limited to roughly
three minutes. The clapperboard was used again at the end of the
conversation. There were 4 primary performers and 5 conversa-
tional partners. A total of 2179.5 seconds (about 36 minutes) of data
from 11 conversations was recorded. The ratio that the primary
performer’s gaze was directed towards the other was 67% while
speaking, 86% while listening, and 76% overall.
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3.1.3 Data Preprocessing. The captured data of each session is
synchronized manually based on the cues from the clapperboard.
The 3D gaze vector in space is computed combining the eye tracker
data and the performer’s head position or rotation. The audio data
is manually labeled to indicate when each performer is speaking.

Since the captured gaze data contains noise when the subject
blinks, squints, or turns their eyes far from center, a multi-step
gaze preprocessing pipeline was implemented to reduce the num-
ber of artifacts. The 3D gaze vector provided by the eye tracker
is first converted to spherical coordinates, resulting in horizontal
(𝜃 ) and vertical (𝜙) gaze direction angles. These angles are then
smoothed using a Savitzky-Golay filter with a cubic curve and a
window size of 11, to filter high frequency noise before further
processing [Duchowski et al. 2016]. We then use the confidence for
each sample (a value between 0 and 1, provided by Pupil [Kassner
et al. 2014]), to linearly interpolate the gaze angles between high
confidence (c > 0.9) samples within each conversation. Next, we
implement an automatic saccade detection algorithm based on Jörg
et al. [2018] which is a variant of Engbert and Kliegl’s [2003] sac-
cade detection algorithm. The algorithm has two saccade detection
sensitivity parameters: 𝜆𝑙𝑜𝑤 for small saccades and 𝜆ℎ𝑖𝑔ℎ for large
saccades. These parameters were tuned for each conversation in
our dataset. Saccades were detected in two passes, with the first
pass searching for large amplitude saccades, and the second pass
for low amplitude saccades, and then merged such that there were
no overlapping saccade instances. To smooth the data between the
detected saccades, we apply a 2𝑛𝑑 degree Butterworth filter with
a cutoff frequency of 3Hz at a 120Hz sampling rate. We enforce a
minimum fixation duration of 5 frames or 50ms to limit erroneous
detection of saccades. Finally, the resulting smoothed data is down-
sampled from 120Hz to 60Hz. A comparison of the original data
and processed data is shown in Figure 1.

3.2 Network Architecture and Training
3.2.1 Features. The following motion features were computed and
used for training the network: 1) The 3D gaze direction (two angles
in spherical coordinates, azimuth and elevation), 2) horizontal and
vertical angles of the primary performers facing direction vector, 3)
horizontal and vertical angles of the vector between the head posi-
tions of the two performers, 4) velocity of the primary performer’s
head rotation computed as the sum of the squared difference in the
performer’s head pitch and yaw from frame to frame.

We trained versions of our model with audio features either as
relative pitch and intensity or as a binary feature indicating whether
or not the primary performer was speaking. The audio pitch and
intensity are computed over windows of 738 audio samples (16.7ms),
corresponding to the duration of a single frame at 60fps. The pitch at
a particular frame is the pitch with the maximum amplitude within
the window of audio during the frame, and the intensity is the root
mean squared value of the amplitudes for each sample. Similar to
Jin et al. [2019], we use the difference in pitch and intensity features
between two neighboring frames. Concretely, the relative pitch (𝑝)
and intensity (𝐼 ) features for frame 𝑖 are: (𝑝𝑖 − 𝑝𝑖−1, 𝐼𝑖 − 𝐼𝑖−1).

3.2.2 Neural Network Architecture. Our neural network (NN) archi-
tecture is inspired by the network used for gaze event classification
by Kothari et al. [Kothari et al. 2020] and is shown in Figure 2. The

Figure 2: The neural network architecture with layer input
and output sizes shown above and below each layer. The input
is a sequence of feature vectors (𝑁 = 240) and the output is a
12 frame gaze direction prediction (𝜃, 𝜙).

input sequence is transformed by four linear layers then fed to a
stacked 3 layer Gated Recurrent Unit (GRU). The output of the GRU
is then transformed by two linear layers and a final linear layer
makes a prediction. A GRU is used in this work since it is faster
to train and is generally found to achieve results on par with a
Long-Short Term Memory (LSTM). The model predicts the gaze
direction as two angles, 𝜃 and 𝜙 , corresponding to the horizontal
and vertical components of the unit gaze direction vector, respec-
tively. The depth component of the gaze vector is not used due
to the inaccurate depth estimate provided by the monocular eye
tracker setup.

In our method, a sequence of the previous 𝑁 frames (with 𝑁 =

240) are used to compute the features and to provide context for
the model to predict the eye motion over the next 12 frames.

3.2.3 Training. We divide our data into training, validation, and
test sets by taking random, non-overlapping subsequences from
each conversation. We use subsequences that are 60% of each con-
versation for training, 20% for validation, and 20% for testing. Each
of the features across all conversations in our training set are stan-
dardized to have zero mean and unit variance.

The model is trained on batches of 4 second (240 frames) feature
sequences from the training set. The audio within the 4 second
window is pre-emphasized [2016] to improve the signal to noise
ratio before computing the relative pitch and intensity features
over 735 samples, corresponding to one frame of motion. We also
augmented the training set by mirroring the motion features hor-
izontally, resulting in 12644 windows of data in the training set
(twice the original 6322), 1965 in the validation set, and 1965 in the
test set. The RNN is stateless, meaning each feature sequence is
treated as independent from other feature sequences. The loss is the
mean squared error between the predicted gaze angles and the cor-
responding captured gaze angles. We also prevented the occasional
bad gaze sample (confidence below 0.6) from influencing the train-
ing of the model: the loss per sample is𝐶 ∗ 1

2 ∗ [(𝜃 −𝜃 )
2 + (𝜙 −𝜙)2],

where 𝐶 is set to 0 if the sample confidence is below 0.6, and 1
otherwise. To prevent overfitting the training set, we implement
neuron dropout with a probability of 0.5 during training for each of
the fully connected layers between the first and final layers (labeled
in Figure 2) and the GRU. We also use L2 regularization and select
the model that performs best on the validation set.
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Figure 3: Example model output with motion and binary
audio features in blue and the original preprocessed motion
in cyan. The synthesized motion is noticeably smoother.

4 EVALUATION
4.1 Model Performance
Figure 3 shows an example of synthesized and recorded gaze angles
from the test set for comparison. Synthesized example motions
can be seen in the accompanying video. The model learned to
compensate for avatar’s head movement and the movement of the
other avatar. The model also avoids reproducing the artifacts found
in the input motion, such as noise due to blinking or loss of tracking.

4.1.1 Computation speed. Our model is lightweight enough for
use in real-time applications. A PC with an Nvidia RTX 3050Ti GPU
and a 12th generation Intel i7 CPU can maintain the 60 frames per
second required to run the model. We also implemented a VR setup
where the model runs on a dedicated PC and is connected to a Meta
Quest 2 via TCP. In this setup, the features are streamed from the
headset to the PC, input into the model, then the model output is
transmitted to the headset.

4.1.2 Ablation Study. We trained six different models to examine
the effect of different features on the training, validation, and test
set losses. The features tested were:

• Audio (binary): Only a binary audio feature was used for
training the model. If the primary performer was speaking,
this value was 1, otherwise it was 0.

• Audio (P, I): Only the relative pitch and intensity of the audio
were used to train the model.

• Motion: Motion features only, as described in section 3.1.4
• Motion Augmented: Motion features augmented, in which
the motion features in the training set were mirrored and
added to the training set, called MA in the user study

• Motion Augmented + Audio (binary): Motion features and
audio as a binary, called MAAB in the user study

• Motion Augmented + Audio (P,I): Motion features and audio
as relative pitch and intensity

The losses for each model can be seen in Table 1.

4.1.3 Influence of Audio. Adding binary audio features to our
model resulted in lower test set losses (see Table 1) in comparison to
the augmented motion only. In a typical conversation, people look
at their partner more often when listening than when talking. So,
to evaluate if audio features influenced the output of the model, we
compared the percentage of time during which the gaze is directed
towards the other avatar when speaking and when listening. We
found that with audio features, the gaze was directed at the other
avatar about 93% of the time while speaking, and about 99% of
the time while listening. Without audio features, the ratio while

Table 1: Models trained with different features and their
associated training, validation, and test set losses. The high-
lighted boxes indicate the lowest loss for each column.

Training Validation Test
Audio (binary) 0.02397 0.02303 0.02239
Audio (P, I) 0.02377 0.02267 0.02249
Motion 0.01779 0.02116 0.02099
Motion Aug 0.01884 0.02102 0.02098
Motion Aug + Audio (binary) 0.01843 0.02180 0.02082
Motion Aug + Audio (P,I) 0.01991 0.02131 0.02120

speaking is slightly higher at 96%, but the ratio is similar while
listening at about 98%. Including binary audio features has created
a higher difference between these ratios. However, these values are
still much higher than in the original test set data, which has a ratio
of about 72% while speaking and about 84% while listening.

Further analysis revealed that audio may be a somewhat redun-
dant feature already included in the head motion. We computed
the Euclidean distance between the yaw (𝜃 ) and pitch (𝜙) of the
primary performers head rotation between each frame 𝑖 as follows:√︁
(𝜃𝑖 − 𝜃𝑖−1)2 + (𝜙𝑖 − 𝜙𝑖−1)2. We also labeled each frame with ei-

ther 0 for not speaking or 1 for speaking. We then fit a logistic
regression model to this data, with the Euclidean distance between
angles as the predictor for whether they are speaking, and found
that is was a significant predictor (𝜒2 (1) ≪ 0.001).

4.2 User Study
To evaluate the perceived quality of the eye animation, we con-
ducted a user study in which participants watched and rated several
videos of an avatar conversing with another person. The study was
IRB approved.

4.2.1 Stimuli Creation and Procedure. We included six eye anima-
tion conditions in our study:

• preprocessed eye tracker data (Original)
• no eye animation (NoAnim)
• the Realistic Eye Movements (REM) Unity package1 with
adjusted parameters (REM-A)

• REM with default parameters (REM-D)
• our Motion Augmented model (MA) and
• our Motion Augmented + Audio (binary) model (MAAB)

We decided to not include the unprocessed original motion as
it had obvious artifacts and as some (even if less detailed) process-
ing would be possible in real time when using an HMD with eye
tracking. So the processed captured motion was a higher bar. We
included MA and MAAB in our evaluation because they had the
lowest validation and test set losses (see Table 1) and to evaluate if
adding audio as a feature makes a perceptually noticeable difference
in the synthesized eye motion. We chose the "Realistic Eye Move-
ments" package as a comparison as a highest quality procedural
approach we could find. It generates microsaccades and saccades
based on "Eyes Alive" by Lee et al. [2002] and has various user
adjustable parameters, including saccade speed, magnitude, and

1Tore Knabe, Realistic Eye Movements, Unity Asset Store, 2021
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(a) (b) (c) (d)

Figure 4: Our user study results. Color coded lines by animation condition indicate pairs with significantly different ratings in
graphs (a), (c) and (d). Graph (b) shows significant differences between animation conditions color coded by conversation.

frequency. For REM-A, we set the ratio that the character looks at
the other character to match that of our test set, at about 76%. The
avatars we used in our evaluation were created using the avatar
creation tool Ready Player Me2. The upper body and head move-
ment as well as the blinking motion of all clips were animated using
the captured data from the test set. So the only difference between
conditions was the eyeball motion. The eyelids during blinks were
animated using the piecewise function described by Duchowski
et al. [2015]. The blink duration was taken from the eye tracker
data. A minimum blink duration of 400 ms was set since it resulted
in better looking eyelid animation for our stylized avatars. Eyelid
saccades were also included in our clips, and were animated based
on the vertical rotation of the eyes. The Oculus LipSync SDK3 was
used to animate the mouth based on the audio. Due to the large
size of the eyes on the avatars used in the study, we also limit the
amount the eyes can rotate vertically and horizontally.

Figure 5: Avatars used in our evaluation. The animations
were shown from the point of view of the interlocutor.

We selected three clips from our test set, each from a different
conversation with a different performer (see Figure 5) and recorded
them from the point of view of the other person. Clips were be-
tween 37 and 39 seconds long. We generated six versions of each
clip, one for each eye animation condition, resulting in a total of 18
videos. We conducted the survey within subjects for the eye anima-
tion condition and between subjects for the conversation, meaning
each participant watched six versions of the same conversation,
corresponding to the six eye animation conditions. Participants
were instructed to pay close attention to the eye animation. They
first watched two videos for training. Then they watched the six
versions (and two validation videos) in random order, viewing each
2readyplayer.me
3Oculus LipSync for Unity, 2021

video once. After each clip, participants rated their agreement with
the following statements on a 7-point Likert scale:
Q1: The behavior of the avatar’s eyes appeared natural.
Q2: The avatar seemed engaged in the conversation.
Q3: I liked the avatar’s eye movements.
Q4: The avatar’s eye movements matched its speech.
At the end of the study, there was an open response question ask-

ing participants to describe their thought process and any criteria
considered while rating the animations.

4.2.2 Participants. Participants were recruited through Amazon
Mechanical Turk. They received two US dollars after study comple-
tion. Data was collected from 120 participants, 40 per conversation.
Completion time ranged from 7.8-61.4 minutes, with a median time
of 13.5 minutes. We included two verification clips: a visual verifi-
cation in which there were obvious errors in the eye animation and
an audio verification where the voice told participants a specific an-
swer they should select. We filtered out participants who responded
neutrally or positively to whether the eye movement appeared nat-
ural, or if they did not select the answer as instructed by the audio
verification clip. After filtering, there were 26 responses remaining
for conversation 1, 20 for conversation 2, and 18 for conversation 3,
for a total of 64 responses. Among the filtered responses, there were
27 females, 36 males, and 1 who preferred not to state their gender.
The age range of participants was between 23 and 68 (𝜇 = 36).

4.2.3 Results. We compared the ratings from our study for each of
the six eye animation conditions. The two independent variables in
our analysis were the eye animation condition and the conversation.
Each question (Q1-Q4) was a dependent variable. The mean ratings
along with vertical standard error bars are graphed in Figure 4.
Survey responses were analyzed using a multilevel linear mixed
effects model for each question separately. Only significant results
(𝑝 < 0.05) are presented.

There were significant main effects of animation condition for
the responses to naturalness (Q1) (𝜒2 (5) = 31.97, 𝑝 < 0.0001),
engagement (Q2) (𝜒2 (5) = 19.42, 𝑝 < 0.005), liking (Q3) (𝜒2 (5) =
35.02, 𝑝 < 0.0001), and speech matching (Q4) (𝜒2 (5) = 27.58, 𝑝 <

0.0001). We found no significant main effect of conversation for
any of the questions. However, we did find an interaction between
animation condition and conversation for engagement (𝜒2 (10) =
26.85, 𝑝 < 0.05). A post-hoc least squared means test with Tukey
corrected p-values was done for each significant main effect found.
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For Q1, Q3, and Q4 the post-hoc tests revealed similar effects.
For all three questions, the NoAnim condition, REM-A, and REM-
D were rated significantly higher than Original and REM-A was
rated significantly higher than MA. REM-D was only rated signifi-
cantly higher than MA for Q1. For Q1 and Q4, REM-A was rated
significantly higher than MAAB.

For engagement (Q2), there was a significant main effect of ani-
mation condition (REM-A was rated higher than Original, MA, and
MAAB) as well as a significant interaction effect. Analyzing the
ratings by conversation, we found significant differences between
animation conditions for conversations 2 and 3. Both REM-A and
REM-D were rated significantly higher than MAAB for conversa-
tion 2. REM-A, REM-D, and MAAB were rated significantly higher
than Original for conversation 3. Figure 4 (b) shows significant dif-
ferences between ratings for animation condition by conversation.

5 DISCUSSION AND LIMITATIONS
While our models were not able to reach the quality of the proce-
dural animation and even received slightly lower average ratings
than no animation, our results still lead to a series of insights.

An unexpected result from our user study is that the condition
with no eye animation was rated relatively high overall. We
speculate that the combination of head motions and blinking ob-
scured the lack of eye motion and may even lead to the illusion
of subtle eye movement. Perhaps in longer animation clips or in a
face-to-face immersive scenario, static eyes would be more obvious
or even detrimental to the experience.

Furthermore, we found that the original, preprocessed mo-
tion was rated the lowest for each measure in our user study.
This result is not as surprising as it might first seem. The overall
quality of the captured dataset, in terms of pupil detection confi-
dence, is high at 0.92 on a scale from 0 (no pupil detected) to 1 (full
confidence). However, while we processed the captured motion, the
result still has slight remaining artifacts, for example from blinking,
and is overly smooth at times. We estimate that our data quality was
higher than typical captures since performers remained standing
in one spot and mostly looked at each other. We compared our
captured data to captures from a Meta Quest Pro and observed less
noise and fewer artifacts in our data than the Quest Pro data.

The procedural gaze models, REM-A with an adjusted look-at
parameter and REM-D with the default value, were rated highest,
with REM-A rated slightly higher than REM-D overall. These mod-
els have the advantage of having correct saccadic profiles. We think
that these animations were also rated highly because there is more
perceived eye contact than with the other methods. Indeed, several
comments from participants specifically mention eye contact as
part of their consideration for their ratings.

Finally, animations synthesized with our model were not
rated highly compared to the animations created with REM. We
think a larger and better quality dataset might improve the results
given this architecture. Our dataset with only 36 minutes may have
trained the model to "play it safe" and generate eye motion that
compensates for head movement without straying too much.

However, despite any issuesmentioned so far, the original prepro-
cessed motion should still perform best when it comes tomatching
the speech and we were curious to see if our model would learn

to match the speech. Surprisingly, the conditions NoAnim, REM-A,
and REM-D, which all do not take the speech into account at all
were rated higher than the original motion for Q4 (speech match-
ing). This observation as well as the similarity in ratings to Q1
(naturalness) and Q3 (liking) indicate that respondents might have
considered naturalness or liking first in their rating for Q4. In other
words, if they did not perceive the motion as being natural, then
they would not perceive it to match the speech.

6 CONCLUSION AND FUTUREWORK
In this paper, we presented an RNN-based method to synthesize
eye motions for conversations based on head motion and audio.
We evaluated our results by comparing it to several conditions,
such as realistic procedurally generated gaze. While our model was
not rated as highly as procedural gaze, our model and user study
provide a series of insights and conclusions.

We found that speaking may be correlated with a user’s head
motion, making it potentially possible to synthesize gaze without
using audio features, which might enhance user privacy.

In our user study, we found that people are sensitive to per-
ceived artifacts in eye motion, which is consistent with results
from previous literature. Motions with artifacts were rated even
worse than not having any animation, indicating that directly using
eye-tracked motion in a virtual environment should be avoided.

In general, our results indicate that a procedural motion syn-
thesis model may be sufficient for short interactions. However,
future work should study longer dialogues where people make
more nuanced judgements about the avatar’s personality.

Our results suggest that engagement is correlated with eye con-
tact. So perceived avatar engagement could potentially be controlled
by tuning eye contact frequency, at least for short conversations.

Our results on speech matching indicate that a different type of
experiment that clearly separates naturalness from speech match-
ing would be necessary for future evaluations. A solution might
be a recently presented study design such as the one used by Yoon
et al. [2022], developed specifically to separate human-likeness
(similar to naturalness) from appropriateness to speech regard-
ing gestures. Interestingly, they compared a whole series of RNN
based approaches and one procedural approach for synthesizing
gestures and found that the procedural approach was considered
most human-like, which might point towards more general limita-
tions in our current use of RNNs for creating human motions.

Finally, there is potential in improving deep learning approaches
as they should be able to synthesize eyemotion that is more nuanced
than a procedural model alone can. Future work using generative
models, such as Generative Adversarial Networks (GANs), may lead
to more plausible results than procedural methods, since they learn
the distribution of both the input and output data and can generate
new outputs indistinguishable from real examples. Furthermore, to
learn plausible gaze patterns for complex or varied situations, e.g., a
heated discussion, a large and diverse database would be necessary.
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